JPS59207707A - Temperature compensating circuit of tcxo - Google Patents

Temperature compensating circuit of tcxo

Info

Publication number
JPS59207707A
JPS59207707A JP8215183A JP8215183A JPS59207707A JP S59207707 A JPS59207707 A JP S59207707A JP 8215183 A JP8215183 A JP 8215183A JP 8215183 A JP8215183 A JP 8215183A JP S59207707 A JPS59207707 A JP S59207707A
Authority
JP
Japan
Prior art keywords
circuit
temperature
voltage
nodes
tcxo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8215183A
Other languages
Japanese (ja)
Other versions
JPH0449283B2 (en
Inventor
Takashi Miyayama
宮山 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP8215183A priority Critical patent/JPS59207707A/en
Priority to US06/501,126 priority patent/US4587499A/en
Priority to EP83303295A priority patent/EP0096587B1/en
Priority to DE8383303295T priority patent/DE3376942D1/en
Publication of JPS59207707A publication Critical patent/JPS59207707A/en
Publication of JPH0449283B2 publication Critical patent/JPH0449283B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only
    • H03L1/022Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature
    • H03L1/023Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only by indirect stabilisation, i.e. by generating an electrical correction signal which is a function of the temperature by using voltage variable capacitance diodes

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

PURPOSE:To obtain a temperature compensating circuit of TCXO for which circuit constant is determined to maintain a fixed value regardless of the change of voltage by impressing voltage to a set of confronting other node from a power source through necessary resistance and supplying to VCXO. CONSTITUTION:Nodes 3 and 4 are connected to a node 5 through resistances R9 and R10 respectively, and the voltage is impressed to the nodes 3 and 4 from the node 5 by the second power source E2, and the potential difference generated between the two nodes is supplied to a voltage controlled crystal oscillator VCXO as output voltage. In a temperature compensating circuit constituted as such, the oscillation frequency at reference temperature is made not to change even when the voltage impressed to the VCXO is adjusted, to enable to adjust the oscillation frequency at optional temperature to become equal to that at reference temperature without calculating a circuit contant. That is, the circuit constant is so set that the potential difference between nodes 3 and 4 does not depend on E2.

Description

【発明の詳細な説明】 本発明は温度補償水晶発振器(以下TCXOと称する)
の温度補償回路の改良に関する。
[Detailed Description of the Invention] The present invention is a temperature compensated crystal oscillator (hereinafter referred to as TCXO).
This paper relates to improvements in temperature compensation circuits.

TCXOの温度補償回路は周知の如く温度補償を行うべ
き水晶振動子の温度−周波数特性を打ち消すべくサーミ
スタ等の温度−抵抗係数を有する感温素子を含む抵抗を
組み合わせ定電圧電源から供給される直流電圧全分圧し
て電圧制御水晶発振器(以下vcxoと称する)の可変
容量ダイオードに印加することによって水晶振しかしな
がらTCXOに使用する水晶撮動子の温度−周波数特性
は一般に3次の曲線で示され、且つ回路要素の温度特性
が関与する為温度補償回路の定数算出には極めて大きな
工数を要するのみならず個々の水晶振動子の特性のバラ
ツキに対し充分な補償結果全書る為には更に回路定数の
算定と確認の為の測定を繰り返えす必要があり非常に手
間を要するという欠陥があった。
As is well known, the temperature compensation circuit of a TCXO combines a resistor including a temperature sensing element with a temperature-resistance coefficient such as a thermistor to cancel the temperature-frequency characteristics of the crystal resonator to which temperature compensation is to be performed, and uses direct current supplied from a constant voltage power supply. Crystal oscillation is performed by applying a total divided voltage to the variable capacitance diode of a voltage controlled crystal oscillator (hereinafter referred to as VCXO). However, the temperature-frequency characteristics of the crystal sensor used in the TCXO are generally shown by a cubic curve. In addition, since the temperature characteristics of the circuit elements are involved, calculating the constants of the temperature compensation circuit not only requires an extremely large amount of man-hours, but also requires additional calculation of the circuit constants in order to write out all compensation results sufficient for variations in the characteristics of individual crystal oscillators. The drawback was that it required repeated measurements for calculation and confirmation, which was extremely time-consuming.

本発明は上述の如き従来の1’ CX Oの温度補償回
路の欠陥を除去する為にかされたものであって、原理的
には基本ブリッジ回路にて等価的に表現されその相対す
る一組の節の間には基準電圧を印加すると共に相対する
他の節の組の間には水晶発振回路の入力端子抵抗等を含
む抵抗を介挿し当該他の節の組の間に発生する電位差を
出力電圧としてvcxoに供給する従来の温度補償回路
に於いて、前記相対する他の節の組に夫々所定の抵抗を
介して第二の電源から電圧を印加するようにし所望の基
準温度に於いて前記相対する他の節の組に印加される電
圧が前記第二の電源電圧の変化に拘らず一定の値に保た
れるよう回路定数を定めたTCXOの温度補償回路を提
供することを目的とする。
The present invention was devised in order to eliminate the defects of the conventional 1' CXO temperature compensation circuit as described above, and in principle, it is equivalently expressed by a basic bridge circuit, and a pair of opposing pairs thereof are equivalently expressed by a basic bridge circuit. A reference voltage is applied between the nodes, and a resistor including the input terminal resistance of the crystal oscillator circuit is inserted between the opposite pairs of nodes to reduce the potential difference generated between the other pairs of nodes. In the conventional temperature compensation circuit that supplies the output voltage to the VCXO, a voltage is applied from the second power supply to each of the pairs of opposing nodes through a predetermined resistance, and the voltage is applied to the set of opposite nodes at a desired reference temperature. It is an object of the present invention to provide a temperature compensation circuit for a TCXO in which circuit constants are determined so that the voltage applied to the set of other opposing nodes is maintained at a constant value regardless of changes in the second power supply voltage. do.

以下、本発明を図面に示す実施例に基づいて詳細に説明
する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

先ず、本発明の理解を助ける為従来のTCXO温度補償
回路の一般的等価回路全第1図に示す。
First, in order to facilitate understanding of the present invention, a general equivalent circuit of a conventional TCXO temperature compensation circuit is shown in FIG.

本図に於いて基本ブリッジ回路を構成する抵抗R11乃
至R・5の少なくとも−は感温素子の等価抵抗成分を含
むものでなければならないが複数の抵抗が或は全てが温
度依存性を有していても原理的には差しつかえない。
In this figure, at least - of the resistors R11 to R.5 constituting the basic bridge circuit must include the equivalent resistance component of the temperature sensing element, but if multiple or all of the resistors have temperature dependence. Even if it is, there is no problem in principle.

又、節3と節4との間の抵抗R・5は可変容量ダイオー
ド等VCXOの周波数可変人力端子の抵抗成分を含む等
価抵抗であり、前記入力端子が対地間に抵抗を有する場
合にはこればR,2及びR・4に含めて考えることが可
能である。
In addition, the resistance R.5 between node 3 and node 4 is an equivalent resistance that includes a resistance component of the frequency variable human power terminal of the VCXO such as a variable capacitance diode, and if the input terminal has a resistance between it and the ground. For example, it is possible to consider it as being included in R, 2 and R.4.

而して節1に接続した基準′電源電圧E1によって節3
と節4との間に発生する電位差を出力電圧としてvcx
oに供給しその水晶振動子の温度−周波数特性全補償し
その発振周波数を温度に対して一定に保たんとするもの
である。
Therefore, the reference voltage E1 connected to node 1 causes node 3 to
The potential difference generated between and node 4 is set as the output voltage vcx
The purpose is to fully compensate the temperature-frequency characteristics of the crystal resonator and keep its oscillation frequency constant with respect to temperature.

もっとも現実のTCXOの温度補償回路は第2図に示す
如き構成をとるのが一般的であるがそのVCXO1に対
する温度補償回路2は第1図に示す基本等価回路の特殊
な場合であって節3を接地したものと考えればよい。こ
の場合サーミスタの抵抗成分R〒及び固定抵抗R・6.
R・7の合成抵抗が第1図に於けるR・3に相当しVC
XOの入力端子抵抗たる高周波阻止抵抗R・8及び可変
容量ダイオードDの抵抗成分は第1図のRsに含捷れる
と考えてよいことが理解されよう。
The temperature compensation circuit of an actual TCXO generally has a configuration as shown in FIG. 2, but the temperature compensation circuit 2 for the VCXO 1 is a special case of the basic equivalent circuit shown in FIG. It can be thought of as being grounded. In this case, the resistance component of the thermistor R〒 and the fixed resistance R・6.
The combined resistance of R.7 corresponds to R.3 in Figure 1, and VC
It will be understood that the resistance components of the high frequency blocking resistor R.8 and the variable capacitance diode D, which are the input terminal resistances of the XO, can be considered to be included in Rs in FIG.

斯る構成をとる従来の温度補償回路は本図からも明らか
な如く回路の各定数を計算によって設定することは極め
て手間が掛る上調整が極めて困難であったこと前述のと
うりである。
As mentioned above, in the conventional temperature compensation circuit having such a configuration, setting each constant of the circuit by calculation is extremely time-consuming and extremely difficult to adjust, as is clear from this figure.

この問題を解決する為、本発明に於いては以下の如き回
路構成をとる。
In order to solve this problem, the present invention adopts the following circuit configuration.

第3図は本発明に係る温度補償回路の基本構成を示す等
価回路である。
FIG. 3 is an equivalent circuit showing the basic configuration of the temperature compensation circuit according to the present invention.

即ち、第1図に示す従来の回路の節3及び節4を夫々抵
抗R・9及びR・lOヲ介して第5の節に接続し、この
節5から第二の電源E2によって前記節3及び節4に電
圧を印加しこれら両筒の間に発生する電位差を出力電圧
としてvcx。
That is, nodes 3 and 4 of the conventional circuit shown in FIG. 1 are connected to a fifth node through resistors R. A voltage is applied to node 4, and the potential difference generated between these two cylinders is set as the output voltage vcx.

に供給するものである。It is intended to supply

以上の如く構成する本発明の温度補償回路に於いて社回
路定数を計算することなく任意の温度に於ける発振周波
数をある基準温度に於けるそれと等しくなるよう調整可
能とする為には前記基準温度に於ける発振周波数がvc
xoに供給する電圧を調整した場合にも変化しないよう
にする必要がある。即ち、前記節3と節4との間の電位
差がE2に依存しないよう回路定数を設定することが必
要であることはいう寸でもない。
In the temperature compensation circuit of the present invention configured as described above, in order to be able to adjust the oscillation frequency at any temperature to be equal to that at a certain reference temperature without calculating circuit constants, it is necessary to adjust the oscillation frequency at a certain reference temperature. The oscillation frequency at temperature is vc
It is necessary to ensure that the voltage does not change even when the voltage supplied to xo is adjusted. That is, it is not necessary to set the circuit constants so that the potential difference between the nodes 3 and 4 does not depend on E2.

その条件を求める為線型回路網に於ける重畳の理を用い
て第3図の回路を第4図の如く変換しその節3と節4と
の間の電位差が零となる条件を求めればよい。
To find this condition, use the principle of superposition in linear circuit networks to transform the circuit in Figure 3 as shown in Figure 4, and find the conditions under which the potential difference between node 3 and node 4 is zero. .

第4図は網−星接続の変換を利用して第5図の如く書き
換えられるので第3図に於ける節3と節4との間の電位
差を零とする条件は第5図の1栢6に於ける対地電圧の
節3及び節4に対する分圧比が等しくなればよいから簡
単な計算によって H,t R,4/R,9(1,?、t + R,4)=
R,2R3/R,t o (11,2−4−R,s )
  ・・・・・・(1)を満足すればよいことが判る。
Since Fig. 4 can be rewritten as shown in Fig. 5 using the net-star connection conversion, the condition for making the potential difference between nodes 3 and 4 in Fig. 3 zero is 1 in Fig. 5. Since it is sufficient that the voltage division ratio of the ground voltage at node 3 and node 4 at node 6 is equal, H,t R,4/R,9(1,?,t + R,4)=
R,2R3/R,t o (11,2-4-R,s)
It turns out that it is sufficient to satisfy (1).

7− 上記(1)式は前述したvcxoの入力端子抵抗成分等
を等測的に含む抵抗R5が関与しないことに注目すべき
である。このことは前記等価抵抗R・5がいかなるもの
であっても、例えば感温素子の如く温度に対応してその
抵抗値が変化するものであっても差しつかえないことを
意味するので回路設計上極めて好都合である。
7- It should be noted that the above-mentioned equation (1) does not involve the resistor R5, which isometrically includes the input terminal resistance component of the vcxo described above. This means that no matter what the equivalent resistance R.5 is, for example, it may be something like a temperature sensing element whose resistance value changes depending on the temperature, so it is important to consider the circuit design. This is extremely convenient.

さて、第3図に示す本発明の基本等価回路は以下の如く
変形することが可能である。
Now, the basic equivalent circuit of the present invention shown in FIG. 3 can be modified as follows.

山 前記R・5を開放する。Mountain: Open R.5.

に)前記第3図の基本ブリッジ回路に於いて相対するブ
ランチの組に挿入した等価抵抗の一方或は双方を無限大
とする。
B) In the basic bridge circuit shown in FIG. 3, one or both of the equivalent resistances inserted into the pair of opposing branches are made infinite.

以上の各場合について当該基本ブリッジ回路の節3と節
4との間の電位差の前記第二の電源電圧E2への依存性
を消去する条件を以下の表に示す。
The conditions for eliminating the dependence of the potential difference between node 3 and node 4 of the basic bridge circuit on the second power supply voltage E2 in each of the above cases are shown in the table below.

8− 同、上記条件(I)及び卸はいずれか一方、若しくは双
方の組み合わせが可能である。
8- Same, either one or a combination of the above conditions (I) and wholesale is possible.

第6図は上記変形側の内R・3→(資)、R・4→■と
した場合に於いて回路定数を式(4)ヲ満す如く定めた
場合、温度に対して前記節3と節4との間に発生する電
位差、即ちvcxoに供給する電圧がどのように変化す
るかを計算した例を示すも10− のである。
Figure 6 shows that when the circuit constants are set to satisfy equation (4) in the case of R・3 → (equity) and R・4 → ■ on the above deformed side, the above-mentioned node 3 is 10-1 shows an example of calculating how the potential difference generated between node 4 and node 4, that is, the voltage supplied to vcxo changes.

本図から明らかな如く基準温度25℃に於いてはvcx
oに印加する電圧は不変であり、これ以外の温度に於い
て各種の勾配を有する補償特性が得られる。即ち、前記
第二の電源電圧E2を調節して前記曲線6VCXOの温
度−周波数特性に対応する形状に合わせ込むことができ
る。
As is clear from this figure, at the reference temperature of 25°C, vcx
The voltage applied to o remains unchanged, and compensation characteristics having various slopes can be obtained at other temperatures. That is, the second power supply voltage E2 can be adjusted to match the shape corresponding to the temperature-frequency characteristics of the curve 6VCXO.

同、前記節3及び節4に夫々適当な抵抗を介して第三の
電源から電圧全印加し、例えば前記第二の電源電圧を可
変して粗調整を行い然る後に前記第三の電源電圧を変化
させて微調整を行うことも可能である。
Similarly, a full voltage is applied to the nodes 3 and 4 from the third power source through appropriate resistors, and after rough adjustment is made by varying the second power source voltage, the third power source voltage is adjusted. It is also possible to make fine adjustments by changing .

更に必要なら同様の回路を何段か付加してもよい。Furthermore, if necessary, several stages of similar circuits may be added.

因みに前記変形例の内前記R・5f:開放し前記R・3
及びR・4f、無限大とした温度補償回路については本
願発明者が既に昭和57年特許願第97240号に於い
て開示したものである故当該変形例は本発明の特許請求
の範囲からは除外すべきものである。
Incidentally, among the modified examples, the R.5f: opened and the R.3
The temperature compensation circuit in which R.4f and R.4f are set to infinity has already been disclosed by the present inventor in Patent Application No. 97240 of 1982, and therefore, this modification is excluded from the scope of the claims of the present invention. It is something that should be done.

而して本発明は前記特許出願に係る発明’t 一般的に
拡張したものに他ならない。
Therefore, the present invention is nothing but a general extension of the invention related to the aforementioned patent application.

さて、前記B・5がいかなる値をとろうとも節3と節4
間に発生する電位差が不変であるということはこのn・
5を周波数可変要素として使用しうろこと全意味する。
Now, no matter what value B.5 takes, clauses 3 and 4
The fact that the potential difference generated between them remains unchanged means that this n
5 is used as a frequency variable element, meaning all scales.

例えばvcxoの可変容量ダイオードDに並列に可変抵
抗を挿入し前記両筒間に電圧を印加すれば水晶振動子の
負荷容量を可変し得るからその発振周波数も可変するこ
とができる。従って前記R・5i可変して基準温度に於
いて発振周波数を所望の値に合わせ込むことが極めて容
易となる。岡、斯る操作を行った結果、本温度補償回路
の温度−印加電圧特性に殆んど変動を生ぜしめないこと
が可能である。
For example, by inserting a variable resistor in parallel with the variable capacitance diode D of the VCXO and applying a voltage between the two cylinders, the load capacitance of the crystal resonator can be varied, so that the oscillation frequency can also be varied. Therefore, it is extremely easy to adjust the oscillation frequency to a desired value at the reference temperature by varying R.5i. Oka, as a result of performing such an operation, it is possible to cause almost no fluctuation in the temperature-applied voltage characteristics of the present temperature compensation circuit.

第7図はこのこと全証明する為行ったシミュレーシッン
の結果を示す図であるがR・5の変化に応じて温度−印
加電圧特性は事実上変化することなく単にシフトしてい
ることが理解されよう。
Figure 7 is a diagram showing the results of a simulation conducted to completely prove this fact, and it can be seen that the temperature-applied voltage characteristics simply shift without changing in reality as R・5 changes. be understood.

このような回路構成をとることにより発振周波数の調整
機能と温度補償機能と全分離することができるから回路
設計が容易となるのみならず現実の製品に於いて温度補
償特性を変動させることなく個別の周波数微調整が極め
て容易となるものである。
By adopting this type of circuit configuration, the oscillation frequency adjustment function and temperature compensation function can be completely separated, which not only simplifies circuit design, but also allows for independent adjustment without changing the temperature compensation characteristics in actual products. This makes fine frequency adjustment extremely easy.

ところで前記第二の電源E2を得る為には一般にブラン
チ抵抗に比して充分低抵抗のポテンショメータによって
分圧した電圧゛を前記第5節に印加するものである。例
えば前賓願発明者の特許出願に係る発明の実施例もその
ように構成する。
By the way, in order to obtain the second power source E2, a voltage divided by a potentiometer having a sufficiently low resistance compared to the branch resistance is generally applied to the fifth node. For example, embodiments of inventions related to patent applications by prior guest inventors are also configured in this manner.

しかしながら斯る構成をとれば電力の消費量が大となり
省エネルギを要求される最近の電子機器に適用する場合
はなはだ都合が悪い。
However, such a configuration consumes a large amount of power, which is extremely inconvenient when applied to modern electronic devices that require energy conservation.

この問題を解決する為には第8図に示す如く前記節5と
第二の電源E2との間に直列に可変抵抗R・Vを挿入し
これを調節することによって前記節3と節4との間に印
加する電圧を可変してやればよい。このようにしても基
準温度に於ける発振周波数には何の影響もないことは明
らかであろう。このことは前記第二の電源電圧E2を得
る為に必ずしも抵抗値の低いボテンシロメータ又は能動
素子を用いてインピーダンスの逓減を図る必要がないこ
とを意味するので回路構成上極めて有利である。
In order to solve this problem, as shown in FIG. 8, by inserting a variable resistor R/V in series between the node 5 and the second power source E2 and adjusting it, the nodes 3 and 4 can be connected to each other. What is necessary is to vary the voltage applied between them. It will be clear that this arrangement has no effect on the oscillation frequency at the reference temperature. This is extremely advantageous in terms of circuit configuration, since it means that it is not necessarily necessary to reduce the impedance by using a potentiometer or an active element with a low resistance value in order to obtain the second power supply voltage E2.

最后に本発明に係る温度補償回路に更に変更を加えてV
CXOの前記基準温度近傍を離れた温度に於ける部分的
な補償金行う手段について説明する。
Finally, by further modifying the temperature compensation circuit according to the present invention, V
A means for providing partial compensation at temperatures far from the vicinity of the reference temperature of the CXO will be explained.

水晶振動子の温度−周波数特性は前述の如く3次曲線で
示される上又バラツキを有するものである故上述した比
較的単純な補償回路を以っててしては広い温度範囲全域
に亘って完全に補償することに事実上不可能である。
As mentioned above, the temperature-frequency characteristic of a crystal resonator is shown by a cubic curve and also has variations. Therefore, it is difficult to use the relatively simple compensation circuit described above over a wide temperature range. It is virtually impossible to fully compensate.

この問題を解決するには基本的には前記基準温度以外の
点に於いて例えば前記EzQ可変して水晶振動子の周波
数一温度特性の一次の項を打ち消し更に高温或は/及び
低温領域の周波数偏差を部分的に補償する為前記第3図
の−又は二以上のブランチの抵抗を可変すると共にこの
操作によっても前記基準温度近傍に於いて前記式(1)
に示す条件を大幅に崩さないようにすればよい。その為
には例えば前記第3図の少なくともいずれか−のブラン
チに於いてそこに挿入した抵抗を感温素子及びこれと並
列又は直列接続した可変抵抗に置換しておけばよい。
To solve this problem, basically, for example, the EzQ is varied at a point other than the reference temperature to cancel the first-order term of the frequency-temperature characteristic of the crystal oscillator, and further increase the frequency in the high temperature and/or low temperature region. In order to partially compensate for the deviation, the resistance of - or two or more branches in FIG.
It is sufficient to avoid significantly changing the conditions shown in . For this purpose, for example, the resistor inserted in at least one of the branches shown in FIG. 3 may be replaced with a temperature sensing element and a variable resistor connected in parallel or in series with the temperature sensing element.

第9図は上述の考え方に基づいて構成した部分補償用回
路一実施例を示す等価回路である。
FIG. 9 is an equivalent circuit showing an embodiment of a partial compensation circuit constructed based on the above-mentioned idea.

即ち、本図は前記第3図の基本回路のR・3及びR・4
を無限大とした場合に於いて、節3と節記抵抗R,io
と等しく選らばれるべきことはいうまでもない。
That is, this diagram shows R.3 and R.4 of the basic circuit in FIG.
In the case where is set to infinity, the node 3 and the node resistance R,io
It goes without saying that they should be chosen equally.

以上の如く構成した回路に於いて前記抵抗R・11ヲ前
記基準温度よりはるかに低い温度に於いて可変すると当
該温度近傍に於いて前記節3を 及び節4間に発生する電位差桧か彦りの幅で変化させる
ことができる。一方、前記R・11e変化させた状態全
維持してこの回路が再び前記基準温度にもどった場合、
前記基準温度に於ける電圧は当初に比してわずかに変化
するがその値は極めて微小であり実用上問題とならない
ことが確認された。第10図は上述の操作をシミュレー
トシた結果の図である。
In the circuit configured as described above, when the resistor R.11 is varied at a temperature much lower than the reference temperature, the potential difference generated between the nodes 3 and 4 in the vicinity of the temperature changes. It can be changed within the range of On the other hand, if this circuit returns to the reference temperature while maintaining the changed state of R·11e,
It was confirmed that although the voltage at the reference temperature slightly changed compared to the initial value, the value was extremely small and did not pose a problem in practice. FIG. 10 is a diagram showing the results of simulating the above operation.

同様1c!;te−fLL、fi Wff:tl、i?
! 111i9Kyf如く前記基準温度より高温側で同
様の現象が発生することが理解されよう。
Same 1c! ;te-fLL, fi Wff:tl,i?
! It will be understood that a similar phenomenon occurs at higher temperatures than the reference temperature, such as 111i9Kyf.

以上説明した如く感温素子と可変抵抗とを並列又は直列
に接続した温度依存性を有する合成可変抵抗は前記第3
図に示す基本回路のいずれのブランチに挿入してもよく
、又必ずしもこれを同一ブランチに複数組直列に接続す
べき必然性もないことは容易に推定可能であろう。
As explained above, the temperature-dependent composite variable resistor in which the temperature sensing element and the variable resistor are connected in parallel or in series is the third
It can be easily deduced that they may be inserted into any branch of the basic circuit shown in the figure, and that it is not necessarily necessary to connect a plurality of sets in series to the same branch.

本発明は以上説明した如く構成し且つ機能するものであ
るからTCXOに於いて温度補償を行うべきvcxoの
水晶振動子の特性及び個々の特性のバラツキに対応して
極めて簡単にその補償特性を可変することが可能となる
と共にその補償特性も基準温度近傍を離れた広い温度範
囲にまで拡張することが可能となるので水晶発振器の発
振周波数を広い温度範囲に亘って極めで高い精度で安定
化する上で著しい効果を発揮する。
Since the present invention is configured and functions as explained above, the compensation characteristics can be extremely easily varied in response to the characteristics of the crystal resonator of the VCXO to which temperature compensation is to be performed in the TCXO, and variations in individual characteristics. This makes it possible to extend the compensation characteristics to a wide temperature range away from the vicinity of the reference temperature, thereby stabilizing the oscillation frequency of the crystal oscillator with extremely high accuracy over a wide temperature range. It has a remarkable effect on the above.

又、本発明によれば従来から非常に大きな工数を要して
いた温度補償回路の設計及び調整が極めて簡単となる効
果をも併せ持つものである。
Further, according to the present invention, the design and adjustment of the temperature compensation circuit, which conventionally required a very large number of man-hours, can be extremely simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のTCXOの温度補償回路の基本的構成を
示す等価回路図、第2図はその特殊な一例を示す実用回
路図、第3図は本発明に係づ る温度補償回路傘基本的構成を示す等価回路図、第4図
及び第5図は夫々第3図の等価回路を重畳の理及び網−
星接続の変換によって描いた等価回路図、第6図は本発
明に係る温度補償回路の一実施例に於いて温度に対する
vcxoへの供給電圧の変化を示すシミュレーション図
、第7図は本発明に係る温度補償回路の一実施例に於い
て基準温度でのVCXOに印加する電圧を可変してその
発振周波数を変化させても全温度範囲に亘る補償特性に
変化が生じないことを示すシミュレーション結果の図、
第8図は本発明に於いて第二の電源電圧を可変する手段
を示す等価回路図、第9図は本発明に於いて基準温度1
Nは夫々第9図の回路によってなされる補償の程度を示
すシミュレーション図である。伺、第6図、第7図、第
10図及び第11図に示す等価回路谷要素の内、抵抗及
び電圧の値は夫々ある。 1−・・・・・・・・VCXo、   2・・・・・・
・・・温度補償回路。 ■乃至■に接続する回路・・・・・・・・・基本ブリッ
ジ回路、  ■及び■・・・・・・・・・相対する一組
の節■及び■・・・・・・・・・他の組の節、  入力
端子抵抗等を含む抵抗・・・・・・・・・R・5!  
 R9及びR710・・。 入した抵抗、  R・12.R,14・・・・・・・・
・感温素子の等価抵抗、   R,■・・・・・・・・
・第二の電源に直列に挿入した抵抗 特許出願人  東洋通信機株式会社 19− 40− り          以 昭和58年5月10日提出の 21発明の名称 TCXOの温度補償回路3、補正をす
る者 事件との関係特許出願人 郵便番号 253−01    電話 0467−74
−1131 (代表)5、補正により増加する発明の数
 なし6、補正の対象 発明の詳細な説明、図面及び図
面の簡単な説明 7・補正(7) 内容  添付別紙の通り1、発明の詳
細な説明を以下の如く補正する。 (a)  p −4/ l −7「・−・・(以下vc
xoと称する)の可変」ヲ[・・・・・・(以下VCX
Oと称する)の可変りアクタンス素子、例えば可変」と
補正する。 (b)p−1,0の表に於ける条件式の計算に錯誤があ
ったので以下の如く補正する。 (c)  p−1011下から5 「・・・・・・上記
変形側の内・・・・・・」ヲ「・・・・・・上記変形例
の内・・・・・・」と補正する。 p−1277?−7r容量ダイオードDに・・・・・・
」を「リアクタンス素子に・・・・・・」と補正する。 (dl  p−14/l −44rててしては広い・・
・・・・」を[てしては広い・・・・・・」と補正する
。 (e)p−14/l−181=−・周波数一温度時r次
の項を1ヲ「・・・・・・周波数一温度特性?表わす関
数の一次の項を」と補正する。 2、 図面の簡単な説明を以下の如く補正するp−19
/1−8rに挿入した抵抗」の後に[VR手続補正書(
バ丸) 1.事件の表示 昭和58年  特許  願第 82151号2、発明の
名称 TCXOの温度補償回路3、補正をする者 事件との関係特許出願人 5、補正により増加する発明の数 なし6、補正の対象
 「発明の名称」、「特許請求の範囲」及び「発明の詳
細な説明」 補正の内容 (1、発明の名称を以下の如く補正する。 ゛「発振器の温度補償回路」 (2、特許請求の範囲を以下の如く補正する。 「(8)温度補償を行うべき水晶発振回路ラリチウム・
タンタレート、リチウム・ナイオベート。 リン酸アルミニウム或は圧電セラミック等の圧電素子を
使用するものに置換したことを特徴とする特許請求の範
囲1乃至7記載の発振器の温度補償回路。 (9)温度補償を行うべき水晶発振回路2L。 C或は119等の受動素子音用いた発振回路に置換した
ことを特徴とする特許請求の範囲1乃至7記載の発振器
の温度補償回路。」を追加する。 (3、発明の詳細な説明を以下の如く補正する。 (i)p−3/1−20  r本発明に温度補償・・・
・・・・・・」を[本発明は発振器、殊に温度補償・・
・・・・・・・」と補正する。 (2) p−17/l−12の後に 伊1 [以上、TCXOi発振器の代表→として説明したが本
発明は必ずしもこれに限定される必要はなく、圧電素子
として水晶の他リチウム・タンタレート、リチウム・ナ
イオベート。 リン酸アルミニウム或は圧電セラミック等を用いた発振
器はもとよりLC或ばR・C発振器の如く受動素子を用
いその発振周波数が環境温度の影響をうける発振器の温
度補償に適用可能であることは自明であろう。J’(r
挿入する。 以上
Fig. 1 is an equivalent circuit diagram showing the basic configuration of a temperature compensation circuit of a conventional TCXO, Fig. 2 is a practical circuit diagram showing a special example thereof, and Fig. 3 is a basic diagram of the temperature compensation circuit according to the present invention. The equivalent circuit diagrams shown in FIG. 4 and FIG. 5 are the equivalent circuit diagrams of FIG.
An equivalent circuit diagram drawn by converting the star connection, FIG. 6 is a simulation diagram showing changes in the supply voltage to the VCXO with respect to temperature in an embodiment of the temperature compensation circuit according to the present invention, and FIG. Simulation results showing that in an embodiment of such a temperature compensation circuit, there is no change in the compensation characteristics over the entire temperature range even if the voltage applied to the VCXO at the reference temperature is varied to change its oscillation frequency. figure,
FIG. 8 is an equivalent circuit diagram showing means for varying the second power supply voltage in the present invention, and FIG. 9 is an equivalent circuit diagram showing the means for varying the second power supply voltage in the present invention.
N are simulation diagrams showing the degree of compensation provided by the circuit of FIG. 9, respectively. In the equivalent circuit valley elements shown in FIGS. 6, 7, 10, and 11, the values of resistance and voltage are respectively different. 1-・・・・・・VCXo, 2・・・・・・
...Temperature compensation circuit. Circuits connected to ■ to ■・・・・・・ Basic bridge circuit, ■ and ■・・・・・・・・・A pair of opposing nodes ■ and ■・・・・・・・・・Resistance including other sets of nodes, input terminal resistance, etc. R・5!
R9 and R710... Input resistance, R・12. R,14・・・・・・・・・
・Equivalent resistance of the temperature sensing element, R, ■・・・・・・・・・
・Resistor inserted in series with the second power source Patent applicant: Toyo Tsushinki Co., Ltd. 19-40-ri Title of invention 21 filed on May 10, 1988 TCXO temperature compensation circuit 3, case of person making corrections Relationship with Patent applicant Postal code 253-01 Telephone 0467-74
-1131 (Representative) 5. Number of inventions increased by amendment None 6. Subject of amendment Detailed description of the invention, drawings and brief explanation of drawings 7/Amendment (7) Contents As attached appendix 1. Detailed description of the invention The explanation has been amended as follows. (a) p -4/ l -7 "... (hereinafter referred to as vc
(hereinafter referred to as VCX)
A variable actance element (referred to as O), e.g. (b) There was an error in the calculation of the conditional expression in the table of p-1,0, so it was corrected as follows. (c) 5 from the bottom of p-1011 "...Among the above modified examples..." was corrected to "...Among the above modified examples..." do. p-1277? -7r capacitance diode D...
" is corrected to "reactance element...". (DL p-14/l-44r is spacious...
``...'' is corrected to ``It's wide...''. (e) p-14/l-181=-.When frequency-temperature, the r-order term is corrected by 1: ``... Frequency-temperature characteristic?The first-order term of the function expressed.'' 2.P-19 amend the brief description of the drawings as follows:
/Resistor inserted in 1-8r” followed by [VR procedural amendment (
Bamaru) 1. Indication of the case 1982 Patent Application No. 821512, Title of invention TCXO temperature compensation circuit 3, Person making the amendment Relationship to the case Patent applicant 5, Number of inventions increased by the amendment None 6, Subject of the amendment `` "Title of the Invention", "Scope of Claims" and "Detailed Description of the Invention" Contents of Amendment (1. The title of the invention is amended as follows: "Temperature Compensation Circuit for Oscillator" (2. Scope of Claims) Correct as follows: "(8) Crystal oscillator circuit Larium/Larithium which should be temperature compensated.
tantalate, lithium niobate. 8. A temperature compensation circuit for an oscillator according to any one of claims 1 to 7, characterized in that the circuit is replaced with a piezoelectric element such as aluminum phosphate or piezoelectric ceramic. (9) Crystal oscillation circuit 2L that should perform temperature compensation. 8. A temperature compensation circuit for an oscillator according to claims 1 to 7, characterized in that the oscillation circuit is replaced with an oscillation circuit using a passive element such as C or 119. ” is added. (3. The detailed description of the invention is amended as follows. (i) p-3/1-20 rTemperature compensation for the present invention...
``...'' [The present invention is an oscillator, especially a temperature compensated oscillator.
"..." I corrected myself. (2) I1 after p-17/l-12 [Although the above description has been made as a representative of the TCXOi oscillator, the present invention does not necessarily have to be limited thereto.・Niobate. It is obvious that it can be applied to temperature compensation for oscillators using passive elements such as LC or R/C oscillators, whose oscillation frequency is affected by the environmental temperature, as well as oscillators using aluminum phosphate or piezoelectric ceramics. Probably. J'(r
insert. that's all

Claims (1)

【特許請求の範囲】 (1)等側内に感温素子等の抵抗を任意のブランチに挿
入した基本ブリッジ回路の相対する一組の節に基準電圧
を印加すると共に水晶発振回路の出力電圧としてvcx
oに供給するTCXOの温度補償回路に於いて、前記相
対する他の節の組に夫々所要の抵抗を介して第二の電源
から電圧を印加し前記vcxoに供給する出力電圧全特
定の基準温度に於いては前記第二の電源電圧の変化に拘
らず一定に保ちつつその温度−印加電圧特性を前記vc
xoの温度−周波数特性に対応して変化しうるよう回路
定数全設定したことを特徴とするTCXOの温度補償回
路。 Q) 前記基本ブリッジ回路及び前記他の節の組に接続
し第二の電源から電圧全印加する回路のいずれか−又は
二以上のブランチに於いて、該ブランチに挿入する抵抗
を少なくとも一組の並列又は直列接続した可変若しくは
選択抵抗と感温素子とに置換しその総合抵抗値を前記基
準温度に於ける当初の抵抗値と同一とすると共に前記可
変若しくは選択抵抗の抵抗値を可変して前記基準温度近
傍をはずれた高温又は/及び低温領域に於いて部分的に
温度補償を行うようにしたことV%徴とする特許請求の
範囲1記載のTCXOの温度補償回路。 (3)  前記基本ブリッジ回路の相対する他の節の組
に印加する電圧を発生する電源に直列に抵抗を接続し、
該直列抵抗を可変して前記他の節の組に印加される電圧
を変化することによって前記電源の出力電圧を可変する
と同一の効果を生ぜしめることを特徴とする特許請求の
範囲1又は2記載のTCXOの温度補償回路。 (4)  前記基本ブリッジ回路の他の節の組の間に介
挿した水晶発振回路の入力端子抵抗等を含む抵抗を開放
とすることによって回路構成を簡素化したことを特徴と
する特許請求の範囲1,2又は3記載のTCXOの温度
補償回路。 (5)  前記基本ブリッジ回路の他の節の組の間に介
挿した水晶発振回路の入力端子抵抗等を含む抵抗を可変
とすることによって前記基準温度に於ける発振周波数を
所望の値に変化せしめることを特徴とする特許請求の範
囲1,2或は3記載のTCXOの温度補償回路。 (6)前記基本ブリッジ回路の相対する二組のブランチ
のいずれかの組に挿入した抵抗の一方或は双方を等価的
に無限大とすることによって回路構成を簡素化したこと
全特徴とする特許請求の範囲1,2,3.4或は5記載
のTCXOの温度補償回路。 (7)前記回路を構成する等価抵抗の−又は二以上が感
温素子の等価抵抗成分を含むことを特徴とする特許請求
の範囲1乃至6記載のTCXOの温度補償回路。
[Claims] (1) A reference voltage is applied to a pair of opposing nodes of a basic bridge circuit in which a resistor such as a temperature sensing element is inserted in an arbitrary branch on the same side, and the output voltage of a crystal oscillation circuit is vcx
In the temperature compensation circuit of the TCXO supplied to the VCXO, a voltage is applied from the second power supply to each of the pairs of opposing nodes through the required resistances, and the output voltage supplied to the VCXO is set at a specified reference temperature. In this case, the temperature-applied voltage characteristic is maintained constant regardless of changes in the second power supply voltage.
1. A temperature compensation circuit for a TCXO, characterized in that all circuit constants are set so that they can vary in accordance with the temperature-frequency characteristics of the xo. Q) In any one or more branches of the circuit connected to the basic bridge circuit and the other set of nodes and to which the entire voltage is applied from the second power supply, at least one set of resistors is inserted into the branch. By replacing the variable or selective resistor and temperature sensing element connected in parallel or series, and making the total resistance value the same as the initial resistance value at the reference temperature, and varying the resistance value of the variable or selective resistor, 2. A temperature compensation circuit for a TCXO according to claim 1, wherein temperature compensation is partially performed in a high temperature and/or low temperature region outside the vicinity of a reference temperature. (3) connecting a resistor in series with a power source that generates a voltage to be applied to the other set of opposing nodes of the basic bridge circuit;
Claim 1 or 2, characterized in that the same effect is produced when the output voltage of the power supply is varied by varying the series resistance to vary the voltage applied to the other set of nodes. TCXO temperature compensation circuit. (4) The circuit configuration is simplified by opening the resistors including the input terminal resistors of the crystal oscillation circuit inserted between the other sets of nodes of the basic bridge circuit. A temperature compensation circuit for a TCXO according to range 1, 2 or 3. (5) Changing the oscillation frequency at the reference temperature to a desired value by making variable the resistance including the input terminal resistance of the crystal oscillation circuit inserted between the other sets of nodes of the basic bridge circuit. 4. A temperature compensation circuit for a TCXO according to claim 1, 2 or 3, characterized in that: (6) A patent which is characterized in that the circuit configuration is simplified by making one or both of the resistors inserted into either of the two sets of opposing branches of the basic bridge circuit equivalently infinite. A temperature compensation circuit for a TCXO according to claim 1, 2, 3.4 or 5. (7) A temperature compensation circuit for a TCXO according to any one of claims 1 to 6, wherein one or more of the equivalent resistances constituting the circuit include an equivalent resistance component of a temperature sensing element.
JP8215183A 1982-06-07 1983-05-10 Temperature compensating circuit of tcxo Granted JPS59207707A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP8215183A JPS59207707A (en) 1983-05-10 1983-05-10 Temperature compensating circuit of tcxo
US06/501,126 US4587499A (en) 1982-06-07 1983-06-06 Temperature compensating circuit for oscillator
EP83303295A EP0096587B1 (en) 1982-06-07 1983-06-07 Temperature compensating circuit for oscillator
DE8383303295T DE3376942D1 (en) 1982-06-07 1983-06-07 Temperature compensating circuit for oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8215183A JPS59207707A (en) 1983-05-10 1983-05-10 Temperature compensating circuit of tcxo

Publications (2)

Publication Number Publication Date
JPS59207707A true JPS59207707A (en) 1984-11-24
JPH0449283B2 JPH0449283B2 (en) 1992-08-11

Family

ID=13766435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8215183A Granted JPS59207707A (en) 1982-06-07 1983-05-10 Temperature compensating circuit of tcxo

Country Status (1)

Country Link
JP (1) JPS59207707A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133705A (en) * 1986-11-25 1988-06-06 Daiwa Shinku Kogyosho:Kk One chip crystal oscillator circuit with temperature compensation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256682A (en) * 1985-09-05 1987-03-12 Matsushita Electric Ind Co Ltd Combination faucet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256682A (en) * 1985-09-05 1987-03-12 Matsushita Electric Ind Co Ltd Combination faucet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133705A (en) * 1986-11-25 1988-06-06 Daiwa Shinku Kogyosho:Kk One chip crystal oscillator circuit with temperature compensation

Also Published As

Publication number Publication date
JPH0449283B2 (en) 1992-08-11

Similar Documents

Publication Publication Date Title
US7649426B2 (en) Apparatus and method for temperature compensation of crystal oscillators
US6362699B1 (en) Temperature compensating circuit for a crystal oscillator
GB2046047A (en) Crystal oscillator temperature compensating circuit
US4851791A (en) Temperature-compensated piezoelectric oscillator
JPS6362924B2 (en)
US4072912A (en) Network for temperature compensation of an AT cut quartz crystal oscillator
JPS59207707A (en) Temperature compensating circuit of tcxo
EP0096587B1 (en) Temperature compensating circuit for oscillator
JPH0329505A (en) Temperature control crystal oscillation circuit
US3831109A (en) Temperature-compensated voltage-tunable gunn diode oscillator
JPS6024704A (en) Temperature compensating oscillator
GB2042840A (en) RC-bridge Oscillator
JPS62268Y2 (en)
JPS5832322Y2 (en) crystal oscillation circuit
JPS5843282Y2 (en) Ondohoshiyoosuishiyoohatsushinki
JPS6316042B2 (en)
JPS6256682B2 (en)
JPH09153738A (en) Temperature compensation oscillator
JPS5946121B2 (en) Ondohoshiyousuishiyouhatsushinki
JPH02202707A (en) Temperature compensating the voltage controlled piezoelectric oscillator
KR910003750Y1 (en) Temperature compensation circuit for crystal oscillator
JPH10270942A (en) Temperature compensation crystal oscillator and its adjusting method
JPS6244569Y2 (en)
JPH0522969Y2 (en)
JPH033506A (en) Temperature compensation oscillator