JPS59214860A - Toner for developing electrostatically charge image - Google Patents

Toner for developing electrostatically charge image

Info

Publication number
JPS59214860A
JPS59214860A JP58089211A JP8921183A JPS59214860A JP S59214860 A JPS59214860 A JP S59214860A JP 58089211 A JP58089211 A JP 58089211A JP 8921183 A JP8921183 A JP 8921183A JP S59214860 A JPS59214860 A JP S59214860A
Authority
JP
Japan
Prior art keywords
toner
resin
molecular weight
modulus
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58089211A
Other languages
Japanese (ja)
Other versions
JPH0715594B2 (en
Inventor
Tetsuo Okuyama
哲生 奥山
Shinya Tomura
戸村 真也
Tsutomu Uehara
上原 勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58089211A priority Critical patent/JPH0715594B2/en
Publication of JPS59214860A publication Critical patent/JPS59214860A/en
Publication of JPH0715594B2 publication Critical patent/JPH0715594B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08793Crosslinked polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08797Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by their physical properties, e.g. viscosity, solubility, melting temperature, softening temperature, glass transition temperature

Abstract

PURPOSE:To obtain toner which has excellent offset resistance and a wide fixation temperature range by using resin within a specified complex elastic modulus range as resin that serves as binding components of toner for electrostatically charged image development which consists of coloring material and binding components. CONSTITUTION:Thermoplastic resin as binding components of toner for a heat roller uses such resin that the real part of a complex elastic modulus is 5X10<4>- 5X10<6> Pa and the imaginary part is 5X10<4>-2X10<6> Pa at a 140-220 deg.C temperature. Consequently, the toner for heat roller fixation enters a rubbery plateau area and a fluid area of a relaxation spectrum at the fixation temperature (140-220 deg.C). The relaxation spectrum of the elastic modulus of the resin varies with the molecular weight of the resin, molecular weight distribution, degree of crosslinking, degree of crystallization, etc. Toner made of resin having said elastic modulus, on the other hand, has superior fixing performance regardless of the molecular weight, molecular weight, molecular weight distribution, degree of crosslinking, degree of crystallization, etc., and its fixation temperature range is wide.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は、電子写真法、静電記録法、或いは静電印刷法
などに用いられるトナーに関し、特に熱ローラ一定着法
に適したトナーに関するものである。 〔従来技術とその問題点〕 静電荷像現像用トナーは静電潜像の電荷模様に応じて被
現像向に付着し可視像を形成するが、この可視像はこれ
を上記被現像向にそのままか、或いは一度転写材上に転
写した状態で、それぞれの而に固着せしめ、画像の永久
定着をはかつている。 トナー画像の定着方式には種々の方式や装置が開発され
てお9、(a)トナーを直接的或いは間接的手段により
加熱熔融して、転写材に融層同化させる方法1.、 (
b) )ナーのバインダー樹脂を有機溶剤により軟化或
いは溶解し、転写材に定着後、有機溶剤を除去する方法
、(c)トナーに圧力を加えて転写材上に定着させる方
法前がある。 これらの定着方式の甲で、定着方式(c)は、トナーの
転写材への定着をトナーの転写材への接着であるとする
観点からみると、接着の素過程である(1)液化、 (
II)流動、(I)ぬれ、(ロ))同化の内、(1)の
液化という素過程を踏んでいないために、定着性が不十
分であるという欠点を有する7 また、定’jM方式(b)では、定着時に有機溶剤号の
蒸気が発生する等、公害上の間1AIXがある、これに
対して定着方式(a)では、トナーの熱熔融によυ、接
着の素過程を(1)から(5)まで全てみたすことが出
来、(憂れた定着性な示す。特に熱によりあたためられ
た2本のロール間に」二記の定7uすべきトナー画像を
転写した転写材を通し、転写材上にトナーを熱融着させ
る熱ローラ一定、1オ法は定着時の熱効率が著しく高く
定、14に決する熱源を節約でき、また定着スピードの
向上をはかれる等、非常に大きな利点を有している。 しかしながら熱ロール定着法においてもいくつかの問題
点が残っている。この内最も大きな問題は定着時にトナ
ーが熱ロール面に接触して熱熔融する際にトナーの一部
がロール表面に付層する、いわゆるオフセット現像であ
る。この結果定着画像は著しく劣化し、又ロール面はこ
れを清掃化することなく使用すると、付着していたトナ
ーかトナーの付着していない転写材上に付治し汚染する
。 このオフセット現像を防止するために、従来種々の方法
が提案されている。これらの庚案は、熱ロールの表面を
処理する方法及びトナーそれ自体に非オフセット性を付
与する方法に大別される。 熱ロール表面を処理する方法としては、ロール表面を熱
熔融したトナーがぬれにくい低界面エネルギー・の物質
(例えばフッ素樹脂)で!82覆する方法、ロール面に
トナーが接触するに先だってシリコンオイル弄を塗布し
、低界面エネルギーの血を一形成する方法が用いられる
が、これらによってもトナーのオフセット防止性は完全
ではなく、特に後者ではシリコンオイルの供給、ぬれ、
蒸気発散前に特別の配慮を要する。 又、トナーそれ自体に非オフセット性を付与するための
トナー処方面からの改良に関しても各種の提案がなされ
ている。 例えば、トナー成分中に上記シリコンオイルに相当する
成分(パラフィン、塩素化パラフィン。 油脂、可塑剤等)を添力■する方法はオフセット防止に
ある程度有効である。、しかし、これらのみでオフセッ
ト性を完全に防止することは困難であり、また、上記添
〃口物はトナーのブロッギング促進、流動性の低下など
取扱い上の問題点及び現1象画質の低下を生起するので
、その使用に当っては大幅な制約をうける、また、トナ
ーに用いられる樹脂成分からいくつかの提案がなされて
いる。 一般に低分子量ポリマーは低温において加熱敵情が可能
であるけれども、オフセット現象を生じやすい。これに
反し”C高分子量ポリマーはオフセット現象を緩和する
ものの、定着時の定着下限温度を上昇させる傾向がある
。そこで、定着下限温度を上昇させることなく、オフセ
ット現象を防止するために、低分子量ポリマーと高分子
量ポリマーとを組合わせて用いる方法が提案されている
。 特公昭58−28084号では、分子量数6以上の高分
子量ポリスチレンと分子量1000以下のオリゴスチレ
ンの混合物を主成分とするトナーが、また特開昭54−
114245号ではポリエステル、エポキシ等の低温融
解樹脂と分子量50万以上の巨大分子量ポリマーとの混
合物を主成分とするトナーが提案されている。また、特
開昭50−184652号では、重用平均分子量/数平
均分子jλが3.5〜40という低分子−1から高分子
量まで幅広い分子量分布を有するα、β−不飽和エチレ
ン系単量体を構成単位とした樹脂を主要樹脂成分とする
トナーが提案されている。 これらの提案では、低分子量ポリマーは、定着下限温度
を低下させるために、高分子量ポリマーは耐オフセット
性を付与するために用いられているか、低分子量ポリマ
ーの量が少ないと定着下限温度が十分に下らず、また多
過ぎると、高分子量ポリマーの有する耐オフセット性が
損なわれる為、十分に満足のいく結果が得られていない
。 また、オフセットは低分子量ポリマーをトナーの主要樹
脂として用いた場合に生じやすい。そこで、特公昭51
−28854号では分子量調節した架橋された樹脂によ
るトナーが、また、特開昭50−44886号には、架
橋エネルギーが約8 Kml/ mo 1以上である架
橋結合を有する樹脂を用いたトナーが提案されている。 これらの提案では、確かに架橋度が高い方がオフセット
現象は生じにくいが、定着下限温度が、i−6<なり、
この結果定ノに温度・範囲(定)g下限温度からオフセ
ット開始温度までの範囲)の高温へのシフトをもたらす
だけで、定着温度の上限が装置限界によって押えられて
いるので実用的に十分なレベルではない。 〔発明の1」的J 本発明の目的は定着性か良好で、定着下限隠度が低く耐
オフセット性の良好な、定着温度範囲の広い熱ローラ定
2d用静電荷現像用トナーを提供するものである。 〔発明の概愛〕 本発明は、少なくとも着色材と結着性成分とからなる静
電荷像現1象用トナーにおいて、結着性成分となる熱可
塑性樹脂に、温度範囲140Cから220 tl’まで
の複素弾性率(8Hz、ヤング率)の実数部(貯蔵弾性
率)が5 X 1(7’Pa 〜2 X 10 Paz
虚数部(損失弾性率)が5 X 10 Pa〜I X 
10 Paの範囲にある樹脂を用いることによって、定
層下限畝度が低く、耐オフセット性の良好な、定着温度
範囲の広いトナーに関するものである。 優、・ヘローラ一定府用トナーの定着性は、トナーに用
いられる結着性成分となる熱可塑性樹脂の熔融粘弾性と
深い関連をもつ。従来、熱lff−ラ一定層用トナーの
熔融粘弾性は旨化式フローテスター弄のオリフィス粘度
計により測定されてきたつ熔融体の流動性を示す目安と
して使われるメルトインデックス、フローテスター−−
′、ψの流出速度は、一定温度、一定圧力下で定められ
た標準のオリフィスを通過する熔融体のダラム数或いは
流出速度で与えられる。熔融粘度の大きいもの程メルト
インデックスや流出速度は小さい。しかし、これらの値
は標準オリフィスや温度・圧力のえらび方によって数値
が異なp、またそのデータもばらつきやすいので信頼性
は低い。更に、4n・j脂の熔融体は典型的な粘弾性体
であシ、粘性と弾性の双方の性質を示す材料である。し
かるに、フローテスター等で測定されるのは、熔融体の
見掛けの粘度のみである。この粘度もオリフィス区の補
正那をして測定せねばならず、11111 fの梢度も
低く、また、オリフィス径を補正するためにはオリフィ
スの径、長さの異なるもので何回も測定せねばならず、
測定も迅速には行えないものであった。従って、これら
のオリフィスを用いた粘度Ntによって得られた樹脂或
いはトナーの熔融状態でのデータと、その樹脂を用いて
作られたトナーの定74−曲とのデータとの間には、明
確な相関が得られなかった。 本発明者らは、熱ローラ一定着用トナー及びその結着性
成分となる熱可塑性樹脂の複素弾性率を、周波数及び温
度を変えて測定し、熔融状態にあるこれらの物質と熱ロ
ーラ一定肩用トナーの定着性との相関について研究した
っ複索弾性率の測定は、円筒状の試料を円板状の上、下
セルでクランプし、このセル全体を恒温槽中に入れて行
なう。試料の一端を一定周阪献で加振し、試料に正弦的
振動を加える。この時加えた撮幅及び試料の他端に生じ
た応力をそれぞれ変位計及びロードセルで検出し、その
信号を増幅して演算回路に入力し、応力を歪と同相成分
と位相がV2進んだ成分に分け、複素弾性率Eの実数部
(貯蔵弾性率) E/と虚数部(損失弾14)F′を求
めるものである。この時の撮動は試料の引張方向に加え
るので、この場合の複索弾性率はヤング率(複素引張弾
性率)とな9、この場合の複素弾性率と他の複索弾性率
、複素粘性係数との間には次の様な関係がある。 E”−E’+iE’    E  複素引張弾性率G 
複素ズリ弾性
[Technical Field of the Invention] The present invention relates to a toner used in electrophotography, electrostatic recording, electrostatic printing, etc., and particularly to a toner suitable for hot roller constant deposition. [Prior art and its problems] Toner for developing an electrostatic latent image adheres to the direction of development according to the charge pattern of the electrostatic latent image and forms a visible image, but this visible image The image is permanently fixed either directly on the transfer material or once transferred onto the transfer material and fixed thereon. Various methods and devices have been developed for fixing toner images9. (a) A method of heating and melting the toner directly or indirectly to assimilate it into a transfer material as a fusion layer.1. , (
b)) a method in which the binder resin of the toner is softened or dissolved with an organic solvent, and after fixing it on the transfer material, the organic solvent is removed; and (c) a method in which pressure is applied to the toner to fix it on the transfer material. Among these fixing methods, fixing method (c) is based on the viewpoint that the fixing of toner to the transfer material is adhesion of the toner to the transfer material, which is the elementary process of adhesion (1) liquefaction, (
Among II) flow, (I) wetting, and (B) assimilation, the elemental process of (1) liquefaction is not performed, so it has the disadvantage of insufficient fixing properties. In (b), there is a problem with pollution, such as the generation of organic solvent vapor during fixing.On the other hand, in fixing method (a), the elementary process of adhesion is reduced by thermal melting of the toner ( All of 1) to (5) can be satisfied, and the transfer material with the toner image transferred to it (which shows poor fixing performance, especially between two rolls heated by heat) should be The constant heat roller method, which heats and fuses the toner onto the transfer material, has extremely high thermal efficiency during fixing, saves on heat sources, and improves fixing speed, among other great advantages. However, there are still some problems with the hot roll fixing method.The biggest problem is that when the toner comes into contact with the hot roll surface during fixing and is thermally melted, some of the toner is This is so-called offset development in which a layer is deposited on the roll surface.As a result, the fixed image deteriorates significantly, and if the roll surface is used without cleaning, toner that has adhered to it or transfer material that has no toner adhered to it. In order to prevent this offset development, various methods have been proposed in the past. Methods for treating the surface of a hot roll include coating the roll surface with a low surface energy material (such as fluororesin) that is difficult for hot-melted toner to wet; A method is used in which silicone oil is applied before contact with the toner to form a blood with low surface energy, but even these methods do not completely prevent toner offset, especially in the latter case, due to the supply of silicone oil, wetting,
Requires special consideration before vapor release. Furthermore, various proposals have been made regarding improvements in toner formulation in order to impart non-offset properties to the toner itself. For example, a method of adding a component (paraffin, chlorinated paraffin, oil, fat, plasticizer, etc.) corresponding to the silicone oil to the toner component is effective to some extent in preventing offset. However, it is difficult to completely prevent offset with only these additives, and the additives described above can cause handling problems such as promoting toner blogging and reducing fluidity, as well as a decline in image quality. Because of this, there are significant restrictions on its use, and several proposals have been made regarding resin components used in toner. Although low molecular weight polymers can generally be heated at low temperatures, they are susceptible to offset phenomena. On the other hand, although high molecular weight polymers alleviate the offset phenomenon, they tend to increase the minimum fixing temperature during fixing.Therefore, in order to prevent the offset phenomenon without increasing the minimum fixing temperature, low molecular weight polymers are used. A method using a combination of a polymer and a high molecular weight polymer has been proposed. In Japanese Patent Publication No. 58-28084, a toner whose main component is a mixture of high molecular weight polystyrene with a molecular weight of 6 or more and oligostyrene with a molecular weight of 1000 or less is proposed. , also published in 1977-
No. 114245 proposes a toner whose main component is a mixture of a low-melting resin such as polyester or epoxy and a large molecular weight polymer having a molecular weight of 500,000 or more. Furthermore, in JP-A-50-184652, an α,β-unsaturated ethylenic monomer having a wide molecular weight distribution from low molecular weight −1 to high molecular weight with heavy average molecular weight/number average molecular weight jλ of 3.5 to 40 is disclosed. A toner has been proposed whose main resin component is a resin having as a constituent unit. In these proposals, low molecular weight polymers are used to lower the minimum fixing temperature, high molecular weight polymers are used to provide offset resistance, or a small amount of low molecular weight polymer is used to lower the minimum fixing temperature sufficiently. If the amount is too low or too high, the anti-offset properties of the high molecular weight polymer will be impaired, and therefore fully satisfactory results will not be obtained. Further, offset tends to occur when a low molecular weight polymer is used as the main resin of the toner. Therefore, the special public
No. 28854 proposes a toner using a crosslinked resin with a controlled molecular weight, and JP-A-50-44886 proposes a toner using a resin having a crosslinking bond with a crosslinking energy of about 8 Kml/mo 1 or more. has been done. In these proposals, it is true that offset phenomenon is less likely to occur with a higher degree of crosslinking, but if the lower limit temperature of fixing is i-6<,
As a result, this simply causes a shift to a higher temperature in the constant temperature/range (range from the lower limit temperature to the offset start temperature), which is sufficient for practical use since the upper limit of the fusing temperature is constrained by the device limit. Not the level. [Invention 1] J An object of the present invention is to provide an electrostatic charge developing toner for heat roller constant 2D that has good fixing properties, a low fixing lower limit hiding degree, good offset resistance, and a wide fixing temperature range. It is. [Summary of the Invention] The present invention provides a toner for electrostatic image development comprising at least a colorant and a binding component, in which a thermoplastic resin serving as the binding component is heated in a temperature range of 140 C to 220 tl'. The real part (storage modulus) of the complex modulus of elasticity (8Hz, Young's modulus) is 5 × 1 (7'Pa ~ 2 × 10 Paz
Imaginary part (loss modulus) is 5 X 10 Pa ~ I
The present invention relates to a toner that uses a resin in the range of 10 Pa, has a low constant layer minimum ridge degree, has good offset resistance, and has a wide fixing temperature range. Excellent: The fixing properties of Herola fixed-press toner are closely related to the melt viscoelasticity of the thermoplastic resin, which is the binding component used in the toner. Conventionally, the melt viscoelasticity of toner for a constant layer of thermal lff-ra has been measured using an orifice viscometer such as a flow tester.
The outflow rates of ' and ψ are given by the Durham number or outflow rate of the melt passing through a standard orifice at a constant temperature and constant pressure. The higher the melt viscosity, the lower the melt index and flow rate. However, these values have low reliability because the numerical value p varies depending on the standard orifice and how the temperature and pressure are selected, and the data also tends to vary. Furthermore, the melt of 4n.j fat is a typical viscoelastic material, which is a material that exhibits both viscous and elastic properties. However, only the apparent viscosity of the melt is measured using a flow tester or the like. This viscosity must also be measured by correcting the orifice area, and the viscosity of 11111f is also low, and in order to correct the orifice diameter, measurements must be made many times with different orifice diameters and lengths. Must be,
Measurements could not be made quickly either. Therefore, there is a clear difference between the data on the molten state of the resin or toner obtained with the viscosity Nt using these orifices, and the data on the constant 74-degree curve of the toner made using the resin. No correlation was found. The present inventors measured the complex elastic modulus of a toner for constant wear on a heat roller and a thermoplastic resin serving as its binding component while changing the frequency and temperature, and found that the relationship between these substances in a molten state and that for a constant use of a heat roller To study the correlation with toner fixability, we measured the modulus of elasticity by clamping a cylindrical sample with disk-shaped upper and lower cells, and placing the entire cell in a constant temperature bath. One end of the sample is vibrated at a constant frequency to apply sinusoidal vibration to the sample. The applied imaging width and the stress generated at the other end of the sample are detected by a displacement meter and a load cell, respectively, and the signals are amplified and input to an arithmetic circuit, and the stress is divided into strain, an in-phase component, and a component whose phase is V2 ahead. The real part (storage modulus) E/ and the imaginary part (loss bullet 14) F' of the complex modulus of elasticity E are found. Since the imaging at this time is applied in the tensile direction of the sample, the complex modulus of elasticity in this case is Young's modulus (complex tensile modulus). There is the following relationship between the coefficient and the coefficient. E"-E'+iE' E Complex tensile modulus G
Complex shear elasticity

【も f−3(B″−2μ)=2♂(1+μ)r 複素体積弾
性率 η 複素粘性係数 G”−iwη”    μ ポアソン比従って、複素弾
性率の測定によって熔融状態の材料の粘性と弾性双方の
性質も測定することか可能である。 複素弾性率の測定は、実際の熱ローラー用トナーの定着
範囲をカバーするために、1ooc〜260Cの範囲に
て行ない、測定周波数もIHz〜800Hzまで変化さ
せて行ない、熱ローラ一定jet用トナー及びその結肘
性成分となる熱可塑性樹脂の畿索弾性率の周波数分散、
温度分散の測定を行なう。この結果、熱ローラ一定/1
ノ用トナーの定眉は、いわゆる弾性率の緩第11スペク
トルにおいて、コム状市原域及びゴム状流動域で起こっ
ていることを明らかにし、トナーのオフセット現象はゴ
ム状流動域から流動域(終端域)に入る時に生ずること
が判明し、本発明に至ったものである 周波数分散にお
ける複素弾性率の変化は時114」温度換算側により、
複素弾性率の温度分散でもその変化は測定できる。 すなわち、本発明は熱ローラ用トナーの結漸性成分とな
る熱可塑性樹脂に、温度範囲140Cから220Cまで
の複素弾性率(3Hz、ヤング率)の実数部(貯蔵弾性
率)が5 X 10 Pa 〜5 X 10 Pa、虚
数部(損失弾性率)が5 X 10 Pa〜2 X 1
0 Paの範囲にある樹脂を用いることによって、熱ロ
ーラ定漸用トナーが定着温度範囲(1401,’〜22
0C)で緩和スペクトルにおけるコム状市原域及びゴム
状流動域に入る様にしたものである。ここでいうコム状
市原域とは緩和スペクトルでいうところのゴム弾性を示
す強度の低い箱型の部分であシ、また、ゴム状流動域と
はゴム弾性を示すかやや粘性がまざってくる状態のもの
で、箱型の終端に近い部分を意味する。また流動域(終
端域)とは、弾性回復能が減少し、粘性が支配的で流動
する領域のことをいう。 非常に1坊分子にの樹脂或いは架橋度の高い樹脂は、緩
和スペクトルでいうところの箱型部分のコム状市原域(
架橋度の旨い樹脂の場合は偽平衡域)が負いために、こ
れらの樹脂で作られたトナーは定着温度範囲(140C
〜22011:”)でゴム状高原域に入るのみで、ゴム
状流動域には達しない。この様なトナーは耐オフセット
性は良好であるが、ゴム状流動性が低いので転写材にw
4あるいは侵透せず、外力が加わった時に転写材上から
剥離しゃすい。 また、低分子量の樹脂は、緩和スペクトルでいう箱型部
分が煙いか或いは存在しないために、定盾温度#!、囲
(140C〜220c)で流動域に入りてしまう。流動
域に入ったトナーは、弾性回復能が小さいために、トナ
ーと熱ローラーとの接眉力によって生じた外力により、
熱ローラーが回転する時に流動し、外力によって引き伸
ばされたトナーが破断することによってロール上に付層
し、オフセット現数yih生rることと/よる。 促つ−〔、本発明のトナーの結着性成分となる熱可塑性
樹脂の原素弾性率の範囲は更に好ましくは、140’C
で実kj、xl(貯蔵〕’l’−1’j 率)  e−
が−5XlO’Pa〜2 X 105Pa 、虚数部(
損失弾・吐率)E″が2×1o6Pa〜2 X 105
Pa 、 220 Cで実数部か8 X 10’ Pa
 〜5X10’Pa、虚d−1か5 X 105Pa 
〜5 X IQ’Paの範囲にあることが望ましい。 樹脂の弾性率の緩和スペクトルは、その樹脂の分子、4
2分子、は分布、架橋度、結晶化度号によって異ノより
、平均分子量が大きくなるにつれて緩和スペクトルの箱
型tjli分のコム状市原域は長くなシ、また分子量分
布が狭くなるにつれ又、緩和スペクトルの流動域(終端
部)が切シ立つ、また架橋をすると、架橋度が商い場合
には為平衡域か生じ箱型部分が下に落ちなくなる。この
様に樹脂の弾性率は分子量9分子量分布、架橋度寺によ
って、その周波数分散、温度分散が異なるが、本発明の
特許請求の11・α回内にある弾性率を有する樹脂にょ
シ作られたトナーは、分子廁、9分子憾分布、架橋度→
に無関係に優れた定着性を示し、その定lft温度内1
10も広い。従って、本発明の範囲内にある弾性率を有
する樹脂であれば、その)η1脂がラジカル重合、イオ
ン重合9型縮合9重付〃1等によって合成された樹脂で
めっても、その樹脂の種類を問わず、本発明の効果は成
立するものであろう 緩和スペクトルのコム状市原域は分子全体の運動にもと
づく緩和の弾性率に相当し、分子の尺さ   □が長い
とからみ合いが多いために、ゴム状市原域は長くなる。 これに、低分子の樹脂を〃lえるとからみ合いは希釈さ
れ、ゴム状高原域は短くなる。 従って、分子量分布の広い樹脂或いは1よ分子量の樹脂
と高分子晴の樹脂を混合したものでも、定着性のみを考
えれば、満足できるものである。しかし、熱ローラ定庸
用トナーにおいては、総合性能としての室温でのトナー
流動性及び複写機等の甲でトナーが凝集しないことが要
求される。このためには、低分子量の位1脂がトナーの
中に含まれていることは好−ましくない。従って、本発
明の弾性率の請求14屯囲を満たす熱可塑・1′L制脂
は、低分子量の:1′IJ脂の少ない重置平均分子i貼
′J)50,000以上で’rK 、15に平均分子量
/数平1り分子)1↓が1.5〜10.0の樹脂、更に
好ましくは1.5・〜4.0の(d脂か本発明の熱ロー
ラ一定AI用トナーにはυf摘である。 更に栗僑タイプの位工脂においても同i系に低分子量の
AId +1mが含゛まれているのは、トナーとしての
流動性、保存安定性−W’に好−ましくない。なた、本
発明の弾性率の請求範囲を請だす様な分子I辻を有する
樹脂、或いはそれ以上の分子量を有する樹脂を架橋する
ことは、弾性率の緩和スペクトルにおい”〔箱型のゴム
拭市原領域を更に長くするか、偽平衡域をもたらずこと
になシ、好′ましくない。従って架橋タイプの11+宿
としては、低分子11【のものをざまない重量平均分子
a2o、ooo〜200,00 O6度のものを架橋し
たものが本発明には特に好適である。 また、本発明に用いられる眉色材としては、公知のもの
がすべて使用可能であり、カーボンブラック、アニリン
ブラック弄の黒色顔料、黄鉛、カドミウムイエロー弄の
黄色顔料、紺青コバルトブルー、フタロシアニンブルー
寺のt色a料、ベンガラ、カドミラみレット、鉛丹前の
赤色顔料、亜鉛華、酸化チタン等の白色顔料の他に、ニ
グロシン、メチレンブルー、ローズベンガル、キノリン
イエローW+の各種染料、また漬色材を兼ねた磁性微粒
子として、四三酸化鉄(Fe804) l  r−三二
酸化鉄<r−Fetos) 、 ni化鉄亜鉛(Z n
 F e、o、 ) +フヱライト粉末、金属鉄粉末、
コバルト粉末、ニッケル粉末等を組合せ使用することも
できる。 〔発明の効果〕 本発明の熱ローラ一定屑用トナーは、上述した様に定着
性が良好でかつ窓層温度範囲(窓層開始温度からオフセ
ット開始温度までの範囲)が広いものである。また、本
発明の熱ローラ一定着用トナーは低分子量分の樹脂が少
ないために、保存安定性、流動性が極めて良好である。 このために、本発明のトナーは、信頼性が向く、また現
像剤としての寿命が長く安定したものである。 〔発明の実施例〕 以下に本発明の実施例について説明するが、本発明は仁
れら(二限定されるものではない。 実施例1 (熱可塑性樹脂の製造) 水                        
200重量glエマールO(化工アトラス)     
0.75重量部シリコーン消泡剤T Si280 (東芝シリコーン)   0.08重量部スチレン  
           60重量部n−ブチルメタクリ
レート20重量部 四塩化炭素             5重量部硫酸第
1鉄(Fe80.−7H,0)     0.02重量
部クメンヒドロパーオキサイド   0.05重量部ア
スコルビン酸         0.085重量部上記
の処方による物質を、窒素ガス気流下40℃で重合し、
4時間後重合反応を停止し、ラテックス状の内容物を、
同量のメタノール中に投入して乳化を破壊し、凝集した
反応生成物をろ過、洗浄、乾燥して、目的とした樹脂を
得た。 この樹脂をテトラヒドロフラン(THF)に溶解し、東
洋a達工粟(HLC−802A ) +Th速GPC装
置を用いて分子量+HI)定を行なった。得られた樹脂
の重量平均分子量)Jw = 128000 、数平均
分子量Mn= 52600、Mw/Mn = 2.84
であった。 (ト ナー製〕責 ) 上記樹脂を結着性成分として、下記の処方により、混合
、混線、粉砕2分級を行ない、平均粒径約13 、tt
tnのトナーを得た。このトナーをトナーIとする。 上記樹脂             90重量都カーボ
ンブラックMA100(三菱化成(掬)10重量部(弾
性率測定) 上記樹脂の複素弾性$ 6111定結果を第1〜8図に
示す。第1図は各温度で測定した複素弾性率E“(= 
E’ + iE” )の大きさ1.Fi”l(v’旨7
1ツ耐7−)の周波数依存性を示したものである。第2
図は第1図に示したデータを時間一温度換算則を用いて
合成L、180Uでの複素弾性率1f1のマスターカー
ブを示したものである。第2図では周vd I Hzよ
りも高周波叡側では、ゴム状高原域、低周Va側ではゴ
ム状流動域から流動域になることが判る。 第8図は、同じHim脂の複素弾性率の実数部(貯蔵弾
性率)と虚数部(損失弾性率)のaHzでの温度分散を
示す。第3図でも同様に周波数3Hzでは120Cから
220Cまでで、ゴム状高原域からゴム状流動域まで変
化することを示している。特に、200C付近で、虚t
a tE’+5と実数部が逆転してお9、バネとダッシ
ュポットで示されるマックスウェルモデルにおいて、エ
ネルギーの散いつ項となるダッシュポットの影響が大き
くなっていることを示している。従って、この温度以上
では樹脂の粘弾性的性質の内、粘性の性質が支配的とな
る。 実施例2 (熱可塑性(樹脂の製造) 実施例1の熱可塑性樹脂の製造における処方のうち、四
塩化炭素のt役を0部としたほかは実施例1と同様にし
て樹脂を合成した。実施例1と同様に分子量測定を行な
い、Mw ”” 159000 % ” =78800
、Mw/M n = 2.15であった。 (トナーの製造) 上記樹脂を結う^性成分として用いたほかは、実施例1
のトナーと同様にして平均粒径約18μnlのトナーを
得た。これをトナー■とする。 (弾性率測定) 上記樹脂の複素弾性率測定結果を第4図に示す。 同図は実施例1と同様に測定された実施例2の樹脂の3
(1zでの複素弾性率の温度分散であるう実数部と虚絨
部の逆転は220C付近で起とつ°〔おυ、実施例1の
樹脂よりも高温にシフトしている。 実施例8 (熱可塑性樹脂の製造) 実施例1の熱可塑性樹脂の表情における処方のうち、新
たにジビニルベンゼンを単量体として0.5重量部那え
たほかは実施例1と同様にして樹脂を合成した。合成し
た樹脂の内、溶済に不溶な■!d脂の割合で示されるゲ
ルコンテントは約10チであった。 (トナーの製造) 上記樹脂な結眉性成分として用いたほかは、実施例1の
トナーと同様にして、平均粒径約13μ7nのトナーを
得た。これをトナーlとする。 (弾性率d(り定) 上記i11脂の複素弾性率測定結果を弔5図に示す。 第5図は実施例8の樹脂の3H2での抜身5弾性率の温
度分散である。 比較例1 (熱可塑性樹脂の製造) 水                  200重量部
完全グン化ポリビニルアルコール  1.51[を部I
′ris分ケン化ポリビニルアルコール 0.05重址
郡スチレン             60重量部n−
ブチルメタクリレート     20!i量部過酸化ベ
ンゾイン         0.6重値部上記の処方に
よる物質を窒素カス気流下70Cで重合し、8時間後重
合反応を停止し、内容物をろ別、乾燥し、目的とした樹
脂を得た。 実施例1と同様に分子量測定を行ない、Mw=846.
000、Mn = 83,000 、 Mw/Mn =
 I O,5であった。 (ト ブー −の斗財造 ) 上記樹脂を結着性成分として用いたほかは、実施例】の
トナーと同様にして平均粒径約13μmのトナーを得た
。これをトナー■とする。 (弾1生率の測定) 上記樹脂の複素弾性率測定結果を第6図に示す。 第6図は比較例1の樹脂の3Hzでの複素弾性率の温度
分散である。実数部と虚数部の逆転は160C付近で起
こっており、200C以上では完全に虚淑都が大きくな
っておシ、粘性が支配的である。 比較例2 (熱可塑性樹脂) 実施例1の熱可塑性樹脂の製造における処方のうち、四
塩化炭素の量を40重量部としたほかは、実施例1と同
様にして樹脂を合成した。実施例1と同様に分子は測定
を行ない、Mw = J39.QQQ、Mn−19,8
00、Mw/Mn = 1.97でめった。 (トナーの製造) 上記樹脂を結着性成分として用いたほかは、実流側1の
トナーと同様にして平均粒径約18μ?nのトナーを得
た。これをトナー■とする。 (弾性率測定) 上記樹脂の復素弾性率測ボ結果を第7図に示す。 同図は比較例2の樹脂の8Hzでの複素弾性率の温度分
散である。実は部と虚数部の逆転は150 ic付近で
起こりてお9、比較例1の樹脂よシも低温で粘性が支配
的となり、流動域に入っている。 比較例3 (熱意5M性樹脂) 実施例1の熱意重性樹脂の製造における処方のうち、四
塩化炭素の量を0重量部、ジビニルベンゼンを1重量部
加えた?1かは実施例1と同様にして樹脂を合成した。 合成した樹脂のゲルコンテントを実施例8と同様に測定
した結果ゲルコンテントは約50%であった。 (トナーの製造) 上記樹脂な結看性成分としてこれをトナー■とする。 (弾性率測定) 上記樹脂の複素弾性率測定結果を第8図に示す。 同図は比較例3の樹脂の8Hzでの複素弾性率の温度分
散である。実数部が高温でも虚数部よシもはるかに大き
く、典型的なゴム弾性を示している。 弾性率は凝平衡域に入っているために高温にしてもほと
んど変化せず、ゴム状流動域には致っていない。 以上の実施例1〜3及び比較例1〜8において、得られ
たトナーについて、それぞれ定着開始温度。 オフセット開始温度、及び保存安定性について調べた。 各トナーをそれぞれ5重量部と鉄粉キャリア(同和鉄粉
DSP)95重量部とを混合して、それぞれ現象剤を作
製した。これらの現像剤を電子写真複写機レオドライ4
511 (東京芝浦電気■社製)にセットし、転写材と
して用いた東芝指定紙上にトナー像を形成し、任意の温
度に設定した加熱ローラ一定着器によシ定着し、トナー
像の定着性及びオフセットの有無をNilべた。定着器
はオイル塗布系を有しない、表面をテフロンコーティン
グした加熱ローラーとこれに圧接するシリコーンゴム製
のローラーより成シ、線圧80kf/1ine 、転写
材の送シ速度15011m/secの条件で定着を行な
ったものである。また、保存安定性は、各トナーを50
Cの恒温状態にし、12時間放置後のトナーの凝集の有
無から判定したつ定着性は、定着したトナー像を折9曲
げ、折り曲げた813分でトナ一層が剥離するか否かで
調べ、トナーが剥離しなくなった温度な定着開始温度と
した。 以上の結果は次表に示す通りである。 表 トナーの定着性及び保存安定性
[also f−3(B″−2μ)=2♂(1+μ)r Complex bulk modulus η Complex viscosity coefficient G”−iwη” μ Poisson's ratio Therefore, the viscosity and elasticity of the material in the molten state can be determined by measuring the complex modulus. It is possible to measure both properties.The complex modulus of elasticity is measured in the range of 100C to 260C to cover the actual fixing range of toner for thermal rollers, and the measurement frequency is also from IHz to 800Hz. Frequency dispersion of the elastic modulus of the toner for a constant heat roller jet and the thermoplastic resin that is the elasticity component thereof,
Measure temperature dispersion. As a result, the heat roller constant/1
It was clarified that the constant density of toner for toners occurs in the comb-like inner region and rubber-like flow region in the so-called slow 11th spectrum of elastic modulus, and that the offset phenomenon of toner occurs from the rubber-like flow region to the flow region (terminal end). It was found that the change in the complex modulus of elasticity due to frequency dispersion is 114'' on the temperature conversion side, which led to the present invention.
The change can also be measured by temperature dispersion of the complex modulus of elasticity. That is, the present invention uses a thermoplastic resin as a condensing component of a toner for a hot roller, which has a real part (storage modulus) of a complex modulus of elasticity (3 Hz, Young's modulus) of 5 x 10 Pa in a temperature range of 140C to 220C. ~5 X 10 Pa, imaginary part (loss modulus) is 5 X 10 Pa ~2 X 1
By using a resin in the range of 0 Pa, the toner for heat roller constant titration can be fixed in the fixing temperature range (1401,' to 22
0C), it enters the comb-like Ichihara region and the rubber-like flow region in the relaxation spectrum. The comb-like region here is a box-shaped region with low strength that exhibits rubber elasticity in the relaxation spectrum, and the rubber-like flow region is a state that exhibits rubber elasticity or has a slightly mixed viscosity. It means the part near the end of the box shape. Further, the flow region (terminal region) refers to a region where the elastic recovery ability is reduced and viscosity is dominant and the material flows. Resins with very single molecules or resins with a high degree of crosslinking have a box-shaped part in the comb-like Ichihara region (in the relaxation spectrum).
Resins with a good degree of crosslinking have a false equilibrium region), so toners made with these resins have a high fusing temperature range (140C).
~22011:''), it only enters the rubbery plateau region and does not reach the rubbery fluidity region.Such toner has good offset resistance, but has low rubbery fluidity, so it is difficult to use as a transfer material.
4 or does not penetrate and easily peels off from the transfer material when external force is applied. Also, for low molecular weight resins, the box-shaped part in the relaxation spectrum is smoke or does not exist, so the constant shield temperature is #! , it enters the flow region at the range (140C to 220C). Since the toner that has entered the flow region has a small elastic recovery ability, it is affected by the external force generated by the contact force between the toner and the heated roller.
When the hot roller rotates, the toner flows, and the toner that is stretched by an external force breaks and forms a layer on the roll, creating an offset current. The range of the elementary elastic modulus of the thermoplastic resin serving as the binding component of the toner of the present invention is more preferably 140'C.
Actual kj, xl (storage)'l'-1'j rate) e-
is -5XlO'Pa~2X105Pa, the imaginary part (
Loss bullet/discharge rate) E'' is 2 x 1o6Pa ~ 2 x 105
Pa, real part at 220 C or 8 x 10' Pa
~5X10'Pa, imaginary d-1 or 5 X 105Pa
It is desirable to be in the range of ~5 x IQ'Pa. The relaxation spectrum of the elastic modulus of a resin is the molecule of the resin, 4
Two molecules differ depending on the distribution, degree of crosslinking, and degree of crystallinity; as the average molecular weight increases, the comb-like region corresponding to the box-shaped tjli of the relaxation spectrum becomes longer, and as the molecular weight distribution narrows, The flow region (terminus) of the relaxation spectrum stands out sharply, and when crosslinking occurs, an equilibrium region occurs when the degree of crosslinking is low, and the box-shaped portion does not fall down. As described above, the modulus of elasticity of the resin varies depending on the molecular weight distribution, the degree of crosslinking, and the frequency dispersion and temperature dispersion. The toner has molecular weight, 9-molecule distribution, and degree of crosslinking→
It exhibits excellent fixing properties regardless of the
10 is also wide. Therefore, as long as the resin has an elastic modulus within the range of the present invention, even if the η1 resin is synthesized by radical polymerization, ionic polymerization, condensation, nine-polymerization, etc., the resin Regardless of the type of Because there are so many, the rubbery city area becomes long. Adding a low-molecular resin to this dilutes the entanglement and shortens the rubbery plateau region. Therefore, a resin with a wide molecular weight distribution or a mixture of a resin with a molecular weight of 1 or more and a resin with a high molecular weight can be satisfactory if only the fixing properties are considered. However, toners for thermal roller constant use are required to have toner fluidity at room temperature as overall performance and to not agglomerate on the back of a copying machine or the like. For this reason, it is not preferable that low molecular weight fats be contained in the toner. Therefore, the thermoplastic 1'L fat control that satisfies claim 14 of the elastic modulus of the present invention has a low molecular weight: 1'IJ) with a weighted average molecular weight of 50,000 or more and , 15 to average molecular weight/1↓ of 1.5 to 10.0, more preferably 1.5 to 4.0 (d resin or heat roller constant AI toner of the present invention) In addition, even in the chestnut type resin, the low molecular weight AId +1m is included in the same i system, which is favorable for the fluidity and storage stability -W' of the toner. However, crosslinking a resin having a molecular I-tail that warrants the claims of the elastic modulus of the present invention, or a resin having a molecular weight higher than that, may cause a relaxation spectrum of the elastic modulus. It is undesirable to make the rubber-wiping Ichihara region of the mold even longer or to cause a false equilibrium region.Therefore, as a crosslinked type 11+ host, the weight average of the low molecular weight 11 Crosslinked molecules of a2o, ooo to 200,00 O6 degrees are particularly suitable for the present invention. In addition, all known eyebrow coloring materials can be used as the eyebrow coloring material used in the present invention, including carbon Black pigment for black, aniline black, yellow pigment for yellow lead, cadmium yellow, navy blue cobalt blue, phthalocyanine blue pigment, red pigment, red pigment, cadmilla millet, red pigment for lead tanzen, zinc white, titanium oxide In addition to white pigments such as nigrosine, methylene blue, rose bengal, and quinoline yellow W+, there are also various dyes such as nigrosine, methylene blue, rose bengal, and quinoline yellow W+, as well as triiron tetroxide (Fe804) l r-iron sesquioxide<r-Fetos ), iron zinc nitride (Z n
Fe, o, ) + fluorite powder, metal iron powder,
A combination of cobalt powder, nickel powder, etc. can also be used. [Effects of the Invention] As described above, the toner for heat roller constant waste of the present invention has good fixing properties and a wide window layer temperature range (range from window layer start temperature to offset start temperature). Further, since the toner for constant wear on a heated roller of the present invention has a small amount of low molecular weight resin, it has extremely good storage stability and fluidity. For this reason, the toner of the present invention is reliable and has a long and stable life as a developer. [Examples of the Invention] Examples of the present invention will be described below, but the present invention is not limited to the following. Example 1 (Production of thermoplastic resin) Water
200 weight gl Emar O (Kako Atlas)
0.75 parts by weight Silicone defoaming agent T Si280 (Toshiba Silicone) 0.08 parts by weight Styrene
60 parts by weight n-butyl methacrylate 20 parts by weight Carbon tetrachloride 5 parts by weight Ferrous sulfate (Fe80.-7H,0) 0.02 parts by weight Cumene hydroperoxide 0.05 parts by weight Ascorbic acid 0.085 parts by weight Above A substance according to the formulation was polymerized at 40°C under a nitrogen gas stream,
After 4 hours, the polymerization reaction was stopped and the latex contents were
The emulsification was broken by pouring into the same amount of methanol, and the coagulated reaction product was filtered, washed, and dried to obtain the desired resin. This resin was dissolved in tetrahydrofuran (THF), and the molecular weight + HI) was determined using a Toyo Adako Awa (HLC-802A) +Th speed GPC device. Weight average molecular weight of the obtained resin) Jw = 128000, number average molecular weight Mn = 52600, Mw/Mn = 2.84
Met. (Manufactured by Toner) Using the above resin as a binding component, mix, cross-wire, crush and classify into two according to the following formulation, and the average particle size is approximately 13, tt.
tn toner was obtained. This toner is referred to as Toner I. The above resin 90 parts by weight carbon black MA100 (Mitsubishi Kasei (Kikki)) 10 parts by weight (elastic modulus measurement) The results of the complex elasticity of the above resin are shown in Figures 1 to 8. Figure 1 shows the complex elasticity measured at each temperature. Elastic modulus E”(=
E' + iE") size 1. Fi"l (v' effect 7
This figure shows the frequency dependence of the 1tsu resistance 7-). Second
The figure shows a master curve of the complex modulus of elasticity 1f1 at a composite L of 180U using the time-temperature conversion rule for the data shown in FIG. In FIG. 2, it can be seen that on the higher frequency side of the frequency vd I Hz, the rubbery plateau region changes, and on the lower frequency Va side, the rubbery fluid region changes to a fluid region. FIG. 8 shows the temperature distribution in aHz of the real part (storage modulus) and imaginary part (loss modulus) of the complex modulus of the same Him fat. Similarly, FIG. 3 shows that at a frequency of 3 Hz, the temperature changes from 120C to 220C, from a rubbery plateau region to a rubbery flow region. Especially, around 200C, imaginary t
The real part is reversed as a tE'+5, which shows that in the Maxwell model represented by a spring and a dashpot, the influence of the dashpot, which is an energy dissipation term, is increasing. Therefore, at temperatures above this temperature, among the viscoelastic properties of the resin, viscous properties become dominant. Example 2 (Thermoplasticity (manufacture of resin)) A resin was synthesized in the same manner as in Example 1, except that in the recipe for manufacturing the thermoplastic resin of Example 1, the t role of carbon tetrachloride was changed to 0 parts. Molecular weight was measured in the same manner as in Example 1, and Mw was 159,000% = 78,800.
, Mw/M n = 2.15. (Manufacture of toner) Example 1 was used except that the above resin was used as a binding component.
A toner having an average particle size of about 18 μnl was obtained in the same manner as the toner. This is called toner ■. (Measurement of elastic modulus) The results of measuring the complex modulus of the resin are shown in FIG. 4. The figure shows 3 of the resin of Example 2, which was measured in the same manner as Example 1.
(The reversal of the real part and imaginary part, which is the temperature dispersion of the complex modulus at 1z, occurs at around 220C. [O υ, the temperature is shifted to a higher temperature than that of the resin of Example 1.) Example 8 (Manufacture of thermoplastic resin) A resin was synthesized in the same manner as in Example 1, except that 0.5 part by weight of divinylbenzene was newly added as a monomer to the facial expression formulation of the thermoplastic resin in Example 1. .Among the synthesized resins, the gel content, expressed as the ratio of insoluble ■!d fat, was approximately 10%. A toner with an average particle size of approximately 13μ7n was obtained in the same manner as the toner in Example 1. This is referred to as toner 1. (Modulus of elasticity d (result)) The results of measuring the complex modulus of the above i11 fat are shown in Figure 5. Figure 5 shows the temperature distribution of the elastic modulus of the resin of Example 8 at 3H2.Comparative Example 1 (Production of thermoplastic resin) Water 200 parts by weight Completely gunned polyvinyl alcohol 1.51 parts I
Saponified polyvinyl alcohol 0.05 parts Styrene 60 parts by weight n-
Butyl methacrylate 20! i part benzoin peroxide 0.6 parts by weight The substance according to the above formulation was polymerized at 70C under a stream of nitrogen gas, the polymerization reaction was stopped after 8 hours, and the contents were filtered and dried to obtain the desired resin. Obtained. The molecular weight was measured in the same manner as in Example 1, and Mw=846.
000, Mn = 83,000, Mw/Mn =
It was IO,5. (Tobu-no-Tozaizo) A toner having an average particle size of about 13 μm was obtained in the same manner as the toner in Example except that the above resin was used as the binding component. This is called toner ■. (Measurement of Bullet 1 Viability Modulus) The results of measuring the complex modulus of elasticity of the above resin are shown in FIG. FIG. 6 shows the temperature distribution of the complex modulus of elasticity at 3 Hz for the resin of Comparative Example 1. The reversal of the real and imaginary parts occurs around 160C, and above 200C, the imaginary part becomes completely large and viscosity becomes dominant. Comparative Example 2 (Thermoplastic resin) A resin was synthesized in the same manner as in Example 1, except that the amount of carbon tetrachloride was changed to 40 parts by weight in the recipe for producing the thermoplastic resin in Example 1. The molecule was measured in the same manner as in Example 1, and Mw = J39. QQQ, Mn-19,8
00, Mw/Mn = 1.97. (Manufacture of toner) Except for using the above resin as a binding component, the procedure was the same as the toner of actual flow side 1, with an average particle size of about 18μ? n toners were obtained. This is called toner ■. (Measurement of elastic modulus) The results of measuring the complex elastic modulus of the above resin are shown in FIG. The figure shows the temperature distribution of the complex modulus of elasticity at 8 Hz for the resin of Comparative Example 2. In fact, the reversal of the part and imaginary part occurs around 150 ic9, and the resin of Comparative Example 1 also becomes viscous and dominant at low temperatures and enters the flow region. Comparative Example 3 (Azetsu 5M resin) In the recipe for manufacturing the Azeki heavy resin of Example 1, 0 parts by weight of carbon tetrachloride and 1 part by weight of divinylbenzene were added. In Example 1, a resin was synthesized in the same manner as in Example 1. The gel content of the synthesized resin was measured in the same manner as in Example 8, and the gel content was approximately 50%. (Manufacture of toner) The above-mentioned resin binding component is referred to as toner (2). (Measurement of elastic modulus) FIG. 8 shows the results of measuring the complex modulus of elasticity of the above resin. The figure shows the temperature distribution of the complex modulus of elasticity at 8 Hz for the resin of Comparative Example 3. Even though the real part is at a high temperature, the imaginary part is much larger, indicating typical rubber elasticity. Since the elastic modulus is in the coagulation equilibrium region, it hardly changes even at high temperatures, and it does not reach the rubber-like flow region. In the above Examples 1 to 3 and Comparative Examples 1 to 8, the fixing start temperature of the obtained toners, respectively. The offset onset temperature and storage stability were investigated. A developing agent was prepared by mixing 5 parts by weight of each toner and 95 parts by weight of an iron powder carrier (Dowa iron powder DSP). These developers are used in the electrophotographic copying machine RheoDry 4.
511 (manufactured by Tokyo Shibaura Electric Co., Ltd.), a toner image is formed on Toshiba specified paper used as a transfer material, and fixed by a heating roller constant fixer set at an arbitrary temperature to determine the fixability of the toner image. And the presence or absence of offset was determined by Nil. The fixing device does not have an oil coating system, and consists of a heating roller whose surface is coated with Teflon and a silicone rubber roller that is in pressure contact with the heating roller.Fixing is carried out under the conditions of a linear pressure of 80 kf/1 in, and a transfer material feeding speed of 15011 m/sec. This is what was done. In addition, the storage stability of each toner is 50%
Fixability was determined by the presence or absence of toner aggregation after being left at a constant temperature of C for 12 hours. The fixing start temperature was set to the temperature at which no peeling occurred. The above results are shown in the table below. Table Toner fixability and storage stability

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第8図は、本発明実施例1の樹脂の複素弾性
率の測定結果を示す図であり、第1図は所定温度で?+
Ill定した複素弾性率の周波数依存性を示す図、WJ
21図は第1図の結果よシ得られるマスターカーブを示
す因、第81図は複素弾性率の実数部と虚数部の温度分
散を示す図であシ、また第4図は、本発明実施例2の樹
脂の複素弾性率の温度分散を示す図、第51図は、本発
明実施例8の樹脂の複素弾性率の温度分散を示す図、第
6図乃至第8図は、比較例の樹脂の複素弾性率の温度分
散を示す図であシ、第6図は比較例1の樹脂の特性を示
す因、第7図は同じく比較例2の樹脂の特性を示す図、
第8図は同じく比較例3の樹脂の特性を示す図である。 代理人 弁理士 則 近 憲 佑 (ほか1名)第5図 羞こ良(°C) 禎  17  1”Vl 第6図 是良(°C) 五度 (°C〕 第8図 ρ   Sρ   1l)l)    /Sρ  乙υ
  7Sρ混稟 (°C)
1 to 8 are diagrams showing the measurement results of the complex modulus of elasticity of the resin of Example 1 of the present invention. +
Diagram showing the frequency dependence of the complex elastic modulus determined by Ill, WJ
Figure 21 shows the master curve obtained from the results in Figure 1, Figure 81 shows the temperature dispersion of the real part and imaginary part of the complex modulus, and Figure 4 shows the results obtained by implementing the present invention. FIG. 51 is a diagram showing the temperature distribution of the complex modulus of elasticity of the resin of Example 2, and FIGS. 6 to 8 are diagrams showing the temperature distribution of the complex modulus of the resin of Example 8 of the present invention. FIG. 6 is a diagram showing the temperature distribution of the complex modulus of elasticity of the resin, FIG. 6 is a diagram showing the characteristics of the resin of Comparative Example 1, and FIG. 7 is a diagram showing the characteristics of the resin of Comparative Example 2.
FIG. 8 is a diagram similarly showing the characteristics of the resin of Comparative Example 3. Agent Patent attorney Noriyuki Chika (and 1 other person) Figure 5 Shokoryo (°C) Sadada 17 1”Vl Figure 6 Correct (°C) Five degrees (°C) Figure 8 ρ Sρ 1l) l) /Sρ Otoυ
7Sρ mixture (°C)

Claims (1)

【特許請求の範囲】 (1,)  少なくとも71′’f色材と結着性成分と
からなる静電荷像現像用トナーにおいて、結着性成分と
なる熱可塑性樹脂の温度範囲140Cから220Cまで
の複素弾性率(3Hz、ヤング率)の実数部(貯蔵弾性
率)が5 X 10 Pa 〜5 X 10 Pa%虚
数部(損失弾性率)が5 X 10 Pa〜2 x 1
0 Paの範囲にあることを特許とする静電荷像現像用
トナー。 (2)結着性成分と熱可塑性樹脂の重量平均分子量が5
0.000以上で重量平均分子量/数平均分子(3)結
着性成分となる熱可塑性樹脂が多官能性モノマー(二よ
シ一部架橋された樹脂より成ること
[Claims] (1,) In a toner for developing an electrostatic image comprising at least a 71''f coloring material and a binding component, the temperature range of the thermoplastic resin serving as the binding component is from 140C to 220C. The real part (storage modulus) of the complex modulus of elasticity (3Hz, Young's modulus) is 5 x 10 Pa ~ 5 x 10 Pa% The imaginary part (loss modulus) is 5 x 10 Pa ~ 2 x 1
A toner for developing electrostatic images that is patented to be within the range of 0 Pa. (2) The weight average molecular weight of the binding component and thermoplastic resin is 5
0.000 or more, weight average molecular weight/number average molecule (3) The thermoplastic resin serving as the binding component is composed of a polyfunctional monomer (bi- and partially cross-linked resin).
JP58089211A 1983-05-23 1983-05-23 Toner for electrostatic image development Expired - Lifetime JPH0715594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58089211A JPH0715594B2 (en) 1983-05-23 1983-05-23 Toner for electrostatic image development

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58089211A JPH0715594B2 (en) 1983-05-23 1983-05-23 Toner for electrostatic image development

Publications (2)

Publication Number Publication Date
JPS59214860A true JPS59214860A (en) 1984-12-04
JPH0715594B2 JPH0715594B2 (en) 1995-02-22

Family

ID=13964379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58089211A Expired - Lifetime JPH0715594B2 (en) 1983-05-23 1983-05-23 Toner for electrostatic image development

Country Status (1)

Country Link
JP (1) JPH0715594B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63259575A (en) * 1987-04-17 1988-10-26 Ricoh Co Ltd Electrophotographic developing toner
JPH01303447A (en) * 1988-05-31 1989-12-07 Mita Ind Co Ltd Toner for developing electrostatic charge image
JPH0331857A (en) * 1989-06-29 1991-02-12 Mita Ind Co Ltd Toner for developing electrostatic charge image
JPH04190243A (en) * 1990-11-23 1992-07-08 Sanyo Chem Ind Ltd Toner binder for electronic photography
JPH04190245A (en) * 1990-11-23 1992-07-08 Sanyo Chem Ind Ltd Toner binder for electronic photography
JPH04190244A (en) * 1990-11-23 1992-07-08 Sanyo Chem Ind Ltd Toner binder for electronic photography
US5180649A (en) * 1989-11-09 1993-01-19 Canon Kabushiki Kaisha Toner having crosslinkages and method of fixing same
US5338638A (en) * 1990-11-29 1994-08-16 Canon Kabushiki Kaisha Toner for developing electrostatic image and process for production thereof
JPH11194542A (en) * 1997-11-06 1999-07-21 Fuji Xerox Co Ltd Toner for electrophotography, developer for electrophotography, and image forming method
JPH11237765A (en) * 1997-02-28 1999-08-31 Canon Inc Electrostatic charge image developing yellow toner
JP2015138176A (en) * 2014-01-23 2015-07-30 京セラドキュメントソリューションズ株式会社 Toner and production method of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5581352A (en) * 1978-12-07 1980-06-19 Hitachi Chem Co Ltd Dry type two-component developer for reversal development
JPS56158340A (en) * 1980-05-13 1981-12-07 Konishiroku Photo Ind Co Ltd Toner for developing electrostatic charge image
JPS57129445A (en) * 1981-02-04 1982-08-11 Canon Inc Heat fixable dry toner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5581352A (en) * 1978-12-07 1980-06-19 Hitachi Chem Co Ltd Dry type two-component developer for reversal development
JPS56158340A (en) * 1980-05-13 1981-12-07 Konishiroku Photo Ind Co Ltd Toner for developing electrostatic charge image
JPS57129445A (en) * 1981-02-04 1982-08-11 Canon Inc Heat fixable dry toner

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63259575A (en) * 1987-04-17 1988-10-26 Ricoh Co Ltd Electrophotographic developing toner
JPH01303447A (en) * 1988-05-31 1989-12-07 Mita Ind Co Ltd Toner for developing electrostatic charge image
JPH0331857A (en) * 1989-06-29 1991-02-12 Mita Ind Co Ltd Toner for developing electrostatic charge image
US5180649A (en) * 1989-11-09 1993-01-19 Canon Kabushiki Kaisha Toner having crosslinkages and method of fixing same
JPH04190243A (en) * 1990-11-23 1992-07-08 Sanyo Chem Ind Ltd Toner binder for electronic photography
JPH04190245A (en) * 1990-11-23 1992-07-08 Sanyo Chem Ind Ltd Toner binder for electronic photography
JPH04190244A (en) * 1990-11-23 1992-07-08 Sanyo Chem Ind Ltd Toner binder for electronic photography
US5338638A (en) * 1990-11-29 1994-08-16 Canon Kabushiki Kaisha Toner for developing electrostatic image and process for production thereof
JPH11237765A (en) * 1997-02-28 1999-08-31 Canon Inc Electrostatic charge image developing yellow toner
JPH11194542A (en) * 1997-11-06 1999-07-21 Fuji Xerox Co Ltd Toner for electrophotography, developer for electrophotography, and image forming method
JP2015138176A (en) * 2014-01-23 2015-07-30 京セラドキュメントソリューションズ株式会社 Toner and production method of the same
US9547247B2 (en) 2014-01-23 2017-01-17 Kyocera Document Solutions Inc. Toner and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0715594B2 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
US4626488A (en) Polymeric binder for toner having specific weight distribution
US4565763A (en) Process for producing toner
JPS59214860A (en) Toner for developing electrostatically charge image
JPH04142301A (en) Production of binding resin and electrophotographic developer composition
US6030739A (en) Electrostatic image developing toner
CA2020040C (en) Toner for developing statically charged images and process for preparation thereof
JPH06506261A (en) Method for manufacturing binder resin for electrophotographic toner
JPH07120976A (en) Toner binder resin and positively chargeable toner containing the same
JPH0798518A (en) Electrophotographic toner
US3980576A (en) Solid toner compositions as used in development powders
JPH08320593A (en) Bonding resin and toner for developing electrostatic charge image containing same
JP3344611B2 (en) Developer for developing electrostatic images
JPH0339971A (en) Color toner and method for fixing the same
EP0622689B1 (en) Toner for electrophotography
JPH05173363A (en) Resin binder for toner
JPH0424704B2 (en)
JPS60104956A (en) Toner
JPS59107359A (en) Electrostatic charge image developing toner
JPS58176643A (en) Microencapsulated toner for heat roll fixing
US5266438A (en) Toner polymers and processes thereof
TWI770684B (en) Toner particle for static charge image development and toner composition for static charge image development
US5948581A (en) Toner for developing latent electrostatic images
JP4038160B2 (en) Method for producing toner for developing electrostatic image
JPH0758410B2 (en) Toner image fixing method
JPS60135957A (en) Electrostatic latent image developing toner