JPS59219966A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59219966A
JPS59219966A JP58096332A JP9633283A JPS59219966A JP S59219966 A JPS59219966 A JP S59219966A JP 58096332 A JP58096332 A JP 58096332A JP 9633283 A JP9633283 A JP 9633283A JP S59219966 A JPS59219966 A JP S59219966A
Authority
JP
Japan
Prior art keywords
contact
window
film
etching
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58096332A
Other languages
Japanese (ja)
Inventor
Masabumi Kubota
正文 久保田
Takeya Ezaki
豪弥 江崎
Osamu Ishikawa
修 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58096332A priority Critical patent/JPS59219966A/en
Publication of JPS59219966A publication Critical patent/JPS59219966A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To make contact windows sufficiently small by forming a groove through etching while using a film left on the side wall of the contact window as a mask when two regions are brought into contact with an electrode from one contact window. CONSTITUTION:A P well 2, a gate electrode 5, a gate oxide film 11 and N type drain 3 and source 4 regions are formed, contact windows 15 are bored, a SiO2 film 16 is deposited, and SiO2 films 17 are left only on the side walls of the contact windows 15 through anisotropic etching. A groove 9 reaching to the P type region 2 is formed by etching through a window 15' by using a photo-resist 18. Metallic wirings 6, 7 for a drain and a source are shaped, thus forming an N channel MOSFET. Since the window 15' has the relationship of self-alignment to the contact windows 15 and the thickness of the films 17 can be made sufficiently smaller than that of the contact windows, the width of the contact windows 15 can be brought to fine size in approximately minimum line width.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置の製造方法に関し、特に相補型M
O3ICや二重拡散MO8)ランジスタ等に利用される
電極と不純物領域とのコンタクトに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device, and in particular, a method for manufacturing a semiconductor device.
It relates to contacts between electrodes and impurity regions used in O3ICs, double-diffused MO8) transistors, and the like.

従来例の構成とその問題点 近年、半導体装置の高密度化にともなって電極と半導体
基板表面の不純物領域との接触面積が小さくなり、その
ためそれらの間のコンタクト抵抗が大きくなる七いう問
題を生じている。
Conventional configurations and their problems In recent years, as the density of semiconductor devices has increased, the contact area between electrodes and impurity regions on the surface of semiconductor substrates has become smaller, resulting in the problem of increased contact resistance between them. ing.

相補型MOSLSI(以下CMOSと略す)を例に取っ
て従来の問題点を説明する。第1図(a)。
Conventional problems will be explained by taking complementary MOSLSI (hereinafter abbreviated as CMOS) as an example. Figure 1(a).

(b)はCM OSのpウェル中のnチャネルMO3F
 ETの断面構造を示した図である。第1図(a)にお
いて1はn型基板、2はpウェルと呼は扛るp型不純物
領域、3,4はn型高濃度領域でそれぞれドレインおよ
びソース領域、6はゲート電極、6,7はドレインおよ
びソース電極、8は酸化膜である。
(b) is n-channel MO3F in p-well of CMOS
It is a figure showing the cross-sectional structure of ET. In FIG. 1(a), 1 is an n-type substrate, 2 is a p-type impurity region called a p-well, 3 and 4 are n-type high concentration regions, which are drain and source regions, respectively, 6 is a gate electrode, 6, 7 is a drain and source electrode, and 8 is an oxide film.

pウェル領域2が浮遊電位であるとpウェル内のMOS
トランジスタのしきい値■Tが変化したシあるいはドレ
イン・基板間の耐圧が低下しいわゆるラッチア、グ現象
を生じやすくなるため、この領域の電位は通常接地電位
に固定する。この場合、pウェルの不純物濃度はnチャ
ネルMO3)ランジスタのしきい値を大きくしないため
に低くするからウェルの電位を接地電位に保つためにウ
ェル中の複数箇所で接地電位に保つのが一般的である。
When the p-well region 2 is at a floating potential, the MOS in the p-well
The potential of this region is usually fixed to the ground potential because the transistor's threshold value (T) changes or the withstand voltage between the drain and the substrate decreases, making it easy to cause so-called latch and lag phenomena. In this case, the impurity concentration in the p-well is kept low to avoid increasing the threshold of the n-channel MO3) transistor, so in order to keep the potential of the well at ground potential, it is common to keep it at ground potential at multiple locations in the well. It is.

第1図体)のソース電&7はこの様な理由からソース領
域4たけでなくウェル2とも接触している。
For this reason, the source electrode &7 in Fig. 1 is in contact not only with the source region 4 but also with the well 2.

このようなウェルとのコンタクト数が多いほどウェルを
完全に接地電位に保つことができるか、他方高密度化の
面からはコンタクト面積をできるだけ小さくする必要が
ある。第1図(a)のソース電極7と拡散層2及び4と
のコンタクトはpウェルに達する溝9を形成することに
より電極7と拡散領域4および2との接触面積を増し、
コンタクト抵抗を下げるようとするもので、たとえば本
出願人の出願にかかる特願昭68−20638号に示さ
れているものである。しかしながらこの出願に示されて
いるような従来の製造方法ではコンタクト抵抗は小さく
なるが、製造工程中のフォトエッチ工程における余裕を
あらかじめ取っておく必要があるためコンタクト窓幅W
。(第1図a中に図示)を一定値以下にすることができ
ず、高集積化には必ずしも好適な方法ではなかった。
The larger the number of contacts with such a well, the more the well can be kept completely at the ground potential, or on the other hand, from the standpoint of high density, it is necessary to make the contact area as small as possible. The contact between the source electrode 7 and the diffusion layers 2 and 4 in FIG.
This is intended to lower the contact resistance, and is disclosed, for example, in Japanese Patent Application No. 68-20638 filed by the present applicant. However, in the conventional manufacturing method as shown in this application, although the contact resistance is reduced, it is necessary to reserve a margin in advance for the photo-etching process during the manufacturing process, so the contact window width W
. (shown in FIG. 1a) cannot be made below a certain value, and this method is not necessarily suitable for high integration.

第1図(b)は従来の製造方法を説明するだめの図で、
溝9を形成する工程の工程断面図である。pウェル2お
よびn領域3,4、ゲート5を形成し、酸化膜8に窓あ
けした後、溝9を形成するだめのエツチングマスクとし
てフォトレジスト10をパターン出しした状態が第1図
(b)である。こののち、CF4 ガス中でプラズマエ
ツチングを行なう等して表面の露出したシリコン領域9
′ をエツチングし、9が形成される。この工程でコン
タクト窓の幅W。の最小値が決丑る。すなわちフォトレ
ジストの窓幅b(第1図(b)中に図示)をパターン形
成可能な最小寸法dで形成したとしてもマスクアライン
メント精度が±Δdであるとすると第1図(b)でa 
、 c)Δdでなければならないから結局W。〉d+2
Δdとする必要がある。実際にはコンタクト窓の近傍で
フォトレジスト膜10は厚くなっているため解像度が低
下する傾向にあり、Woは通常最小線幅dの倍以」二に
選ぶ。このように従来の製造方法ではコンタクト窓幅W
0を小さくすることができず、集積回路の高密度化を妨
げる原因の1つになっていた。
Figure 1(b) is a diagram for explaining the conventional manufacturing method.
FIG. 3 is a process cross-sectional view of a process of forming grooves 9; After forming the p-well 2, n-regions 3, 4, and gate 5 and opening a window in the oxide film 8, a photoresist 10 is patterned as an etching mask for forming the groove 9, as shown in FIG. 1(b). It is. After this, the silicon region 9 exposed on the surface is etched by plasma etching in CF4 gas.
' is etched, and 9 is formed. In this process, the width W of the contact window is determined. The minimum value of is determined. In other words, even if the photoresist window width b (shown in FIG. 1(b)) is formed with the minimum pattern-formable dimension d, if the mask alignment accuracy is ±Δd, then in FIG. 1(b)
, c) Since it must be Δd, it ends up being W. 〉d+2
It is necessary to set it to Δd. In reality, since the photoresist film 10 is thick near the contact window, the resolution tends to decrease, and Wo is usually selected to be at least twice the minimum line width d. In this way, in the conventional manufacturing method, the contact window width W
0 could not be made small, which was one of the causes that hindered the increase in the density of integrated circuits.

以上の例は0MO8のソースn+領域とpウェルに同時
にコンタクトを取る場合であったが、二重拡散MO3(
DMO3と以下略す)でも同様の問題を抱えていた。先
に触れた特願昭58−20638号で詳しく論じている
様に、DMO8を高耐圧化するためにはチャネル領域を
確実にソース電位にする必要がある。チャネル領域を確
実にソース電位にするためにコンタクト窓を広ぐする方
法が考えら扛るが、コンタクト窓を太きぐすると寄生容
量が増し高周波特性が低下することと、チ・ノブサイズ
が大きくなるためコストが高くなるという問題かあった
The above example was for contacting the source n+ region and p-well of 0MO8 at the same time, but the double-diffused MO3 (
DMO3 (abbreviated hereafter) had a similar problem. As discussed in detail in the above-mentioned Japanese Patent Application No. 58-20638, in order to increase the voltage resistance of the DMO 8, it is necessary to ensure that the channel region is at the source potential. I can't think of a way to widen the contact window to ensure that the channel region is at the source potential, but widening the contact window increases parasitic capacitance, reduces high-frequency characteristics, and increases the chi knob size. There was also the problem of high costs.

発明の目的 本発明はこのような1つのコンタクト窓からP型、N型
の2つの領域に電極との接触を取る場合にコンタクト窓
を充分に小さくすることができないという問題点に鑑み
てなされたもので、小さいコンタクト窓で確実でしかも
コンタクト抵抗の小さい電極不純物領域間のコンタクト
を実現できる接触構造を有する半導体装置の製造方法を
提供するものである。
Purpose of the Invention The present invention was made in view of the problem that when making contact with an electrode from one contact window to two regions of P type and N type, the contact window cannot be made sufficiently small. The present invention provides a method for manufacturing a semiconductor device having a contact structure capable of realizing reliable contact between electrode impurity regions with a small contact window and low contact resistance.

発明の構成 本発明は1つのコンタクト窓から深さの異なるP型、N
型の2つの領域に電極とのコンタクトを形成する場合に
、異方性ドライエツチングによりコンタクト窓の側壁に
被膜を自己整合で残存させ、その残存被膜をマスクとし
て不純物領域をエツチングして深い方の領域に達する溝
を形成し、2つの領域と電極とのコンタクトを得ること
を特徴とする半導体装置の製造方法を提供するものであ
る。
Structure of the Invention The present invention provides contact windows with different depths from one contact window.
When forming contacts with electrodes in two regions of a mold, a film is left on the side wall of the contact window in a self-aligned manner by anisotropic dry etching, and the remaining film is used as a mask to etch the impurity region to form the deeper one. The present invention provides a method for manufacturing a semiconductor device characterized by forming a groove that reaches a region and obtaining contact between two regions and an electrode.

実施例の説明 本発明の具体的な実施例を図面を用いて説明する。第2
図は本発明を0MO8のpウェル中のnチオネ)し1v
iO3FETの製造に適用した場合の断面工程図である
。説明を容易にするために従来例と共通の構成要素は同
一番号にしである。第2図(−)において1はn型基板
、2はpウェル、5は多結晶シリコンからなるゲート電
極、11はゲート酸化膜、12はノオトレジストで、ヒ
素をイオン注入してn型のドレイン3及びソース4の領
域を形成している状態を示している。次に第2図(b)
に示すようにCVD法によって3102膜13を200
o人から5000A程度形成する。
DESCRIPTION OF EMBODIMENTS Specific embodiments of the present invention will be described with reference to the drawings. Second
The figure shows the present invention in a p-well of 0MO8) and 1v
It is a sectional process diagram when applied to the manufacture of iO3FET. For ease of explanation, components common to the conventional example are given the same numbers. In Figure 2 (-), 1 is an n-type substrate, 2 is a p-well, 5 is a gate electrode made of polycrystalline silicon, 11 is a gate oxide film, and 12 is a nootresist, which is an n-type drain formed by ion-implanting arsenic. 3 and a source 4 are formed. Next, Figure 2(b)
As shown in the figure, the 3102 film 13 was formed into a 200% film by the CVD method.
About 5000A is formed from o people.

さらに第2図(c)に示すようにフォトレジスト14を
マスクにしてS 102膜11,13にコンタクト窓1
5をあける。次に第2図(d)のようにリンを含んだS
 102膜16(厚さt)を1000八から3000A
程度堆積する。S 102膜16は必ずしもリンを含ん
たS i02膜である必要はないが、後の工程で5IO
2膜13よりもS 102膜16のエツチングレートが
早い方が望せしいからである。次に平行板型のりアクテ
ィブスパッタ装置を用いて、CCl4の様なガス雰囲気
中でS z 02膜16をエツチングする。するとエツ
チングは垂直方向に均一に進行するいわゆる異方性エツ
チングとなり、第2図(e)の様にコンタクト窓15の
側壁にのみS 102膜16が残る状態になる。この場
合残存S x 02膜17の厚みSはS 102膜16
の厚みt程度になる。
Furthermore, as shown in FIG. 2(c), using the photoresist 14 as a mask, contact windows 1 are formed in the S102 films 11 and 13.
Open 5. Next, as shown in Figure 2(d), S containing phosphorus
102 membrane 16 (thickness t) from 1000 to 3000A
It accumulates to some extent. The S102 film 16 does not necessarily have to be a Si02 film containing phosphorus, but it is
This is because it is desirable that the etching rate of the S102 film 16 be faster than that of the S2 film 13. Next, the S z 02 film 16 is etched in a gas atmosphere such as CCl4 using a parallel plate type active sputtering device. The etching then becomes so-called anisotropic etching, which progresses uniformly in the vertical direction, leaving the S 102 film 16 only on the side wall of the contact window 15, as shown in FIG. 2(e). In this case, the thickness S of the remaining S x 02 film 17 is S 102 film 16
The thickness will be approximately t.

次にノオトレジスト18でSt エツチングしたくない
コンタクト部分をおおってから先の残存S 102膜1
7にはさまれた窓15′を通してシリコンをエツチング
しp型領域2に達する溝9を形成する。シリコンエ2チ
はcF4 雰囲気中でのプラズマエツチングを用いる。
Next, cover the contact area that is not desired to be etched with a photoresist 18, and then apply the remaining S102 film 1.
A groove 9 reaching the p-type region 2 is formed by etching the silicon through the window 15' sandwiched between the grooves 7 and 7. Silicon etching uses plasma etching in a cF4 atmosphere.

もちろんフッ化水素酸と硝酸の混液を用いたウェットエ
ツチングでもよい。次にフォトレジスト18を除去した
後フッ化水素酸系のエツチング液でエツチングを行ない
、5IO2膜17を除去する。この場合、先に述べたヨ
ウK S 102 膜17がリンを含んでいると5io
2[13に比べて数倍のエツチングレートがあるのでコ
ンタクト窓16の大きさをほとんど変えることな(51
02膜17を除去できる。そして公知の方法でドレイン
およびソースの金属配線6,7を施すと第2図(q)の
様にpウェル中のnチャネルMO8FETができる。
Of course, wet etching using a mixed solution of hydrofluoric acid and nitric acid may also be used. Next, after removing the photoresist 18, etching is performed using a hydrofluoric acid-based etching solution to remove the 5IO2 film 17. In this case, if the aforementioned ioK S 102 film 17 contains phosphorus, 5io
Since the etching rate is several times higher than that of 2[13], the size of the contact window 16 does not need to be changed much (51).
02 film 17 can be removed. Then, drain and source metal wirings 6 and 7 are formed by a known method to form an n-channel MO8FET in a p-well as shown in FIG. 2(q).

このようにして、コンタクト窓の内部にソース領域を貫
通してチャネル領域に達する溝部があり、その溝部の側
面とコンタクト窓の内周の平坦部分でソース領域とソー
ス電極とがコンタクトしている半導体装置を得ることが
できる。
In this way, there is a groove inside the contact window that penetrates the source region and reaches the channel region, and the source region and source electrode are in contact with the side surfaces of the groove and the flat part of the inner periphery of the contact window. You can get the equipment.

この様な本発明の製造方法を用いればコンタクト窓15
の幅は最小線幅程度の微細なものにすることができる。
If such a manufacturing method of the present invention is used, the contact window 15
The width can be made as fine as the minimum line width.

なぜならばシリコンエツチングをする際の窓16′がコ
ンタクト窓15に対し自己整合であることと、コンタク
ト窓15側壁の被膜17の厚みSはコンタクト窓幅Wに
比べて充分l」・さく(被膜16の厚みt程度に)でき
るからである。
This is because the window 16' is self-aligned with the contact window 15 when silicon etching is performed, and the thickness S of the coating 17 on the side wall of the contact window 15 is sufficiently large compared to the contact window width W (coating 16'). This is because it can be made to a thickness of about t).

このことはCM OS集積回路の高密度化に非常に役立
つ。
This is very helpful in increasing the density of CMOS integrated circuits.

また、ソース領域4とソース電極7は第2図(q)に示
す様に溝9の側面とコンタクト窓側壁の被膜17を除去
したあとにできるコンタクト窓内周の平坦部でコンタク
トを持つため、接触面積が広くコンタクト抵抗の小さい
構造となっている。さらに電極7はpウェル2の内部に
侵入した構造となっているためpウェル2との接触面積
が犬きぐコンタクト抵抗も小さいのでpウェル2は接地
電位午保たれ、ラッチア・ノブを生じにぐい。
Furthermore, as shown in FIG. 2(q), the source region 4 and the source electrode 7 have contact at the flat part of the inner periphery of the contact window that is formed after removing the side surface of the groove 9 and the coating 17 on the side wall of the contact window. The structure has a large contact area and low contact resistance. Furthermore, since the electrode 7 has a structure in which it penetrates into the inside of the p-well 2, the contact area with the p-well 2 is small, and the contact resistance is small, so the p-well 2 is kept at ground potential, making it difficult to cause latch knobs. .

以上の例は本発明をCM OSに適用した場合であるが
DMO8の様な1つのコンタクト窓からP。
The above example is a case where the present invention is applied to a CMOS, but P from one contact window such as DMO8.

N2つの領域にコンタクトを取ることが望ましい素子に
も適用できることは明らかである。DMO8に適用する
とD M OSの寄生バイポーラトランジスタによる耐
圧の低下を防止しさらにコンタクトを微細なものとでき
るから高耐圧化、高周波化に効果が大きい。
It is clear that the present invention can also be applied to devices in which it is desirable to contact two regions. When applied to the DMO8, it is possible to prevent a drop in breakdown voltage due to the parasitic bipolar transistor of the DMOS and to make the contact smaller, which is highly effective in increasing the breakdown voltage and frequency.

発明の効果 以上のように本発明の製造方法および半導体装置は、1
つの微少なコンタクト窓からp、nの両領域に電極にて
確実かつコンタクト抵抗の小さいコンタクトを実現でき
、半導体素子、集積回路の高密度化・高周波化に大きく
寄与するものである。
Effects of the Invention As described above, the manufacturing method and semiconductor device of the present invention have 1
It is possible to achieve reliable contact with the electrodes in both the p and n regions through two small contact windows with low contact resistance, and this greatly contributes to higher density and higher frequency of semiconductor devices and integrated circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) t (b>は従来の0MO8のpウェル
中のnチャネルMO8FETの構造断面図および工程断
面図、第2図(a)〜(q)は本発明の一実施例の製造
方法によるC1vIO5pウエル中のnチャネルMO3
FETの製造工程断面図である。 1・・・・・・N型シリコン基板、2・・・・・・pウ
ェル、3・・・・・・n型ドレイン領域、4・・・・・
・n型ソース領域、6・・・・・ゲート電極、6・・・
・・・ドレイン電極、7・・・・・・ソース電極、9・
・・・・・シリコン基板に形成され/こ淘、16・・・
・・・コンタクト窓、17・・・・・・S No 2膜
。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
FIG. 1(a) t(b> is a structural cross-sectional view and a process cross-sectional view of an n-channel MO8FET in a conventional 0MO8 p-well, and FIGS. 2(a) to (q) are manufacturing examples of an embodiment of the present invention. n-channel MO3 in C1vIO5p well by method
It is a sectional view of the manufacturing process of FET. 1... N-type silicon substrate, 2... P-well, 3... N-type drain region, 4...
・N-type source region, 6...gate electrode, 6...
...Drain electrode, 7...Source electrode, 9.
...is formed on a silicon substrate, 16...
...Contact window, 17...S No 2 film. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
figure

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板表面に第1導電型領域を形成する工程
と、前記半導体基板表面に第1の被膜を形成する工程と
、前記第1の被膜に設けた窓から前記第1導電型領域内
にその領域よりも浅く第2導電型領域を形成する工程と
、第2の被膜を形成し異方性ドライエツチングを用いて
前記窓の側壁に第2の被膜を選択的に残存させる工程と
、前記残存した第2の被膜をマスクとして第1導電型領
域に達するまで半導体基板をエツチングする工程と、エ
ツチングにより形成さ扛た面を介して前記第1及び第2
導電型領域と接触する電極を形成する工程とを含む半導
体装置の製造方法。
(1) A step of forming a first conductivity type region on the surface of the semiconductor substrate, a step of forming a first film on the surface of the semiconductor substrate, and a step of forming a first conductivity type region from a window provided in the first film. forming a second conductivity type region shallower than that region; forming a second coating and selectively leaving the second coating on the sidewall of the window using anisotropic dry etching; etching the semiconductor substrate using the remaining second coating as a mask until reaching the first conductivity type region;
A method of manufacturing a semiconductor device, the method comprising: forming an electrode in contact with a conductivity type region.
(2)第2の被膜がリンガラスを含んだ被膜であること
を特徴とする特許請求の範囲第1項に記載の半導体装置
の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein the second coating is a coating containing phosphorus glass.
JP58096332A 1983-05-30 1983-05-30 Manufacture of semiconductor device Pending JPS59219966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58096332A JPS59219966A (en) 1983-05-30 1983-05-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58096332A JPS59219966A (en) 1983-05-30 1983-05-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59219966A true JPS59219966A (en) 1984-12-11

Family

ID=14162056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58096332A Pending JPS59219966A (en) 1983-05-30 1983-05-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59219966A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036855A (en) * 1989-06-05 1991-01-14 Takehide Shirato Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036855A (en) * 1989-06-05 1991-01-14 Takehide Shirato Semiconductor device

Similar Documents

Publication Publication Date Title
US5164803A (en) Cmos semiconductor device with an element isolating field shield
US5705439A (en) Method to make an asymmetrical LDD structure for deep sub-micron MOSFETS
JPS59121976A (en) Semiconductor device
JPH05865B2 (en)
JPS61247051A (en) Manufacture of semiconductor device
JPS60145664A (en) Manufacture of semiconductor device
JPS59219966A (en) Manufacture of semiconductor device
JPH08181223A (en) Manufacture of semiconductor device
JP3088556B2 (en) Semiconductor device manufacturing method
JPS62285468A (en) Manufacture of ldd field-effect transistor
JP2817226B2 (en) Method for manufacturing semiconductor device
JPH0831601B2 (en) Method for manufacturing semiconductor device
JPH08321607A (en) Method of manufacturing semiconductor device
JPH067596B2 (en) Method for manufacturing semiconductor device
JPH06232394A (en) Manufacture of semiconductor device
JPH05110071A (en) Semiconductor device
JP2633525B2 (en) Method for manufacturing semiconductor device
KR20020096393A (en) Method for Fabricating MOS transistor
JPS63308382A (en) Manufacture of transistor with ldd structure
JPS6194371A (en) Semiconductor device
KR960005998A (en) Semiconductor device and manufacturing method
JPH03276680A (en) Semiconductor device and manufacture thereof
JPH03181136A (en) Manufacture of semiconductor device
KR20020019139A (en) Semiconductor devices and manufacturing method thereof
JPH0330307B2 (en)