JPS5925940B2 - microwave heating furnace - Google Patents

microwave heating furnace

Info

Publication number
JPS5925940B2
JPS5925940B2 JP5674779A JP5674779A JPS5925940B2 JP S5925940 B2 JPS5925940 B2 JP S5925940B2 JP 5674779 A JP5674779 A JP 5674779A JP 5674779 A JP5674779 A JP 5674779A JP S5925940 B2 JPS5925940 B2 JP S5925940B2
Authority
JP
Japan
Prior art keywords
temperature
fireproof
heating furnace
microwave heating
insulated container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5674779A
Other languages
Japanese (ja)
Other versions
JPS55150482A (en
Inventor
進 前田
正和 滝
芳文 美濃和
宏次 小村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5674779A priority Critical patent/JPS5925940B2/en
Publication of JPS55150482A publication Critical patent/JPS55150482A/en
Publication of JPS5925940B2 publication Critical patent/JPS5925940B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)

Description

【発明の詳細な説明】 この発明は、高温の炉心温度を測定することのできるマ
イクロ波加熱炉に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a microwave heating furnace capable of measuring high temperature core temperature.

第、図は従来のこの種装置の概念的構成を示す断面図で
、1はマイクロ波共振器、2はマイクロ波発生器、3は
アンテナ、4は導波管、5は結合窓、6はスタラーフア
ン、Tは被加熱物、8は耐火断熱容器、9は置台、10
は電磁遮へいシース熱電対である。次に動作について説
明する。
Figure 1 is a cross-sectional view showing the conceptual configuration of a conventional device of this type, in which 1 is a microwave resonator, 2 is a microwave generator, 3 is an antenna, 4 is a waveguide, 5 is a coupling window, and 6 is a Starer fan, T is the object to be heated, 8 is a fireproof insulation container, 9 is a stand, 10
is an electromagnetic shielding sheath thermocouple. Next, the operation will be explained.

マイクロ波発生器2で発生したマイクロ波はアンテナ3
を経て導波管4で伝送され、整合用の結合窓5をとおし
てマイクロ波共振器1に供給される。マイクロ波共振器
1の内部電界はスターラフアン6で攪拌されて均一化が
計られ、耐火断熱容器8の内部に置かれた被加熱物Tを
マイクロ波加熱する。こラして、高温に発熱した被加熱
物の温度をマイクロ波加熱中に測定するために電磁気的
に遮へいされたシース熱電対10(以下、シース熱電対
と呼ぶ。)などが用いられる。従来のマイクロ波加熱炉
は以上のように構成されているので、炉心温度が120
0℃以上になれば、温度センサーとして通常、白金−白
金ロジウムの熱電対が必要となり、また電磁遮へい用の
シースも、耐熱性という観点からも白金が用いられる。
The microwave generated by the microwave generator 2 is sent to the antenna 3.
The signal is transmitted through the waveguide 4 and supplied to the microwave resonator 1 through the coupling window 5 for matching. The internal electric field of the microwave resonator 1 is stirred by a stirrer fan 6 to make it uniform, and the object to be heated T placed inside the fireproof heat insulating container 8 is heated by microwaves. An electromagnetically shielded sheathed thermocouple 10 (hereinafter referred to as a sheathed thermocouple) is used to measure the temperature of the heated object during microwave heating. Since the conventional microwave heating furnace is configured as described above, the core temperature is 120°C.
When the temperature exceeds 0° C., a platinum-platinum-rhodium thermocouple is usually required as a temperature sensor, and platinum is also used for the electromagnetic shielding sheath from the viewpoint of heat resistance.

このように多量の白金を用いること&A装置を高価なも
のにする大きな欠点となつていた。この発明は上記のよ
うな従来のものの欠点を除去するためになされたもので
、被加熱物を囲繞する耐火断熱容器の温度勾配を測定す
る複数の温度センサを設けることによつて1200℃以
上の高温になつている被加熱物の温度を推定することが
できるマイクロ波加熱炉を提供することを目的としてい
る。以下、この発明の一実施例を図について説明する。
The use of such a large amount of platinum was a major drawback that made the &A device expensive. This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and by providing a plurality of temperature sensors that measure the temperature gradient of a fireproof and insulated container surrounding an object to be heated, it is possible to It is an object of the present invention to provide a microwave heating furnace capable of estimating the temperature of a heated object. An embodiment of the present invention will be described below with reference to the drawings.

第2図において、10a,10bはそれぞれ、耐火断熱
容器8の壁体内の異なる位置の温度を測定する電磁遮蔽
シース熱電対で測定可能温度が1200℃程度のクロメ
ル・アルメル、そして350℃の銅・コンスタンタンが
適用される。次にこの発明の動作について説明する。被
加熱物7の温度θ。はそれを囲繞している耐火断熱容器
8の2ケ所の温度θ1およびθ2をシース熱電対10a
,10bで測定することによつて推定できる。いま耐火
断熱容器8の温度θ1およびθ2に対応する熱抵抗をそ
れぞれR,およびR2とすればθ。は次式で与えられる
。例えば、第3図に示すように、球形モデルと仮定した
場合、耐火断熱容器8の温度θ1およびθ2を測定した
位置の中心からの距離をそれぞれr1およびR2とすれ
ば熱抵抗の比R1/R2は次式で与えられる。
In FIG. 2, 10a and 10b are chromel/alumel whose measurable temperature is about 1200°C with an electromagnetic shielding sheathed thermocouple that measures the temperature at different positions within the wall of the fireproof and insulated container 8, and copper/alumel whose temperature is 350°C. Constantan is applied. Next, the operation of this invention will be explained. Temperature θ of the heated object 7. is a sheathed thermocouple 10a that measures the temperatures θ1 and θ2 at two locations in the fireproof and insulated container 8 surrounding it.
, 10b. If the thermal resistances corresponding to the temperatures θ1 and θ2 of the fireproof heat insulating container 8 are R and R2, respectively, θ is obtained. is given by the following equation. For example, as shown in FIG. 3, assuming a spherical model, if the distances from the center of the positions at which temperatures θ1 and θ2 of the fireproof insulated container 8 are measured are r1 and R2, respectively, then the ratio of thermal resistance R1/R2 is given by the following equation.

−゛ヒ記のように、耐火断熱容器8の内部温度を2ケ所
で測定することによつて、耐火断熱容器8の内壁面の温
度、ひいては被加熱物7の温度を推定することができる
- By measuring the internal temperature of the fireproof and insulated container 8 at two locations as described in (b), it is possible to estimate the temperature of the inner wall surface of the fireproof and insulated container 8 and, by extension, the temperature of the object to be heated 7.

なお、上記実施例では温度測定用センサーとして、クロ
メルーアルメル、銅−コンスタンタンなどのシース熱電
対を使用する場合について述べたが、この他に、電磁的
に遮へいを施こしたサーミスタなども用いることができ
る。
In addition, in the above embodiment, the case where a sheathed thermocouple such as chrome-alumel or copper-constantan is used as a temperature measurement sensor is described, but in addition to this, a thermistor etc. that is electromagnetically shielded may also be used. Can be done.

以上のように、この発明によれば1200℃以上の高温
になつた被加熱物の温度を直接測定する代りに、被加熱
物を囲繞している耐火断熱容器の壁体内の異なる位置を
複数の温度センサで預u定し、その温度勾配から耐火断
熱容器の内壁面の温度、ひいては被加熱物の温度を推定
しうるようにしたもので、高価な白金シースの白金一白
金ロジウム熱電対を使用しなくても良いので装置が非常
に安価にできる効果がある。
As described above, according to the present invention, instead of directly measuring the temperature of a heated object that has reached a high temperature of 1200°C or higher, multiple measurements are taken at different positions within the wall of a fireproof and insulated container surrounding the heated object. The temperature is measured by a temperature sensor, and from the temperature gradient, the temperature of the inner wall of the fireproof insulated container and, ultimately, the temperature of the heated object can be estimated.It uses an expensive platinum-platinum-rhodium thermocouple with a platinum sheath. Since there is no need to do this, the device can be made very inexpensively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のマイクロ波加熱を利用した加熱炉の概念
的構成を示す断面図、第2図はこの発明の一実施例を示
ず断面図、第3図はこの発明において用いる耐火断熱容
器内の温度を推定、原理を説明するための温度測定位置
を示す耐火断熱容器の断面図である。 図において、1はマイクロ波共振器、7は被加熱物、8
は耐火断熱容器、10,10a,10bはシース熱電対
である。
Fig. 1 is a cross-sectional view showing the conceptual configuration of a conventional heating furnace using microwave heating, Fig. 2 is a cross-sectional view showing an embodiment of the present invention, and Fig. 3 is a fireproof and insulated container used in the present invention. FIG. 2 is a cross-sectional view of a fireproof and insulated container showing temperature measurement positions for estimating and explaining the principle of temperature inside the container. In the figure, 1 is a microwave resonator, 7 is a heated object, and 8 is a microwave resonator.
is a fireproof heat insulating container, and 10, 10a, and 10b are sheathed thermocouples.

Claims (1)

【特許請求の範囲】 1 マイクロ波を発生する手段、マイクロ波発熱する物
質を囲繞するマイクロ波損失の小さい耐火断熱容器、お
よび上記耐火断熱容器の外部から前記マイクロ波を上記
物質に供給するためのマイクロ波オーブンを備えたマイ
クロ波加熱炉において、上記耐火断熱容器の壁体の内壁
面から異なる位置の温度を測定する複数の電磁遮蔽シー
ス温度センサを備え、上記耐火断熱容器の壁体の温度勾
配から内壁面の温度を推定するようにしたことを特徴と
するマイクロ波加熱炉。 2 温度センサが、アルメル・クロメル、銅・コンスタ
ンタンなどの熱電対である特許請求の範囲第1項記載の
マイクロ波加熱炉。 3 温度センサがサーミスタである特許請求の範囲第1
項記載のマイクロ波加熱炉。
[Scope of Claims] 1. A means for generating microwaves, a fireproof and insulated container with low microwave loss that surrounds a substance that generates microwave heat, and a means for supplying the microwaves to the substance from outside the fireproof and insulated container. A microwave heating furnace equipped with a microwave oven includes a plurality of electromagnetic shielding sheath temperature sensors that measure temperatures at different positions from the inner wall surface of the wall of the fireproof and insulated container, and the temperature gradient of the wall of the fireproof and insulated container. A microwave heating furnace characterized in that the temperature of an inner wall surface is estimated from. 2. The microwave heating furnace according to claim 1, wherein the temperature sensor is a thermocouple made of alumel/chromel, copper/constantan, or the like. 3 Claim 1 in which the temperature sensor is a thermistor
The microwave heating furnace described in Section 1.
JP5674779A 1979-05-07 1979-05-07 microwave heating furnace Expired JPS5925940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5674779A JPS5925940B2 (en) 1979-05-07 1979-05-07 microwave heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5674779A JPS5925940B2 (en) 1979-05-07 1979-05-07 microwave heating furnace

Publications (2)

Publication Number Publication Date
JPS55150482A JPS55150482A (en) 1980-11-22
JPS5925940B2 true JPS5925940B2 (en) 1984-06-22

Family

ID=13036111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5674779A Expired JPS5925940B2 (en) 1979-05-07 1979-05-07 microwave heating furnace

Country Status (1)

Country Link
JP (1) JPS5925940B2 (en)

Also Published As

Publication number Publication date
JPS55150482A (en) 1980-11-22

Similar Documents

Publication Publication Date Title
JP7162668B2 (en) Heat flux sensor with improved heat transfer
US3321974A (en) Surface temperature measuring device
US4906105A (en) Measurement of thermal conditions
CN1251168A (en) Measuring tip for radiation thermometer
US3232113A (en) Thermal parameter indicator
CN112534226A (en) Temperature measuring device and method for determining a temperature
RU2617725C1 (en) Method for determining emissivity of hard materials and device for its implementation
CN109163810A (en) High-temperature rotor radiation temperature measurement device and method
Lapshinov Temperature measurement methods in microwave heating technologies
US3354720A (en) Temperature sensing probe
JPH0625698B2 (en) A radiation sensor for contactlessly measuring the temperature of an object surface regardless of emissivity.
JPS5925940B2 (en) microwave heating furnace
JPS61153555A (en) Method and device for detecting presence of substance or generation of change immediately before physical state change in fluid
US4162175A (en) Temperature sensors
Hisano et al. Simultaneous measurement of specific heat capacity, thermal conductivity, and thermal diffusivity by thermal radiation calorimetry
JP4042816B2 (en) Moisture content detection sensor
SU892239A1 (en) Heat flow pickup
JPH07198505A (en) Temperature reference device
SU679823A1 (en) Thermosound
RU186971U9 (en) HEATED COOLER
JP3069031B2 (en) Heat flux measuring device
SU631790A1 (en) Device for monitoring temperature of furnace and articles moving therein
SU771483A2 (en) Thermoelectric radiation detector
Idei et al. Electron cyclotron emission from optically thin plasma in compact helical system
SU590720A1 (en) Thermostat