JPS5921511A - Manufacture of porous carbon body - Google Patents

Manufacture of porous carbon body

Info

Publication number
JPS5921511A
JPS5921511A JP57128770A JP12877082A JPS5921511A JP S5921511 A JPS5921511 A JP S5921511A JP 57128770 A JP57128770 A JP 57128770A JP 12877082 A JP12877082 A JP 12877082A JP S5921511 A JPS5921511 A JP S5921511A
Authority
JP
Japan
Prior art keywords
vinyl chloride
chloride resin
granules
chlorinated vinyl
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57128770A
Other languages
Japanese (ja)
Other versions
JPS6059169B2 (en
Inventor
Takamasa Kawakubo
川窪 隆昌
Mitsuru Yoshida
充 吉田
Yoshihisa Suda
吉久 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Pencil Co Ltd
Original Assignee
Mitsubishi Pencil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Pencil Co Ltd filed Critical Mitsubishi Pencil Co Ltd
Priority to JP57128770A priority Critical patent/JPS6059169B2/en
Publication of JPS5921511A publication Critical patent/JPS5921511A/en
Publication of JPS6059169B2 publication Critical patent/JPS6059169B2/en
Expired legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture easily a porous carbon body rich in continuous pores and having high strength in simple stages by filling granules of chlorinated vinyl chloride resin into a container after adding a pore increasing agent as required, and calcining the granules by heating in an inert atmosphere. CONSTITUTION:Granules of chlorinated vinyl chloride resin with 500-2,000 polymn. degree are filled into a container. The granules are effectively filled by adding a liq. Which does not dissolve the resin by <=10pts.wt. per 100pts.wt. granules. A pore increasing agent which is vaporized by calcination such as polyolefin powder is preferably added to the granules before filling by <=100pts. wt. per 100pts.wt. granules. The granules in the container are optionally converted into a carbon precursor by heating to 50-300 deg.C in air or an ozone atmosphere, and they are heated to 500 deg.C in an inert atmosphere at 3-100 deg.C/hr heating rate and calcined by heating to >=800 deg.C to obtain a porous carbon body.

Description

【発明の詳細な説明】 本発明は炭素多孔体の製造法に関する。詳しくは、本発
明は連続気孔に富んだ、すなわち気孔の大部分が連続気
孔である炭素多孔体の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a porous carbon material. Specifically, the present invention relates to a method for producing a porous carbon material rich in continuous pores, that is, most of the pores are continuous pores.

従来、炭素多孔体を製造する方法としては、炭素質微小
中空体を結合剤として用して成形し、焼成する方法(特
開昭49−19999号)がある。
Conventionally, as a method for manufacturing a carbon porous body, there is a method of molding and firing using a carbonaceous micro hollow body as a binder (Japanese Patent Laid-Open No. 1999-1999).

しかしこの方法では気孔の大部分が独立気孔であり、連
続気孔が極めて少ないので通気性に乏しい欠点を有して
いる。連続気孔を有する炭素多孔体を得る為にポリウレ
タン発泡体の薄い隔壁を除去した連続気孔の網状ポリウ
レタンにフェノール樹脂のテトラヒドロフラン溶液を含
浸し、焼成して、基材の網状ポリウレタン骨格が炭化物
の骨格となる炭素多孔体を得る方法(米国特許3,92
2,334号)があるが、樹脂含浸後ポリウレタン表面
の過剰樹脂を取除くのに多大な注意を払う必要があり、
また溶媒の選択によってはポリウレタン発泡体を溶解す
るものがあり、加熱時に発泡体が崩壊する恐れがあるこ
と、そしてこの傾向はポリウレタンが軟質になる程著し
いという様な欠点を有している。その為に樹脂含浸する
前に、ポリウレタン発泡体に液状エポキシ樹脂、又はポ
リビニルアルコール水溶液を予め含浸する方法(特開昭
51−70207号公報)があるが、工程が煩雑になる
ことは否めない。ポリウレタン発泡体は元来独立気孔性
の発泡体であるので連続気孔を有する網状構造物を得る
為にあらかじめ気孔隔膜を除去するか、樹脂含浸後に同
様の処理を施さねばならない。
However, this method has the disadvantage that most of the pores are independent pores and there are very few continuous pores, resulting in poor air permeability. In order to obtain a carbon porous body with continuous pores, a polyurethane foam with thin partition walls removed is impregnated with a tetrahydrofuran solution of a phenol resin in a polyurethane foam, and fired, so that the network polyurethane skeleton of the base material becomes a carbide skeleton. Method for obtaining a porous carbon material (US Pat. No. 3,92
No. 2,334), but great care must be taken to remove excess resin from the polyurethane surface after resin impregnation.
Further, depending on the selection of solvents, some solvents may dissolve the polyurethane foam, which may cause the foam to collapse when heated, and this tendency becomes more pronounced as the polyurethane becomes softer. For this purpose, there is a method of pre-impregnating a polyurethane foam with a liquid epoxy resin or an aqueous polyvinyl alcohol solution (Japanese Patent Application Laid-open No. 70207/1983), but it cannot be denied that the process becomes complicated. Since polyurethane foam is originally a closed-cell foam, in order to obtain a network structure with open pores, the pore membrane must be removed in advance, or a similar treatment must be performed after resin impregnation.

後著では、例えば、ポリイソシアネートとフェノール樹
脂またはフラン樹脂あるいはその前駆物質との混合物を
反応して得られる熱硬化性樹脂発泡体に可燃性ガスを導
入し、可燃性ガスに点火して隔膜を破壊した後に炭化焼
成して連続気孔を有する炭素多孔体を得る方法(特開昭
53−125289)が開示されているが、工程は極め
て複雑で、気孔径コントロールは更に困難である。均一
な孔径分布を有する連続気孔率の大きい炭素多孔体を製
造する方法として、ポリビニルアルコール、フェノール
樹脂、硬化剤及び澱粉、水溶性塩類等を混合して架橋成
型し、固化後水溶性物質を水で溶出して連続気孔を賦与
したフェノール/ポリビニルアセタール糸合成樹脂多孔
体を焼成し、少なくとも部分的にガラス状炭素よりなる
炭素多孔体を製造する方法(特開昭57−51109号
公報)が開示されている。無機物もしくは炭素化し得る
有機物を含有する連続気孔を有するポリビニルアセター
ル多孔体に、ガラス状炭素に転化し得るフェノールある
いはフラン樹脂を含浸させた後に焼成し、少なくとも部
分的にガラス状炭素よりなる連続気孔を有する炭素多孔
体の製造法(特開昭57−511110号公報)がある
。しかしポリビニルアセタールに連続気孔を作る為に前
報と同様に、澱粉又は水溶性塩類等の水溶性物質を予め
混合し、架橋成形後にこれらを溶出するという面倒な工
程をとらねばならず、またポリビニルアセタール系成型
物からこれらの澱粉或いは水溶性基類を完全に取除くの
は極めて困難であるという欠点を有する。
In a later book, for example, a flammable gas is introduced into a thermosetting resin foam obtained by reacting a mixture of polyisocyanate and a phenolic resin or a furan resin, or a precursor thereof, and the flammable gas is ignited to form a diaphragm. A method of obtaining a carbon porous body having continuous pores by carbonization and firing after destruction has been disclosed (Japanese Patent Laid-Open No. 53-125289), but the process is extremely complicated and control of the pore diameter is even more difficult. As a method for producing a carbon porous material with a uniform pore size distribution and a large continuous porosity, polyvinyl alcohol, phenol resin, hardening agent, starch, water-soluble salts, etc. are mixed and cross-linked, and after solidification, the water-soluble substance is mixed with water. Disclosed is a method for producing a carbon porous body consisting at least partially of glassy carbon by firing a phenol/polyvinyl acetal thread synthetic resin porous body which has been eluted with a polyvinyl acetal fiber and has continuous pores (Japanese Unexamined Patent Publication No. 57-51109). has been done. A polyvinyl acetal porous body having continuous pores containing an inorganic substance or an organic substance that can be carbonized is impregnated with phenol or furan resin that can be converted into glassy carbon, and then fired to form continuous pores that are at least partially made of glassy carbon. There is a method for producing a porous carbon material (Japanese Unexamined Patent Publication No. 57-511110). However, in order to create continuous pores in polyvinyl acetal, as in the previous report, it is necessary to take the troublesome process of pre-mixing water-soluble substances such as starch or water-soluble salts and eluting these after cross-linking. It has the disadvantage that it is extremely difficult to completely remove these starches or water-soluble groups from acetal molded products.

本発明の目的は、含浸あるいは溶出のごとき複雑な工程
管理の困難な手段を用いることなしに、連続気孔に富み
その気孔率及び気孔径の調節の容易なかつ高強度を有す
る炭素多孔体を容易に製造し得る方法を提供することで
ある。
The purpose of the present invention is to easily produce a carbon porous material that is rich in continuous pores, whose porosity and pore diameter can be easily controlled, and has high strength, without using difficult means of complex process control such as impregnation or elution. The object of the present invention is to provide a method for manufacturing the same.

本願発明者らはこの目的を達成するため鋭意研究の結果
、塩素化塩化ビニル樹脂の粒子を任意の形状の容器に投
入し、必要に応じて炭素前駆体化処理を施し、さらに不
活性雰囲気中で加熱焼成することによって上記のごとき
炭素多孔体が得られることを発見し、本発明に到達した
In order to achieve this objective, the inventors of the present application conducted intensive research and found that particles of chlorinated vinyl chloride resin were put into a container of any shape, subjected to carbon precursor treatment as necessary, and then placed in an inert atmosphere. It was discovered that the above-mentioned porous carbon material can be obtained by heating and firing the material, and the present invention was achieved.

本発明に用いる塩素化塩化ビニル樹脂は塩化ビニル樹脂
粒子を後塩素化して得られる4−(CH2−CHCl)
−と−(CHCl−CHCl)−の混合組成のポリマー
である。
The chlorinated vinyl chloride resin used in the present invention is 4-(CH2-CHCl) obtained by post-chlorinating vinyl chloride resin particles.
It is a polymer with a mixed composition of - and -(CHCl-CHCl)-.

−(CH2−CHCl)−と−(CHCl−CHCl)
−との比率は特に制限はないが、モル比で54:44〜
19:81、すなわち塩素含有率64〜70重量%の範
囲の塩素化塩化ビニル樹脂が好ましい。本発明は塩素化
塩化ビニル樹脂粒子を任意の容器に投入し、加熱炭素化
して炭素骨格を得るものであるが、塩素化塩化ビニル樹
脂粒子は、加熱昇温の過程において完全に溶融すること
なしに粒子同志互に焼結して網状構造を形成し、網状構
造のまま炭素化して炭素骨格となり、かくして連続気孔
に富んだ高強度の炭素多孔体に形成される。塩素化塩化
ビニル樹脂よりも塩素含有率の大きい塩化ビニリデン樹
脂粒子は加熱昇温過程での焼結性に乏しく、炭素化して
得られる多孔体はもろく使用に耐えない。一方塩素含有
率のより小さい塩化ビニル樹脂は、加熱昇温過程におい
て溶融による熱変形流動が生じ、その後に熱分解による
急激な脱塩酸ガス反応が生じて発泡が誘発されるので、
炭素化後の多孔体は強度が低く気孔率、気孔径の調節も
ほとんど不可能で有用な炭素多孔体は得られない。
-(CH2-CHCl)- and -(CHCl-CHCl)
- There is no particular restriction on the ratio, but the molar ratio is from 54:44 to
Chlorinated vinyl chloride resins with a chlorine content of 19:81, ie, a chlorine content in the range of 64 to 70% by weight, are preferred. In the present invention, chlorinated vinyl chloride resin particles are placed in an arbitrary container and heated to carbonize to obtain a carbon skeleton, but the chlorinated vinyl chloride resin particles do not completely melt during the heating process. The particles are sintered together to form a network structure, and the network structure is carbonized to become a carbon skeleton, thus forming a high-strength carbon porous body rich in continuous pores. Vinylidene chloride resin particles, which have a higher chlorine content than chlorinated vinyl chloride resin, have poor sinterability during heating and temperature raising processes, and the porous body obtained by carbonization is brittle and cannot be used. On the other hand, vinyl chloride resin with a lower chlorine content undergoes thermal deformation and flow due to melting during the heating process, followed by rapid dehydrochlorination gas reaction due to thermal decomposition, which induces foaming.
The porous material after carbonization has low strength, and it is almost impossible to control the porosity and pore diameter, making it impossible to obtain a useful carbon porous material.

本発明に使用する塩素化塩化ビニル樹脂は重合度につい
ては特に制限はないが、500〜2000が好ましく、
500以下では塩化ビニル樹脂、2000以上では塩化
ビニリデン樹脂の場合の状態に近くなる欠点が現われる
The degree of polymerization of the chlorinated vinyl chloride resin used in the present invention is not particularly limited, but is preferably 500 to 2000.
If it is less than 500, there will be a problem similar to that of vinyl chloride resin, and if it is more than 2,000, it will be similar to that of vinylidene chloride resin.

塩素化塩化ビニル樹脂を焼成して成る炭素多孔体の連続
気孔の気孔率、気孔径の調節は、原料の塩素化塩化ビニ
ル樹脂の粒度、容器へ投入する際の充てん度、気孔増加
剤の添加、昇温速度等を調節することによって可能であ
る。塩素化塩化ビニル樹脂粒子の粒度については、粒径
20〜400μのものが工業的に製造されているが、必
要に応じて粉砕によって20μより小さい粒径にし、あ
るいは一且スクリュー押出機等で成形し得られた線状体
を所望の大きさにペレット化することによって200μ
より大きい粒径にすることも可能である。粒子の大きさ
については、焼結が可能であれば特に制限はないが、5
mm角を超える様な粒子では、焼結性に自重による影響
が大きくなるため、均一性の良好な網状多孔体は得られ
なかった。また、炭素多孔体の気孔径を大きくするには
粒径の大きなものを用い、逆に気孔径を小さくするには
粒径の小さいものを用いるとよい。気孔径を均一な大き
さにするには、塩素化塩化ビニル樹脂粒子を篩または風
■等によって予め分級し、粒径をそろえることによって
達成され、逆に気孔径を不均一にするには粒径の分布の
大きい粒子を用いることによって達成される。
The porosity and pore diameter of the continuous pores of a carbon porous body made by firing chlorinated vinyl chloride resin can be adjusted by the particle size of the raw chlorinated vinyl chloride resin, the degree of filling when charging the container, and the addition of a pore increaser. This is possible by adjusting the heating rate, etc. Regarding the particle size of chlorinated vinyl chloride resin particles, those with a particle size of 20 to 400μ are industrially manufactured, but if necessary, they can be pulverized to a particle size smaller than 20μ or molded using a single-screw extruder, etc. The obtained linear body is pelletized to a desired size of 200 μm.
Larger particle sizes are also possible. There is no particular restriction on the size of the particles as long as they can be sintered, but
With particles larger than mm square, the influence of their own weight on sinterability becomes large, so that a network porous body with good uniformity could not be obtained. Further, in order to increase the pore size of the carbon porous material, it is preferable to use a material with a large particle size, and conversely, to reduce the pore size, it is preferable to use a material with a small particle size. In order to make the pore size uniform, this can be achieved by pre-classifying the chlorinated vinyl chloride resin particles using a sieve or air so that the particle size is even. This is achieved by using particles with a large size distribution.

塩素化塩化ビニル樹脂粒子を容器に投入するには、自然
落下による沈積のほかに、炭素多孔体の強度を増すため
または気孔率を小さくするなどの目的で、必要に応じて
バイブレーターを用いあるいは圧力を加え、あるいはま
たその双方を行うこともある。さらに充てんを効果的に
行うためには、常温または過熱下で塩素化塩化ビニル樹
脂を溶解しない液体を、あらかじめ塩素化塩化ビニル樹
脂粒子100重量部に対し10重量部以上、好ましくは
5重量部以下加えて混合しておくとよい。また、粒径の
小さい塩素化塩化ビニル樹脂を用いて気孔率を大きくす
るには、焼成過程で分解または揮散してしまう炭素化度
の極めて小さいあるいは全くない気孔増加剤、例えばポ
リオレフィン、ポリスチレン、ポリオキシメチレン、ア
クリル樹脂等の樹脂の粉末、テレフタル酸、レゾルシン
、バニリン等の有機物の粉末の1種または2種以上を、
あらかじめ塩素化塩化ビニル樹脂粒子100重量部に対
し100重量部以下、好ましくは70重量部以下を加え
て混合しておくとよい。この気孔増加剤を加えると気孔
率の増加に伴い強度が低下するので塩素化塩化ビニル樹
脂と当量の添加が上限である。
In order to introduce chlorinated vinyl chloride resin particles into a container, in addition to sedimentation due to natural fall, it is also necessary to use a vibrator or pressure to increase the strength of the carbon porous material or reduce the porosity. or both. Furthermore, in order to perform the filling effectively, at least 10 parts by weight, preferably at most 5 parts by weight, of a liquid that does not dissolve the chlorinated vinyl chloride resin at room temperature or under superheated conditions must be added to 100 parts by weight of the chlorinated vinyl chloride resin particles. It is best to add and mix. In addition, in order to increase the porosity using chlorinated vinyl chloride resin with a small particle size, it is necessary to use a pore increasing agent with a very low degree of carbonization or no carbonization that decomposes or volatilizes during the firing process, such as polyolefin, polystyrene, polyester, etc. One or more of resin powders such as oxymethylene and acrylic resin, and organic powders such as terephthalic acid, resorcinol, and vanillin,
It is advisable to add and mix in advance 100 parts by weight or less, preferably 70 parts by weight or less, per 100 parts by weight of the chlorinated vinyl chloride resin particles. When this pore increasing agent is added, the strength decreases as the porosity increases, so the upper limit for addition is an amount equivalent to that of the chlorinated vinyl chloride resin.

容器に投入された塩素化塩化ビニル樹脂は、そのままの
状態で不活性雰囲気中で加熱し焼成される。本発明にお
いては、炭素前駆体化処理を行わないでも十分な強度を
有する炭素多孔体が得られるが、必要に応じ、空気また
はオゾン等の雰囲気中で50〜300℃まで加燃して前
駆体化処理を施す。炭素前駆体化処理は、焼成炉の構造
が塩素化塩化ビニル樹脂の昇温過程で発生する大量の塩
化水素ガスを嫌う場合、あるいは、塩素化塩化ビニル樹
脂を酸化処理することによってより炭素多孔体のより大
きい強度が要求される場合等に行われる。次に、窒素、
アルゴン等の不活性雰囲気中で800℃以上、好ましく
は1000℃以上に加熱昇温し炭素化する。焼成温度に
は上限はなく、必要に応じ3000℃程度にまで加熱し
てもよい。
The chlorinated vinyl chloride resin placed in the container is heated and fired in an inert atmosphere as it is. In the present invention, a carbon porous body having sufficient strength can be obtained without performing carbon precursor treatment, but if necessary, the precursor may be heated to 50 to 300°C in an atmosphere such as air or ozone. Apply chemical treatment. Carbon precursor treatment can be used when the structure of the firing furnace does not tolerate a large amount of hydrogen chloride gas generated during the heating process of chlorinated vinyl chloride resin, or when the chlorinated vinyl chloride resin is oxidized to create a more porous carbon material. This is done when greater strength is required. Next, nitrogen,
Carbonization is carried out by heating to a temperature of 800° C. or higher, preferably 1000° C. or higher, in an inert atmosphere such as argon. There is no upper limit to the firing temperature, and it may be heated to about 3000° C. if necessary.

塩素化塩化ビニル樹脂粒子が網状構造を形成する温度範
囲は200〜500℃であるので、昇温速度は500℃
までは3〜100℃/hr、好ましくは5〜50℃/h
rで焼成するのが適当である。
Since the temperature range in which chlorinated vinyl chloride resin particles form a network structure is 200 to 500°C, the temperature increase rate is 500°C.
up to 3~100℃/hr, preferably 5~50℃/hr
It is appropriate to bake at r.

昇温速度が大きい程気孔率が大きくなる傾向があるが、
最終生成物の強度が低下する欠点がある。
The higher the heating rate, the higher the porosity tends to be.
The disadvantage is that the strength of the final product is reduced.

従って、500℃までは100℃/hr以上の昇温速度
は避けた方がよい。500℃以上における昇温速度は特
に限定されない。
Therefore, it is better to avoid a temperature increase rate of 100°C/hr or more up to 500°C. The rate of temperature increase at 500° C. or higher is not particularly limited.

本発明の方法に従って得られた炭素気孔体は、その気孔
の大部分が連続気で、気孔率、気孔径の調節は容易であ
る。網状骨格は、塩素化塩化ビニル樹脂の炭化物で、そ
の大部分がガラス状炭質であるため高強度を有し、空孔
がほとんど内在していないので気孔率の測定も容易であ
り、耐熱衝撃性が大きい等の利点を有する。従って本発
明の方法による炭素多孔体は、各種のフィルター、触媒
担体、軽量構造材、断熱材、電極、化学吸着剤、面状発
熱体、電波シールド材等に有用である。
In the carbon porous body obtained according to the method of the present invention, most of the pores are continuous, and the porosity and pore diameter can be easily adjusted. The network skeleton is a carbide of chlorinated vinyl chloride resin, and most of it is glassy carbonaceous, so it has high strength, has almost no pores, so it is easy to measure porosity, and it has excellent thermal shock resistance. It has advantages such as large Therefore, the carbon porous material produced by the method of the present invention is useful for various filters, catalyst carriers, lightweight structural materials, heat insulating materials, electrodes, chemical adsorbents, planar heating elements, radio wave shielding materials, and the like.

次に実施例により本発明をより具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 塩素含有率67%、重合度740の塩素化塩化ビニル樹
脂粉末〔(株)日本カーバイド製二カテンプT−870
〕を振とう式フルイにて48メッシュ(297μ)−1
00メッシュ(149μ)の範囲の粒径の粒子を取出し
た。次いでその粒子を縦100mm横10mm深さ10
mmの内側寸法を有する黒鉛製箱にバイブレーターを用
いて投入した。
Example 1 Chlorinated vinyl chloride resin powder with chlorine content of 67% and degree of polymerization of 740 [Nikatemp T-870 manufactured by Nippon Carbide Co., Ltd.
] in a shaking sieve with 48 mesh (297μ) -1
Particles with a particle size in the range of 0.00 mesh (149μ) were taken out. Next, the particles were placed in a container with a length of 100 mm, a width of 10 mm, and a depth of 10 mm.
The sample was placed in a graphite box having an inner dimension of mm using a vibrator.

しかる後に窒素ガス雰囲気下で、常温から300℃迄は
10℃/h、300〜500℃は30℃/h、500℃
以上1000℃迄は200℃/hの昇温速度にて焼成し
、冷却後炭素多孔体を取出した。得られた炭素多孔体の
諸性質を表1に示す。
After that, under a nitrogen gas atmosphere, from room temperature to 300°C, 10°C/h, from 300 to 500°C, 30°C/h, and at 500°C.
The carbon porous body was fired at a temperature increase rate of 200°C/h up to 1000°C, and after cooling, the carbon porous body was taken out. Table 1 shows various properties of the obtained porous carbon material.

実施例2 塩素含有率65%重合度650の塩素化塩化ビニル樹脂
粉末〔(株)日本カーバイド製ニカテンプT−025〕
を単軸スクリュー型成形機にて断面が直径1.5mmの
円形になる様に成形し線状体を得た。次いでこれをペレ
タイザーにて切断し、直径1.5mm、高さ1.5mm
の円柱状のペレット得た。
Example 2 Chlorinated vinyl chloride resin powder with chlorine content of 65% and degree of polymerization of 650 [Nicatemp T-025 manufactured by Nippon Carbide Co., Ltd.]
A linear body was obtained by molding the mixture into a circular cross section with a diameter of 1.5 mm using a single-screw molding machine. Next, this was cut with a pelletizer to a diameter of 1.5 mm and a height of 1.5 mm.
A cylindrical pellet was obtained.

次にこのペレットを縦200mm、横20mm、深さ2
0mmの黒鉛製箱に投入した後、油圧プレス機にて50
kg/cm2の加圧を1分間行った。次に窒素ガス雰囲
気下にて、常温から300℃迄は5℃/h、300〜5
00℃は10℃/h、500℃〜1000℃は100℃
の昇温速度にて焼成し、冷却後、炭素多孔体を取出した
。得られた炭素多孔体の諸性質を表1に示す。
Next, this pellet is 200 mm long, 20 mm wide, and 2 deep.
After putting it into a 0mm graphite box, it was heated to 50mm using a hydraulic press machine.
Pressure of kg/cm2 was applied for 1 minute. Next, in a nitrogen gas atmosphere, from room temperature to 300℃, the temperature was 5℃/h, 300~5℃.
00℃ is 10℃/h, 500℃~1000℃ is 100℃
The carbon porous body was fired after cooling at a temperature increase rate of . Table 1 shows various properties of the obtained porous carbon material.

実施例3 塩素含有率68%、重合度1100の塩素化塩化ビニル
樹脂粉末〔(株)日本カーバイド製T−1482〕10
0重量部(粒子の大きさ32メッシュ全通0.5wt%
、250メッシュパス10wt%、32〜250メッシ
ュ89.5wt%)エチレングリコール2重量部をヘン
シェルミキサーにて十分に混合した。次いで実施例1と
同一容器にバイブレーターを用いて投入し、油圧プレス
機にて50kg/cm2の加圧を1分間行った。油圧プ
レス機から取り出した後に1kg/cm2の加圧力にな
る様に重しをして、空気中にて常温から150℃迄は5
℃/h、次いで180℃迄は3℃/h、180℃で24
時間放置して炭素前駆体化処理を施した後、窒素ガスに
置換し、窒素ガス雰囲気下で300℃迄は20℃/h、
300〜500℃は50℃/h、500〜1000℃は
200℃/hの昇温速度にて焼成し炭素多孔体を得た。
Example 3 Chlorinated vinyl chloride resin powder with chlorine content of 68% and degree of polymerization of 1100 [T-1482 manufactured by Nippon Carbide Co., Ltd.] 10
0 parts by weight (particle size 32 mesh 0.5 wt%
, 250 mesh pass 10 wt%, 32-250 mesh pass 89.5 wt%) 2 parts by weight of ethylene glycol were thoroughly mixed in a Henschel mixer. Next, it was put into the same container as in Example 1 using a vibrator, and pressurized at 50 kg/cm2 for 1 minute using a hydraulic press. After taking it out from the hydraulic press, put a weight on it so that it has a pressure of 1 kg/cm2, and hold it in the air from room temperature to 150°C for 50 minutes.
°C/h, then 3 °C/h up to 180 °C, and 24 °C at 180 °C.
After leaving it for a while and performing carbon precursor treatment, it was replaced with nitrogen gas and heated at 20°C/h up to 300°C in a nitrogen gas atmosphere.
A porous carbon body was obtained by firing at a heating rate of 50°C/h from 300 to 500°C and 200°C/h from 500 to 1000°C.

表1        実施例1      実施例2    
  実施例3寸法 縦   70mm      15
5mm     60mm   横    6mm  
     14mm      5mm   高さ  
 6mm       14mm      5mmか
さ密度   0.70      0.50     
 0.85連続気孔率   89%       92
%       86%曲げ強度   2.5kg/m
m2 1.3kg/mm2 4.0kg/mm2特許出
願人 三菱鉛筆株式会社
Table 1 Example 1 Example 2
Example 3 dimensions Height 70mm 15
5mm 60mm Width 6mm
14mm 5mm height
6mm 14mm 5mm Bulk density 0.70 0.50
0.85 continuous porosity 89% 92
% 86% bending strength 2.5kg/m
m2 1.3kg/mm2 4.0kg/mm2 Patent applicant Mitsubishi Pencil Co., Ltd.

Claims (9)

【特許請求の範囲】[Claims] (1)塩素化塩化ビニル樹脂の粒子を容器に投入し、不
活性雰囲気中で焼成することから成る炭素多孔体の製造
法。
(1) A method for producing a carbon porous body, which comprises placing particles of chlorinated vinyl chloride resin in a container and firing them in an inert atmosphere.
(2)該塩素化塩化ビニル樹脂は重合度500〜200
0である第1項の製造法。
(2) The chlorinated vinyl chloride resin has a polymerization degree of 500 to 200.
0.
(3)該塩素化塩化ビニル樹脂の粒子は投入前に、常温
または加熱下で該樹脂を溶解しない液体を、あらかじめ
該樹脂の粒子100重量部に対し10重量部以下添加混
合する第1項の製造法。
(3) Before charging the chlorinated vinyl chloride resin particles, add and mix in advance 10 parts by weight or less of a liquid that does not dissolve the resin at room temperature or under heating to 100 parts by weight of the resin particles. Manufacturing method.
(4)該塩素化塩化ビニル樹脂の粒子は投入前に気孔増
加剤を、あらかじめ該樹脂の粒子100重量部に対し1
00重量部以下添加混合する第1項の製造法。
(4) Before adding the chlorinated vinyl chloride resin particles, apply a pore increaser to 100 parts by weight of the resin particles.
The manufacturing method according to item 1, wherein 00 parts by weight or less are added and mixed.
(5)該気孔増加剤はポリオレフィン、ポリスチレン、
ポリオキシメチレン、アクリル樹脂等の樹脂の粉末、テ
レフタル酸、レゾルシン、バニリン等の有機物の粉末の
1種または2種以上である第4項の製造法。
(5) The pore increaser is polyolefin, polystyrene,
4. The manufacturing method according to item 4, which is one or more of powders of resins such as polyoxymethylene and acrylic resins, and powders of organic substances such as terephthalic acid, resorcinol, and vanillin.
(6)焼成は800℃以上の温度に加熱昇温することに
よって行われる第1項の製造法。
(6) The manufacturing method of item 1, wherein the firing is performed by heating to a temperature of 800°C or higher.
(7)昇温速度は500℃までは3〜100℃/hrで
ある第6項の製造法。
(7) The manufacturing method according to item 6, wherein the temperature increase rate is 3 to 100°C/hr up to 500°C.
(8)焼成は炭素前駆体化処理を施した後に行われる第
1項の製造法。
(8) The manufacturing method of item 1, in which the firing is performed after carbon precursor treatment.
(9)該炭素前駆体化処理は空気またはオゾン雰囲気中
で50〜300℃に加熱することによって行われる第8
項の製造法。
(9) The carbon precursor treatment is carried out by heating to 50 to 300°C in an air or ozone atmosphere.
Manufacturing method of section.
JP57128770A 1982-07-23 1982-07-23 Manufacturing method of carbon porous material Expired JPS6059169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57128770A JPS6059169B2 (en) 1982-07-23 1982-07-23 Manufacturing method of carbon porous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57128770A JPS6059169B2 (en) 1982-07-23 1982-07-23 Manufacturing method of carbon porous material

Publications (2)

Publication Number Publication Date
JPS5921511A true JPS5921511A (en) 1984-02-03
JPS6059169B2 JPS6059169B2 (en) 1985-12-24

Family

ID=14993036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57128770A Expired JPS6059169B2 (en) 1982-07-23 1982-07-23 Manufacturing method of carbon porous material

Country Status (1)

Country Link
JP (1) JPS6059169B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296849A (en) * 1985-05-28 1987-05-06 Nittan Co Ltd Improved scattered light type smoke detector
US4775655A (en) * 1985-11-18 1988-10-04 Internationale Octrooi Maatschappij "Octropa" Porous carbon structures and methods for their preparation
US4882103A (en) * 1987-11-09 1989-11-21 Mitsubishi Pencil Co., Ltd. Process for producing carbon product having coarse and dense structure
CN104229769A (en) * 2014-07-24 2014-12-24 巨化集团技术中心 Preparation method of porous carbon material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296849A (en) * 1985-05-28 1987-05-06 Nittan Co Ltd Improved scattered light type smoke detector
JPH0546897B2 (en) * 1985-05-28 1993-07-15 Nittan Co Ltd
US4775655A (en) * 1985-11-18 1988-10-04 Internationale Octrooi Maatschappij "Octropa" Porous carbon structures and methods for their preparation
US4882103A (en) * 1987-11-09 1989-11-21 Mitsubishi Pencil Co., Ltd. Process for producing carbon product having coarse and dense structure
CN104229769A (en) * 2014-07-24 2014-12-24 巨化集团技术中心 Preparation method of porous carbon material

Also Published As

Publication number Publication date
JPS6059169B2 (en) 1985-12-24

Similar Documents

Publication Publication Date Title
US4025689A (en) Method for manufacture of graphitized hollow spheres and hollow spheres manufactured thereby
US3859421A (en) Methods of producing carbonaceous bodies and the products thereof
US2938807A (en) Method of making refractory bodies
US7048902B2 (en) Method for producing a porous carbon article and an article produced thereby
US3574548A (en) Process for manufacturing a cellular carbon body
US3408180A (en) Method of producing an inorganic foam and product
JPH0135794B2 (en)
US7452389B2 (en) Carbon foam abrasives
US2887393A (en) Refractory bodies containing boron nitride
Mishra et al. Processing, properties and microstructure of SiC foam derived from epoxy-modified polycarbosilane
JPS5964511A (en) Preparation of porous carbon
JPS5921511A (en) Manufacture of porous carbon body
KR100509348B1 (en) A manufacturing method of activated carbon structure having a frame
JPS5823325B2 (en) How to get the best results
US3511689A (en) Layered foam product
JPS61215238A (en) Refractory heat insulator and manufacture
JPH0631174B2 (en) Method for producing reticulated silica whiskers-ceramics porous body composite
JPS60122710A (en) Manufacture of porous carbon body
JPH1045483A (en) Porous carbon compact and its production
JP3197020B2 (en) Method for producing molecular sieve carbon
JPH03215375A (en) Production of porous silicon carbide having low density
JPS63139009A (en) Foamed carbon body for molecular sieve
JPH0532408A (en) Production of activated carbon structure
JPS61197412A (en) Production of porous carbon material having high strength
JPH03215307A (en) Production of porous sic whisker pellet