JPS59223753A - Polyphenylene sulfide resin molding material - Google Patents

Polyphenylene sulfide resin molding material

Info

Publication number
JPS59223753A
JPS59223753A JP9809483A JP9809483A JPS59223753A JP S59223753 A JPS59223753 A JP S59223753A JP 9809483 A JP9809483 A JP 9809483A JP 9809483 A JP9809483 A JP 9809483A JP S59223753 A JPS59223753 A JP S59223753A
Authority
JP
Japan
Prior art keywords
resin
pps
molding
molding material
polyphenylene sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9809483A
Other languages
Japanese (ja)
Inventor
Fukuo Sugano
菅野 福男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP9809483A priority Critical patent/JPS59223753A/en
Publication of JPS59223753A publication Critical patent/JPS59223753A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide PPS having improved flow characteristics and weld strength, by using two kinds of polyphenylene sulfide resins (PPS) having specified melt flow rates in combination and incorporating a reinforcing material or an inorg. filler therein. CONSTITUTION:A polyphenylene sulfide (PPS) resin molding material is prepared from 95-30wt% resin (PPS-A) whose melt flow index is adjusted to 5-100 by a thermal crosslinking and 5-70wt% resin (PPS-H) whose melt flow index is adjusted to 5-200 by a synthetic reaction. The melt flow rate is measured according to ASTM D1238-70T at 300 deg.C under a load of 5kg. A reinforcing material and/or an inorg. filler are/is incorporated in the PPS resin molding material. Pref. said material consists of 90-35wt% PPS resin composed of 95-30wt% PPS-A resin and 5-70wt% PPS-H resin and 10-65wt% reinforcing material and/or inorg. filler.

Description

【発明の詳細な説明】 本発明は、ポリフェニレンザルファイド樹脂成形材料に
関し、特にメルトフローレイトが、熱架橋によって調製
された樹脂と合成反応によって調製された樹脂とからな
り、補強剤および/または無機質充填剤を含有する、成
形性に優れ、しかも、成形品は二次加工において破壊す
ることのない良好な強度を有するポリフェニレンサルフ
ァイド樹脂成形劇料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a polyphenylene sulfide resin molding material, in particular a melt flow rate consisting of a resin prepared by thermal crosslinking and a resin prepared by a synthetic reaction, and a reinforcing agent and/or an inorganic resin. The present invention relates to a polyphenylene sulfide resin molded material that contains a filler, has excellent moldability, and has good strength so that the molded product does not break during secondary processing.

ポリフェニレンサルファイド(以下PPSと称する)樹
脂は、熱可塑性樹脂であシながら、加熱などによシ架橋
し得る熱硬化性樹脂的性質を有しておシ、ポリカーボネ
ート、ナイロン、飽和ポリエステル、その他のエンジニ
アリングプラスチックと比較して、剛性が極めて高く、
耐熱性、耐薬品性、!気的性質などの優れたエンジニア
リングプラスチックとして知られている。。
Although polyphenylene sulfide (hereinafter referred to as PPS) resin is a thermoplastic resin, it has the properties of a thermosetting resin that can be crosslinked by heating, etc. Polycarbonate, nylon, saturated polyester, and other engineering materials Extremely high rigidity compared to plastic
Heat resistance, chemical resistance! It is known as an engineering plastic with excellent chemical properties. .

pps樹脂は、圧縮成形、射出成形、押出成形などによ
る成形が可能であるが、PPB樹脂単独では伸びが少な
く脆弱であるので、成形材料としての、形態は補強剤お
よび/または無機質充填剤、例えば、ガラス繊維、アス
ベスト、ガラスピーズ、シリカ微粉などを混入して強化
がはかられている。現在、PPEI樹脂からなる成形材
料としてはガラス繊維を含有したペレット形態のものが
用いられていて、成形によって得られた成形品は、PP
S樹脂/)l¥有の性質に加えて強度が向上し、電気機
械器具、電子機械器具。
PPS resin can be molded by compression molding, injection molding, extrusion molding, etc. However, since PPB resin alone has low elongation and is brittle, it is necessary to use reinforcing agents and/or inorganic fillers as a molding material. , glass fiber, asbestos, glass beads, fine silica powder, etc. are mixed in to strengthen the material. Currently, the molding material made of PPEI resin is in the form of pellets containing glass fiber, and the molded product obtained by molding is made of PPEI resin.
In addition to the properties of S resin, it has improved strength and is suitable for electrical and electronic equipment.

事務機械器具、化学機械器具、その他の機械器具、それ
らの部品などに使用されている。
Used in office machinery, chemical machinery, other machinery, and their parts.

PPS樹脂成形材料において、多量の補強剤および/ま
たは無機質充填剤を含有しているものは耐アーク性に優
れ、コストも安くなるなどの長所を有しているが、その
反面、成形性が低下し、得られる成形品の外観が劣るな
どの欠点も有している。更eこ、圧縮成形、射出成形な
どによる成形において、成形材料中の樹脂と補強剤、無
機質充填剤との分布が不均質となり易く、特に成形金型
中の成形材料の流れの合流点であるウェルド部において
融着が不完全となり、そのため成形品はウェルド強度が
低く、成形品の二次加工などにおいて、熱応力や機械的
応力によってウェルド部から容易に破壊するという問題
がある。
Among PPS resin molding materials, those containing large amounts of reinforcing agents and/or inorganic fillers have advantages such as excellent arc resistance and low cost, but on the other hand, moldability decreases. However, it also has drawbacks such as poor appearance of the molded product obtained. In molding by molding, compression molding, injection molding, etc., the distribution of the resin, reinforcing agent, and inorganic filler in the molding material tends to be uneven, especially at the confluence point of the flow of the molding material in the molding die. Fusion is incomplete at the weld portion, and as a result, the weld strength of the molded product is low, and there is a problem that the molded product is easily broken from the weld portion due to thermal stress or mechanical stress during secondary processing of the molded product.

このようなウェルド強度の低下に対しては、従来から、
圧縮成形、射出成形に使用する金型の設計に改良を加え
、成形拐旧の流れを良くすることによシ、かかる欠点を
回避するという手段がとられてきた。しかしながら、P
PS樹脂の優れた特性は更に多様な、しかも複雑な形状
の成形品への対応が求められ、金型の改良による欠点の
回避とj、−19手段では対処し得なくなっている。ま
た、一方、pps樹脂の合成方法が改良され、pp日樹
脂成形材料として成形時の流動性が改良された高ウェル
ド強度の成形材料が市販されているが、かかる成形材料
の特性から成形時における成形品の冷却に要する時間が
長くなシ、成形サイクルを早めると成形品が変形し、し
かも該成形相科によって成形された成形品はウェルド強
度eユ向上したにも拘わらず、非ウェルド部の強度は低
下するという問題がある。更に、成形材料の改良横側に
おいて、PrS樹脂成形制料の補強剤としてのガラス繊
維の径について、その径を小さくすることによってウェ
ルド強度を向上せしめるという提案もあるが、ガラス繊
維の径はガラス繊維の製造面から限度があり、またウェ
ルド強度の向上に顕著な効果は認められない。
Conventionally, to deal with such a decrease in weld strength,
Measures have been taken to avoid these drawbacks by improving the design of the molds used for compression molding and injection molding to improve the flow of molding. However, P
The excellent properties of PS resins require support for molded products of more diverse and complex shapes, and it is no longer possible to overcome these problems by improving molds to avoid defects. On the other hand, the synthesis method of pps resin has been improved, and molding materials with high weld strength and improved fluidity during molding are commercially available as pp resin molding materials, but due to the characteristics of such molding materials, It takes a long time to cool the molded product, and if the molding cycle is accelerated, the molded product deforms.Moreover, even though the weld strength of the molded product molded by this molding phase is improved, the non-weld part is There is a problem that the strength decreases. Furthermore, on the side of improving molding materials, there is a proposal to improve weld strength by reducing the diameter of glass fibers used as reinforcing agents in PrS resin molding compounds, but the diameter of glass fibers is There are limitations from the viewpoint of fiber production, and no significant effect on improving weld strength has been observed.

本発明者は、かかる問題点の認識に基づいて、ウェルド
強度の低下tJ:PPs樹脂の特性に基づき固化温度が
高いため、成形時に成形材料がウェルド部に到達する以
前に同化が起り、流動性が低下した状態で接合するため
、融着が不完全となることに原因のあることに着目して
、PPEI樹脂成形材料の流動性の改良とウェルド強度
の向上について種々研究、横側ヲ行なった。その結果、
pps樹脂はメルトフローレイトが、熱架橋によって5
〜100に調製された樹脂と合成反応によって5〜20
0に調製された樹脂とからな9、補強剤および/または
無機質充填剤金含有するpps樹脂成形材料は成形時の
流動性が改良され、成形品のウェルド強度が向上し、し
かもPPS樹脂の有する特有の性質を損なうことなく、
前記問題点を解決し得ることを見い出し本発明を完成し
た。
Based on recognition of this problem, the present inventors have determined that the weld strength decreases tJ: Because the solidification temperature is high based on the characteristics of PPs resin, assimilation occurs before the molding material reaches the weld part during molding, and the fluidity Focusing on the fact that the fusion is incomplete because the bonding is performed in a state where the bonding temperature is reduced, various studies were conducted on improving the fluidity and weld strength of PPEI resin molding materials. . the result,
PPS resin has a melt flow rate of 5 due to thermal crosslinking.
5-20 by synthetic reaction with resin prepared to ~100
PPS resin molding materials containing gold as a reinforcing agent and/or inorganic filler have improved fluidity during molding and improved weld strength of molded products, and have without sacrificing its unique characteristics.
The present invention has been completed by discovering that the above problems can be solved.

本発明の目的は、PPS樹脂成形材料において、メルト
フローレイトが、熱架橋によって調製された樹脂と合成
反応によって調製された樹脂とからなり、補強剤および
/または無機質充填剤金含有する、成形性に優れ、しか
も成形品はウェルド強度が高く、特に二次加工において
ウェルド部から破壊することのない機械的強度の向上し
たpps flt4脂成形材料の提供にある。
The object of the present invention is to provide a PPS resin molding material in which the melt flow rate is composed of a resin prepared by thermal crosslinking and a resin prepared by a synthetic reaction, and contains a reinforcing agent and/or an inorganic filler gold. The object of the present invention is to provide a pps flt4 resin molding material which has excellent mechanical strength, and which also provides a molded product with high weld strength, and which does not break from the weld part during secondary processing.

すなわち、本発明は、圧縮成形用あるいは射出成形用の
ポリフェニレンサルファイド樹脂成形材料において、該
成形材料中のポリフェニレンサルファイド樹脂は、下記
条件で測定さ、′t1−たメルトフローレイトが、熱架
橋によって5へ−1,OOに調製された樹脂95〜30
i量係と合成反応によって5〜200に調製された樹脂
5〜70重量%とがらなシ、補強剤および/または無機
質充填剤を含有することを特徴とするポリフェニレンサ
ルファイド樹脂成形拐料である。
That is, the present invention provides a polyphenylene sulfide resin molding material for compression molding or injection molding, in which the polyphenylene sulfide resin in the molding material has a 't1-melt flow rate of 5 due to thermal crosslinking, as measured under the following conditions. Resin prepared to H-1, OO 95-30
The present invention is a polyphenylene sulfide resin molding material, characterized in that it contains 5 to 70% by weight of a resin prepared by a synthetic reaction with a weight ratio of 5 to 200, and a filler, a reinforcing agent, and/or an inorganic filler.

測定方法:  ASTM  D1238−70T温  
 度 :  300’C 荷  重 :    5# 面シて、本発明において、メルトフローレイトが熱架橋
によって5〜100に調製された樹脂(以下PP5−A
と称する)は、現在市販されている未架橋のpps樹脂
、または部分架橋のpps樹脂’1 pps樹脂の融点
以下の温度、例えば230℃にて酸素の存在下に熱処理
することによって得ることができる。しかしながら、p
ps−A樹脂は市販品を入手し得るので、熱処理するこ
となく、使用することができる。例えば米国のフィリッ
プス・ペトローリアム社の”P−4”+”p−6”(い
ずれも粉体状)およびに使用し得る。
Measurement method: ASTM D1238-70T temperature
Temperature: 300'C Load: 5# In the present invention, a resin (hereinafter referred to as PP5-A) whose melt flow rate is adjusted to 5 to 100 by thermal crosslinking is used.
) can be obtained by heat treatment in the presence of oxygen at a temperature below the melting point of the currently commercially available uncrosslinked pps resin or partially crosslinked pps resin '1 pps resin, for example 230 ° C. . However, p
Since ps-A resin is commercially available, it can be used without heat treatment. For example, it can be used for "P-4" and "p-6" (both in powder form) manufactured by Phillips Petroleum Company in the United States.

また、メルトフローレイトが合成反応によって5〜20
0にFJ!l製された樹脂(以下、Pr5−Hと称する
)は高分子量のPPS重合体の製造方法として開示され
ている特公昭52−12240号公報、特公昭53−2
5589号公報、米国特許第3,354,129号明細
書などに従った方法により、反応時間2反応源度、触媒
の変更など反応条件を変化させることによって製造する
ことができる。すなわち、特公昭52−12240号公
報に従えば、硫黄供給源、パラジハロベンゼン、アルカ
リ全屈カルボン酸塩、および有機アミド、それぞれの少
なくとも1種全混合して反応せしめることにより高分子
量のpps重合体が得られ、また、特公昭53−255
89号公報に従えば、N−アルキル−2−ピロリドンと
酢酸リチウムと水を接触反応させて第1組成物全形成し
、脱水後、水と硫化アルカリ金H4とを含む第2組成物
と接触反応させて第3組成物全形成りし、脱水後パラジ
ハロベンゼンと接触反応させることによりpps重合体
が得られる。
In addition, the melt flow rate is 5 to 20 depending on the synthesis reaction.
FJ to 0! The produced resin (hereinafter referred to as Pr5-H) is disclosed in Japanese Patent Publication No. 12240/1986 and Japanese Patent Publication No. 53-2 (1983), which are disclosed as a method for producing a high molecular weight PPS polymer.
It can be produced by changing the reaction conditions, such as changing the reaction time, reaction source degree, and catalyst, according to the method described in Japanese Patent No. 5589, US Pat. No. 3,354,129, and the like. That is, according to Japanese Patent Publication No. 52-12240, a high molecular weight pps polymer is produced by completely mixing and reacting at least one of a sulfur source, paradihalobenzene, an alkali total carboxylic acid salt, and an organic amide. A combination was obtained, and also
According to Publication No. 89, a first composition is entirely formed by contacting N-alkyl-2-pyrrolidone, lithium acetate, and water, and after dehydration, it is contacted with a second composition containing water and alkali gold sulfide H4. A pps polymer is obtained by reacting to completely form the third composition, and then contacting and reacting with para-dihalobenzene after dehydration.

本発明において、メルトフローレイトはASTM 、D
1238−70Tに定めるメルトインデクザーにて、温
度300℃、荷重5Alvの条件で測定した値であって
、PP5−A樹脂は5〜100 (r/10分)、PP
EI−H樹脂は5〜200(f/10分)である。メル
トフローレイトがかかる範囲内にある2稍のPPS樹脂
全配合してなる成形材料ハ、後に示す実施例と比較例と
の対比から明らかなように、成形時の加工性、すなわち
、成形材料の流動性が改良爆れるため、ウェルド部にお
ける樹脂の融蒲が完全に行なわれ、補強剤、無機質充填
剤の配合による効果とともに、成形品のウェルド強度な
ど機械的強度を向上せしめることができる。しかも成形
品の二次加工において、例えば超音波溶着時の破壊など
による不良の発生を解消することができる。メルトフロ
ーレイトが前記範囲内にある2種のPPEI樹脂を配合
してなる成形材料は、溶融時の粘度低下および成形時の
固化温度(結晶化温度)が低下する。ウェルド部におけ
る樹脂の融着が冷却寸前に行なわれるか、融着が完結し
てから冷却されるかによって、成形品のウェルド強度、
および成形品の残留応力に大きな相違が生ずるものと思
われる。メルトフローレイトが前記範囲を大、小いずれ
かの方向に逸脱したpps樹脂からなる成形材料によっ
て成形された成形品はウェルド強度など機械的強度の向
上は認められない。また、メルト70−レイトが前記範
囲内にあるPP5−A、あるいはPr5−Hの単独樹脂
からなる成形材料による成形品も機械的強度は向上され
ない。
In the present invention, the melt flow rate is ASTM, D
The value was measured using a melt indexer specified in 1238-70T at a temperature of 300°C and a load of 5 Alv.
EI-H resin is 5-200 (f/10 min). As is clear from the comparison between the Examples and Comparative Examples shown later, the molding material containing all the PPS resins with melt flow rate within this range has a high processability during molding, that is, the molding material. Since the fluidity is improved and the resin is completely melted in the weld area, it is possible to improve the mechanical strength such as the weld strength of the molded product, as well as the effects of the reinforcing agent and inorganic filler. Moreover, in the secondary processing of molded products, it is possible to eliminate defects caused by breakage during ultrasonic welding, for example. A molding material made by blending two types of PPEI resins having melt flow rates within the above range has a lower viscosity during melting and a lower solidification temperature (crystallization temperature) during molding. The weld strength of the molded product depends on whether the resin is fused at the weld part just before cooling or whether it is cooled after the fusion is completed.
It is thought that there will be a large difference in the residual stress of the molded product. A molded article made of a molding material made of a pps resin whose melt flow rate deviates from the above range in either a large or small direction does not show improvement in mechanical strength such as weld strength. Further, the mechanical strength of molded products made of molding materials made of PP5-A or Pr5-H resins having melt 70-rates within the above-mentioned ranges is not improved.

本発明において、メルトフローレイトの’fAMされた
PP5−A樹脂とPP5−H樹脂の配合割合は、該pp
s樹脂からなる成形材料が成形性に優れ、しかも成形品
のウェルド強度など機械的強度を向上せしめるには好ま
しい範囲がある。
In the present invention, the blending ratio of PP5-A resin and PP5-H resin, which have been subjected to melt flow rate 'fAM, is
There is a preferable range in which the molding material made of S resin has excellent moldability and improves the mechanical strength such as the weld strength of the molded product.

すなわち、pps−A樹脂95〜30重t%とPP5−
H樹脂5〜70重量%とから成るのが好ましい。かかる
配合割合からなる成形制料は成形時に溶融粘度が低下し
、同化温度の低下が認められる。しかも成形後の脱型に
要する冷却時間は従来のPP5−A樹脂単独からなる成
形利料の成形時間と変シなく、成形サイクルを変更する
必要がないという利点がある。pps−a樹脂の配合割
合が5 m N %以下であると、成形時の流動性は変
化せず、成形品のウェルド強度あるいは二次加工時の破
壊などの点で何等改良の効果は認められない。一方70
重量%を越えると、成形品のウェルド強度あるいは二次
加工時の破壊は改善されるが、非ウェルド部の機械的強
度は低下し、成形後の脱型に要する冷却時間は著るしく
長くなシ、従って成形サイクルが長くなることから生産
性の点からも好ましくない。
That is, 95 to 30% by weight of pps-A resin and PP5-
Preferably, the composition comprises 5 to 70% by weight of H resin. A molding material having such a blending ratio has a lower melt viscosity and a lower assimilation temperature during molding. Moreover, the cooling time required for demolding after molding is the same as the molding time of conventional molding materials made of PP5-A resin alone, and there is an advantage that there is no need to change the molding cycle. If the blending ratio of pps-a resin is 5 mN% or less, the fluidity during molding will not change, and no improvement effect will be observed in terms of the weld strength of the molded product or breakage during secondary processing. do not have. On the other hand, 70
If the weight percentage is exceeded, the weld strength of the molded product or fracture during secondary processing will be improved, but the mechanical strength of non-welded parts will decrease and the cooling time required for demolding after molding will become significantly longer. However, since the molding cycle becomes longer, it is also unfavorable from the viewpoint of productivity.

本発明のpps樹脂成形材料はメルトフローレイトの調
製された、pps−hll/lI脂とPre−H樹脂と
からなり、補強剤および/または無機質充填剤を含有す
るが、補強剤としては、例えばガラス繊維、炭素繊維な
どの繊維状物、チタン醗カリウム、ワラストナイト、ア
スベスト、炭化珪素など熱可塑性樹B’Qの補強剤とし
て使用されるものであればすべて使用が可能である。ま
た、かかる補強剤に対して、ビニルシラン、アミノシラ
ン、メルカプトシラン、エポキシなどのシランカップリ
ング剤およびチタン系カップリング剤あるいは集束剤な
どで表面処理を施してもよい。使用形態は、チョップス
トランド。
The pps resin molding material of the present invention is composed of melt flow rate prepared pps-hll/ll fat and Pre-H resin, and contains a reinforcing agent and/or an inorganic filler. Any fibrous material such as glass fiber or carbon fiber, potassium titanium, wollastonite, asbestos, or silicon carbide that is used as a reinforcing agent for thermoplastic resin B'Q can be used. Further, such a reinforcing agent may be surface-treated with a silane coupling agent such as vinylsilane, aminosilane, mercaptosilane, or epoxy, a titanium-based coupling agent, or a sizing agent. The form used is chopped strands.

ロービング、ミルドファイノ(−などいずれの形態のも
のであってもよい。無機質充填剤は特に限定されないが
、成形時の加熱によって分解あるいi!発煙を伴なわず
、吸湿性あるいは経時変化などによシ成形品に影響ヲ与
えないものが好ましい。かかる無機質充填剤を例示すれ
ば、0aOo3 、 MgOog 、 Ba5o4 、
0aSo4のような炭酸塩類、硫酸塩類、OuO+ Z
nO+ TiO2r hlgo r A12osのよう
な金属酸化物、シリカ、グラファイト、   (ボロン
ナイトライド、黒鉛、二硫化モリブテン、タルク、クレ
ーなどを挙げることができる。使用形態は、細かく粉砕
された粉末状のもの、あるいは鱗片状のものが、流動性
、機械的強度の点で好ましい。無機質充填剤は1種類に
限定されるものではなく、2種類以上を併用してもよく
、更に前記補強剤と併用することもできる。
It may be in any form such as roving or milled phyno (-).The inorganic filler is not particularly limited, but it does not decompose or smoke when heated during molding, and it does not cause hygroscopicity or changes over time. It is preferable to use an inorganic filler that does not affect the molded product. Examples of such inorganic fillers include OaOo3, MgOog, Ba5o4,
Carbonates such as 0aSo4, sulfates, OuO+ Z
Metal oxides such as nO+ TiO2r hlgor A12os, silica, graphite, boron nitride, graphite, molybdenum disulfide, talc, clay, etc. can be used in the form of finely ground powder, Alternatively, a scaly filler is preferable in terms of fluidity and mechanical strength.The inorganic filler is not limited to one type, and two or more types may be used in combination, and furthermore, it may be used in combination with the above-mentioned reinforcing agent. You can also do it.

PP5−A樹脂とPP5−H樹脂からなるPPS樹脂に
対する補強剤および/または無機質充填剤の配合割合は
特に限定されるものではないが、圧縮成形あるいは射出
成形における成形時の成形材料の流動性および成形品の
機械的強度などの面から、好ましい範囲がある。すなわ
ち、PP5−A樹脂95〜30重量%とPPB−H樹脂
5〜70重量%からなるPre樹脂樹脂90〜爪5 〜65重量係であるのが好適である。補強剤と無機質充
填剤は、それぞれ単独に配合してもよく、また併用して
もよい。併用の場合、両者の配合割合は特に限定されな
いが、コストの面から、補強剤においてガラス繊維ある
いは炭素繊維などの繊維状物は少量とし、無機質充填剤
を多量とするのが好ましい。一方、成形時の溶融流動性
の面においてeよ、繊維状補強剤を多量とし、無機質充
填剤を夕景とするのが好ましい。
The blending ratio of the reinforcing agent and/or inorganic filler to the PPS resin consisting of PP5-A resin and PP5-H resin is not particularly limited, but it depends on the fluidity of the molding material during compression molding or injection molding. There is a preferable range from the viewpoint of the mechanical strength of the molded product. That is, it is preferable that the Pre resin resin is 90 to 5 to 65 weight percent, which is composed of 95 to 30 weight percent of PP5-A resin and 5 to 70 weight percent of PPB-H resin. The reinforcing agent and the inorganic filler may be blended individually or in combination. When used in combination, the mixing ratio of the two is not particularly limited, but from the viewpoint of cost, it is preferable to use a small amount of fibrous material such as glass fiber or carbon fiber in the reinforcing agent and a large amount of the inorganic filler. On the other hand, in terms of melt flowability during molding, it is preferable to use a large amount of fibrous reinforcing agent and a large amount of inorganic filler.

いずれにおいても、成形品の所要強度との関係において
必要かつ充分な:%tk越えないことが望ましい。
In either case, it is desirable not to exceed the necessary and sufficient %tk in relation to the required strength of the molded product.

本発明において、PP5−A樹脂、PP8−H樹脂、補
強剤および/または無機質充填剤の混合方法は公知の方
法を採用し得る。例えば、PP5− A 樹脂とPre
−H樹脂とをヘンシェルミキサーなどの混合機により機
械的に均−混合して予備混合物とし、次いで該予備混合
物と補強剤および/または無機質充填剤を■ミキサーで
分散させ、スクリュ一式の単軸またtよ2軸の混練押出
機に投入し、300〜400℃に加熱して溶融混線せし
めた後、冷却しペレタイザーによってベレット化するこ
とによシ成形拐刺とすることができる。
In the present invention, a known method can be used for mixing the PP5-A resin, PP8-H resin, reinforcing agent and/or inorganic filler. For example, PP5-A resin and Pre
-H resin is mechanically homogeneously mixed using a mixer such as a Henschel mixer to form a premix, and then the premix and the reinforcing agent and/or inorganic filler are dispersed using a mixer. The mixture is put into a twin-screw kneading extruder and heated to 300 to 400°C to melt and cross-mix, then cooled and pelletized using a pelletizer to form cylindrical pieces.

本発明の成形材料において、本発明の目的全逸脱しない
範囲で、PPS 樹脂に対して他の熱可塑性樹脂まfc
は熱硬化性樹脂などを併用することができる。かかる樹
脂としては、例えば、ポリエナレン、ポリプロピレン、
ポリスチレン。
In the molding material of the present invention, other thermoplastic resins or fc may be used for PPS resin without departing from the purpose of the present invention.
can be used in combination with a thermosetting resin or the like. Examples of such resins include polyenalene, polypropylene,
polystyrene.

ポリ塩化ビニル、ポリメタクリレート、ポリウレタン、
ポリアミド、ポリカーボネート、ポリアミド−イミド、
含フツ素樹脂、エポキシ樹脂。
polyvinyl chloride, polymethacrylate, polyurethane,
polyamide, polycarbonate, polyamide-imide,
Fluorine-containing resin, epoxy resin.

シリコーン樹脂などの公知の樹脂が挙げられる。Known resins such as silicone resins may be used.

更に、潤滑剤、滑剤2着色剤2発泡剤、離型剤。Furthermore, lubricant, lubricant 2 coloring agent 2 foaming agent, mold release agent.

熱安定剤、配化防止剤、剛候性改良剤など併用すること
ができる。
A heat stabilizer, a combination inhibitor, a stiffness improver, etc. can be used in combination.

本発明の成形材料は、成形時の流動性が良好であるので
、従来、種々のトラブルの原因となっていた強化剤、充
填剤、あるいは配合剤の偏在を起すことがない。而して
、不発明の成形材料により成形された成形品のウェルド
強度などの機械的強度は後に示す実施例と比較例との対
比からも明らかなように従来のpps樹脂成形材料にな
い強度ヲ崩するものである。
Since the molding material of the present invention has good fluidity during molding, it does not cause maldistribution of reinforcing agents, fillers, or compounding agents, which have conventionally caused various problems. Therefore, the mechanical strength such as weld strength of the molded product molded with the uninvented molding material has a strength that is not found in the conventional pps resin molding material, as is clear from the comparison between the examples and comparative examples shown later. It is something that can be destroyed.

本発明の成形材料は、通常の圧縮成形、射出成形、ある
いは押出成形によって成形することができる。成形条件
は特に限定されることなく、本発明の成形材料は、従来
、機械的強度が低く、PPS樹脂成形材料の使用が困難
であった複雑形状の成形品、特に、超音波溶着などによ
る二次加工を必要とする成形品の製造を可能とする。更
に、車輌用機材、電気機械器具、電気機械器具、事務機
械器具、化学機械器具、それらの部品、例えば、板、棒
、管、容器、歯車などのエンジニアリングプラスチック
として広い用途に使用することができる。
The molding material of the present invention can be molded by conventional compression molding, injection molding, or extrusion molding. The molding conditions are not particularly limited, and the molding material of the present invention can be used to mold products with complex shapes, which conventionally had low mechanical strength and made it difficult to use PPS resin molding materials, especially molded products made by ultrasonic welding etc. It enables the production of molded products that require subsequent processing. Furthermore, it can be used in a wide range of applications as engineering plastics for vehicle equipment, electrical machinery, electrical machinery, office machinery, chemical machinery, and their parts, such as plates, rods, tubes, containers, gears, etc. .

以下に、本発明全実施例により具体的に説明するが、本
発明はこれら実施例のみに限定されるものではない。
The present invention will be explained in detail below using all Examples, but the present invention is not limited to these Examples.

なお、実施例において、成形材料の評価方法。In addition, in the examples, the evaluation method of the molding material.

試験用成形品の成形条件、試験方法などは次の通りであ
る。
The molding conditions and test methods for the test molded product are as follows.

成形品の成形条件:射出成形機により次の条件や成形し
た。
Molding conditions for the molded product: Molding was performed using an injection molding machine under the following conditions.

シリンダ一温度−340℃ 射出圧力=1000Wcd(樹脂圧換n)金型温度:1
20℃ 成形材料の流動性試験:半径3,2警手円のスパイラル
・フロー金型を使用して、上記成形条件にて成形し、流
動長さを測定した。
Cylinder temperature -340℃ Injection pressure = 1000Wcd (resin pressure exchange n) Mold temperature: 1
20° C. Flowability test of molding material: Molding was performed under the above molding conditions using a spiral flow mold with a radius of 3.2 centimeters, and the flow length was measured.

成形時の最短冷却時間測定: 6.3snX 6.3燗
X63.5mの直方体を上記成形条件にて射出後、脱型
時に成形品突上りビンで成形品が変形あるいは破損しな
い最短冷却時間を測定した。
Measurement of the shortest cooling time during molding: After injecting a rectangular parallelepiped of 6.3 sn x 6.3 m x 63.5 m under the above molding conditions, measure the shortest cooling time without deforming or breaking the molded product with a molded product ejection bin when demolding. did.

成形品の機械的強度測定:上記成形条件にて成形した成
形品をJ工S−に7113に従った試験片に調製し、ウ
ェルド部引張強度および非つェルド部引張強度ヲ″テン
シロン″引張試験機(東洋ボールドウィン社製)にて測
定した。
Measurement of mechanical strength of molded product: The molded product molded under the above molding conditions was prepared into a test piece according to J.K. S-7113, and the tensile strength of the welded part and the tensile strength of the non-welded part were tested by the "Tensilon" tensile test. It was measured using a machine (manufactured by Toyo Baldwin).

成形品の二次加工試験−3点ピンポイントゲージにより
第1図に示されるような直径40mm×高さ10瓢×肉
厚3.2 mmの円形カップ1,2を上記成形条件で成
形し、第2図に拡大して示されるビードジヨイント形状
をなす超音波溶着接合部3,3′を超音波溶接機(精電
舎電子工業社製)にて振動数25μで溶着し、第3図に
示されるカップ4を作成した後、該カップ内に3.0に
9/ caの空気圧をかけ、水中に没して空気の漏洩の
有無から溶着性を確認した。
Secondary processing test for molded products - Circular cups 1 and 2 with a diameter of 40 mm, a height of 10 gourds, and a wall thickness of 3.2 mm as shown in FIG. 1 were molded using a three-point pinpoint gauge under the above molding conditions. The ultrasonic welded joints 3 and 3' in the form of a bead joint, shown enlarged in Fig. 2, were welded using an ultrasonic welding machine (manufactured by Seidensha Denshi Kogyo Co., Ltd.) at a frequency of 25 μm, as shown in Fig. 3. After creating the cup 4, an air pressure of 3.0 to 9/ca was applied to the cup, and the cup was immersed in water to check the weldability from the presence or absence of air leakage.

実施例1 pp日−人樹脂として“ライドンpps・P−4”(メ
ルトフローレイト50.0 ) 50ii部およびPP
B−H樹脂としてパラジクロルベンゼンと二硫化ナトリ
ウムを原料とし、触媒として酢酸リチウム、反応溶媒と
してN−メチル−2−ピロリドンを用い、反応温度27
5℃にて3時間反応せしめて得られたメルトフローレイ
ト38.8(1)PPF3樹脂10重量部を配合し、ヘ
ンシェルミキサーにて混合し、次いでガラス繊維の長さ
3−のチョツプドストランド”C8−MA−497”(
旭ファイバーグラス社製)40重量部を加えてv−ミキ
サーにて混合分散させて予備混合物を得た。この予備混
合物全スクリュー回転50回転/分で押出し、ベレット
ヲ成形した。このペレット’を射出成形機にて前記成形
条件に従い、成形材料の流動性試験、成形時の最短冷却
時間測定、成形品の機械的強度測定、および成形品の二
次加工試験などに供する各試料を成形した。
Example 1 50ii parts of "Rydon pps P-4" (melt flow rate 50.0) as PP resin and PP
Paradichlorobenzene and sodium disulfide were used as raw materials for the B-H resin, lithium acetate was used as a catalyst, N-methyl-2-pyrrolidone was used as a reaction solvent, and the reaction temperature was 27.
10 parts by weight of melt flow rate 38.8 (1) PPF3 resin obtained by reacting at 5°C for 3 hours was blended and mixed in a Henschel mixer, and then chopped strands of glass fibers having a length of 3-3 were mixed. "C8-MA-497" (
40 parts by weight (manufactured by Asahi Fiberglass Co., Ltd.) were added and mixed and dispersed using a v-mixer to obtain a premix. This premix was extruded at a total screw rotation of 50 revolutions/min to form a pellet. The pellets were processed in an injection molding machine according to the molding conditions described above, and each sample was subjected to fluidity tests of molding materials, measurements of the shortest cooling time during molding, mechanical strength measurements of molded products, and secondary processing tests of molded products. was molded.

各試料について、前記の方法に従い、評価試験および測
定を行なった。
Evaluation tests and measurements were performed on each sample according to the methods described above.

それらの結果を第1表に示した。The results are shown in Table 1.

実施例2〜4 実施例1におけるPPe−A樹脂およびPP5−H樹脂
の配合割合を第1表に示す配合割合に変えたm個は、実
施例1と同様の方法でベレットおよび各試験用試料を作
成し、それらの評価試験および測定を行なった。
Examples 2 to 4 M pieces were prepared by changing the blending ratio of PPe-A resin and PP5-H resin in Example 1 to the blending ratio shown in Table 1. We created them and conducted evaluation tests and measurements on them.

その結果を第1表に示した。The results are shown in Table 1.

比較例1〜4 実施例1におけるPP5−A樹脂およびPPe−H樹脂
の配合割合t[1表に示す配合割合に変えた他は、実施
例1と同様の方法でペレットおよび各試験用試料全作成
し、それらの評価試験および測定を行なった。
Comparative Examples 1 to 4 Pellets and all test samples were prepared in the same manner as in Example 1, except that the blending ratio t of PP5-A resin and PPe-H resin in Example 1 was changed to the one shown in Table 1. We created them, and conducted evaluation tests and measurements on them.

その結果を第1表に示した。The results are shown in Table 1.

実施例5 実施例1におけるPP5−A樹脂およびPP8−H樹脂
の配合割合金変え、さらにガラス繊維の長さ3■のチョ
ップストランドと無機質充填としてタルクを配合して、
実施例1と同様の方法でベレットおよび各試験用試料を
作成し、それらの評価試験および測定を行なった。その
結果を第2表に示した。
Example 5 The blending ratio of the PP5-A resin and PP8-H resin in Example 1 was changed, and further, chopped strands of glass fiber with a length of 3 cm and talc were added as an inorganic filler.
A pellet and each test sample were prepared in the same manner as in Example 1, and their evaluation tests and measurements were performed. The results are shown in Table 2.

比較例5 実施例5におけるPP5−H樹脂全配合せず、PPB樹
脂を全量PP5−A樹脂とした他は、実施例5と同様の
方法でペレットおよび各試験用試料を作成し、それらの
評価試験および測定を行なった。その結果を第2表に示
した。
Comparative Example 5 Pellets and test samples were prepared in the same manner as in Example 5, except that the PP5-H resin in Example 5 was not blended and the PPB resin was replaced with PP5-A resin, and their evaluation was Tests and measurements were carried out. The results are shown in Table 2.

実施例6 PPS−A樹脂として″ライドンーPPS−P  4 
”(メルトフローレイト50.0)およびPP5−H樹
脂としてバラジクロルベンゼンと二硫化ナトリウムを原
料とし、触媒として酢酸リチウム、反応溶媒としてN−
メチル−2−ピロリドン金柑い、反応温度270℃にて
3時間反応せしめて得られたメルトフローレイト70の
PP日樹脂およびガラス繊維全第3表に示す割合で配合
し、実施例1と同様の方法でベレットおよび各試験用試
料全作成し、それらの評価試験および測定を行なった。
Example 6 "Rydon-PPS-P 4" as PPS-A resin
(Melt flow rate 50.0) and PP5-H resin using Balajichlorobenzene and sodium disulfide as raw materials, lithium acetate as a catalyst, and N- as a reaction solvent.
Methyl-2-pyrrolidone kumquat, PP with a melt flow rate of 70 obtained by reacting at a reaction temperature of 270°C for 3 hours, resin and glass fiber were mixed in the proportions shown in Table 3, and the same as in Example 1 was prepared. All pellets and test samples were prepared using the method, and their evaluation tests and measurements were conducted.

その結果を第3表に示した。The results are shown in Table 3.

実施例7〜8 実施例60PPB−H樹脂合成反応における反応条件を
変化せしめてメルトフロー1/イト150および10の
PP5−H樹脂を得た。これらにPPEI−A樹脂とガ
ラス繊維とを配合し、実施例6と同様の方法でベレット
および各試験用試料を作成し、それらの評価試験および
測定を行なつた。
Examples 7-8 Example 60 PP5-H resins with melt flows of 1/ite of 150 and 10 were obtained by changing the reaction conditions in the PPB-H resin synthesis reaction. These were mixed with PPEI-A resin and glass fiber, and pellets and test samples were prepared in the same manner as in Example 6, and their evaluation tests and measurements were performed.

その結果を第3表に示した。The results are shown in Table 3.

比較例6〜7 実施例6のppB−H樹脂合成反応における反応条件全
変化せしめてメルトフローレイト250および1のPP
5−H樹脂を得た。これらにPP5−A樹脂とガラス繊
維と全配合し、実施例6と同様の方法でベレットおよび
各試験用試料を作成し、それらの評価試験および測定を
行なった。
Comparative Examples 6-7 The reaction conditions in the ppB-H resin synthesis reaction of Example 6 were completely changed to produce melt flow rates of 250 and 1.
A 5-H resin was obtained. These were completely blended with PP5-A resin and glass fiber, and pellets and test samples were prepared in the same manner as in Example 6, and their evaluation tests and measurements were performed.

その結果を第3表に示した。The results are shown in Table 3.

1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の成形材料による成形品の二次加工試験
における円形カップの斜視図である。 第2図は円形カップの超音波溶着接合部のA−A線断面
拡大図である。第3図は円形カップの接合部を超音波溶
着した後のA−A線断面図である。 1.2・・・・・・二次加削の円形カップ 。 3.3′・・・・・・円形カップの超音波溶着接合部。 4 ・曲曲超音波溶着後のカップ
FIG. 1 is a perspective view of a circular cup in a secondary processing test of a molded product using the molding material of the present invention. FIG. 2 is an enlarged cross-sectional view taken along line A-A of the ultrasonic welded joint of the circular cup. FIG. 3 is a cross-sectional view taken along the line A-A after the joint portion of the circular cup is ultrasonically welded. 1.2...Secondary machining circular cup. 3.3'... Ultrasonic welding joint of circular cup. 4 ・Cup after curved ultrasonic welding

Claims (1)

【特許請求の範囲】 1、圧縮成形用あるいは射出成形用のポリフェニレンサ
ルファイド樹脂成形材料において、該成形材料中のポリ
フェニレンサルファイド、 樹脂は、下記条件で測定さ
れたメルトフローレイトが、熱架橋によって5〜100
 K RAMされた樹脂95〜30重月゛チと合成反応
によって5〜200に調製された樹脂5〜70重景チ重
量らなシ、7111強剤および/または無機質充填剤を
含有すること’c%徴とするポリフェニレンサルファイ
ド樹脂成形材料。 測定方法:  ASTM D1238−70T温  度
 : 300℃ 荷  重 :5に7 2、 ポリフェニレンサルファイド樹脂90〜35重量
%と補強剤および/または無機質充填剤10〜65重量
%全含有することを特徴とす、  る特許請求の範囲第
1項記載のポリフェニレンサルファイド樹脂成形材料。
[Scope of Claims] 1. In a polyphenylene sulfide resin molding material for compression molding or injection molding, the polyphenylene sulfide resin in the molding material has a melt flow rate of 5 to 5 as measured under the following conditions due to thermal crosslinking. 100
K RAM resin 95 to 30 weight blocks and resin prepared from 5 to 200 weight blocks by synthetic reaction, 5 to 70 weight blocks, containing 7111 toughener and/or inorganic filler. Polyphenylene sulfide resin molding material with % characteristics. Measurement method: ASTM D1238-70T Temperature: 300℃ Load: 5 to 72, characterized by a total content of 90 to 35% by weight of polyphenylene sulfide resin and 10 to 65% by weight of reinforcing agent and/or inorganic filler A polyphenylene sulfide resin molding material according to claim 1.
JP9809483A 1983-06-03 1983-06-03 Polyphenylene sulfide resin molding material Pending JPS59223753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9809483A JPS59223753A (en) 1983-06-03 1983-06-03 Polyphenylene sulfide resin molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9809483A JPS59223753A (en) 1983-06-03 1983-06-03 Polyphenylene sulfide resin molding material

Publications (1)

Publication Number Publication Date
JPS59223753A true JPS59223753A (en) 1984-12-15

Family

ID=14210752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9809483A Pending JPS59223753A (en) 1983-06-03 1983-06-03 Polyphenylene sulfide resin molding material

Country Status (1)

Country Link
JP (1) JPS59223753A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770157A (en) * 1980-10-21 1982-04-30 Dainippon Ink & Chem Inc Glass fiber-reinforced polyarylane sulfide resin composition
JPS60229949A (en) * 1984-04-16 1985-11-15 東レ株式会社 Reinforced polyarylene sulfide forming composition and formed product
JPS6187752A (en) * 1984-10-06 1986-05-06 Tdk Corp Resin composition
JPS6286050A (en) * 1985-10-14 1987-04-20 Nippon Glass Seni Kk Treating solution for filler or reinforcing material for polyarylene sulfide resin
EP0237006A2 (en) * 1986-03-11 1987-09-16 Kureha Kagaku Kogyo Kabushiki Kaisha Polyarylene thioether compositions
JPS62232457A (en) * 1986-04-03 1987-10-12 Dainippon Ink & Chem Inc Polyphenylene sulfide resin composition
EP0286298A2 (en) * 1987-03-30 1988-10-12 Kureha Kagaku Kogyo Kabushiki Kaisha Polyarylene thioether composition for molding
JPS63264666A (en) * 1987-04-22 1988-11-01 Dainippon Ink & Chem Inc Polyarylene sulfide composition of improved moldability
JPS63273665A (en) * 1987-05-06 1988-11-10 Sumitomo Bakelite Co Ltd Polyphenylene sulfide resin composition
EP0302648A2 (en) * 1987-08-03 1989-02-08 Polyplastics Co. Ltd. Weld-containing polyarylene sulfide resin molded article
JPH02107666A (en) * 1988-10-17 1990-04-19 Idemitsu Petrochem Co Ltd Polyarylene sulfide resin composition
JPH02180962A (en) * 1988-12-30 1990-07-13 Toopuren:Kk Polyphenylene sulfide resin composition
EP0438080A1 (en) * 1990-01-11 1991-07-24 Matsushita Electric Industrial Co., Ltd. A pressure cooker
EP0445985A2 (en) * 1990-03-05 1991-09-11 Kureha Kagaku Kogyo Kabushiki Kaisha Process of production of poly(arylene thioether) resin compositions
US5231163A (en) * 1988-08-05 1993-07-27 Idemitsu Petrochemical Company, Ltd. Polyarylene sulfide from aromatic compound having at least three functional groups
JPH06350284A (en) * 1993-06-10 1994-12-22 Murata Mfg Co Ltd Chip coil element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134997A (en) * 1974-08-23 1976-03-25 Phillips Petroleum Co
JPS5212240A (en) * 1975-07-18 1977-01-29 Matsushita Electric Ind Co Ltd Process for preparing transparent coating compounds
JPS53136100A (en) * 1977-04-29 1978-11-28 Phillips Petroleum Co Manufacture of branched allylene sulfide polymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134997A (en) * 1974-08-23 1976-03-25 Phillips Petroleum Co
JPS5212240A (en) * 1975-07-18 1977-01-29 Matsushita Electric Ind Co Ltd Process for preparing transparent coating compounds
JPS53136100A (en) * 1977-04-29 1978-11-28 Phillips Petroleum Co Manufacture of branched allylene sulfide polymer

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363591B2 (en) * 1980-10-21 1988-12-07
JPS5770157A (en) * 1980-10-21 1982-04-30 Dainippon Ink & Chem Inc Glass fiber-reinforced polyarylane sulfide resin composition
JPS60229949A (en) * 1984-04-16 1985-11-15 東レ株式会社 Reinforced polyarylene sulfide forming composition and formed product
JPS6187752A (en) * 1984-10-06 1986-05-06 Tdk Corp Resin composition
JPH0550545B2 (en) * 1984-10-06 1993-07-29 Tdk Electronics Co Ltd
JPS6286050A (en) * 1985-10-14 1987-04-20 Nippon Glass Seni Kk Treating solution for filler or reinforcing material for polyarylene sulfide resin
EP0237006A2 (en) * 1986-03-11 1987-09-16 Kureha Kagaku Kogyo Kabushiki Kaisha Polyarylene thioether compositions
JPS62232457A (en) * 1986-04-03 1987-10-12 Dainippon Ink & Chem Inc Polyphenylene sulfide resin composition
JPH07742B2 (en) * 1986-04-03 1995-01-11 大日本インキ化学工業株式会社 Polyphenylene sulfide resin composition
EP0286298A2 (en) * 1987-03-30 1988-10-12 Kureha Kagaku Kogyo Kabushiki Kaisha Polyarylene thioether composition for molding
US4956499A (en) * 1987-03-30 1990-09-11 Kureha Kagaku Kogyo Kabushiki Kaisha Polyarylene thioether composition for molding
JPS63264666A (en) * 1987-04-22 1988-11-01 Dainippon Ink & Chem Inc Polyarylene sulfide composition of improved moldability
JPS63273665A (en) * 1987-05-06 1988-11-10 Sumitomo Bakelite Co Ltd Polyphenylene sulfide resin composition
EP0302648A2 (en) * 1987-08-03 1989-02-08 Polyplastics Co. Ltd. Weld-containing polyarylene sulfide resin molded article
US5231163A (en) * 1988-08-05 1993-07-27 Idemitsu Petrochemical Company, Ltd. Polyarylene sulfide from aromatic compound having at least three functional groups
JPH02107666A (en) * 1988-10-17 1990-04-19 Idemitsu Petrochem Co Ltd Polyarylene sulfide resin composition
JPH02180962A (en) * 1988-12-30 1990-07-13 Toopuren:Kk Polyphenylene sulfide resin composition
EP0438080A1 (en) * 1990-01-11 1991-07-24 Matsushita Electric Industrial Co., Ltd. A pressure cooker
US5229563A (en) * 1990-01-11 1993-07-20 Matsushita Electric Industrial Co., Ltd. Pressure cooker
EP0445985A2 (en) * 1990-03-05 1991-09-11 Kureha Kagaku Kogyo Kabushiki Kaisha Process of production of poly(arylene thioether) resin compositions
US5256743A (en) * 1990-03-05 1993-10-26 Kureha Kagaku Kogyo K.K. Poly(arylene thioether) resin compositions and extruded products thereof
JPH06350284A (en) * 1993-06-10 1994-12-22 Murata Mfg Co Ltd Chip coil element

Similar Documents

Publication Publication Date Title
JPS59223753A (en) Polyphenylene sulfide resin molding material
JP5500986B2 (en) Glass fiber reinforced polyamide resin composition
US5623013A (en) Xonotlite-reinforced organic polymer composition
JPS5911357A (en) Polyphenylene sulfide resin molding material
JP5400456B2 (en) Polyamide resin composition and molded body comprising the same
JP5400457B2 (en) Polyamide resin composition and molded body
EP1383825A1 (en) Process for the welding of two polyamide parts
JP4633532B2 (en) Airtight switch parts
US3883473A (en) Glass fiber reinforced polyvinyl chloride
JP4223089B2 (en) Resin composition
JPH0639113B2 (en) Polyarylene sulfide resin molded product having welded portion
JPH0651311B2 (en) Polyarylene sulfide resin molded product having welded portion
JPS6254757A (en) Polyphenylene sulfide resin composition
JPH02166127A (en) Production of aromatic polysulfone resin molding material of improved mold release characteristic
JPH04159369A (en) Polyarylene sulfide composition
JP3958415B2 (en) Method for producing polyarylene sulfide molded body
JPH0264159A (en) Polyphenylene sulfide resin composition
CN112694736B (en) Polycarbonate molding with high welding strength and preparation method thereof
JPH04154867A (en) Polyarylene sulfide composition
JPS6342941B2 (en)
JPS59199751A (en) Resin composition
JPH03223356A (en) Polyolefin resin composition
CN113831645A (en) Polyolefin alloy material for double-wall corrugated pipe, preparation method of polyolefin alloy material and double-wall corrugated pipe
JP3151822B2 (en) Polyarylene sulfide resin composition
JPH0397757A (en) Polyphenylene sulfide resin composition