JPS5919453B2 - intermetallic compound magnet - Google Patents

intermetallic compound magnet

Info

Publication number
JPS5919453B2
JPS5919453B2 JP53140728A JP14072878A JPS5919453B2 JP S5919453 B2 JPS5919453 B2 JP S5919453B2 JP 53140728 A JP53140728 A JP 53140728A JP 14072878 A JP14072878 A JP 14072878A JP S5919453 B2 JPS5919453 B2 JP S5919453B2
Authority
JP
Japan
Prior art keywords
magnetic properties
intermetallic compound
corrosion resistance
magnet
compound magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53140728A
Other languages
Japanese (ja)
Other versions
JPS5567109A (en
Inventor
俊治 鈴木
格 小此木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suwa Seikosha KK
Original Assignee
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suwa Seikosha KK filed Critical Suwa Seikosha KK
Priority to JP53140728A priority Critical patent/JPS5919453B2/en
Publication of JPS5567109A publication Critical patent/JPS5567109A/en
Publication of JPS5919453B2 publication Critical patent/JPS5919453B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、希土類元素RとCoとの合金RC0z(z=
4.0〜5.8)にCrを添加してなる金属間化合物磁
石に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an alloy RC0z (z=
4.0 to 5.8) with Cr added thereto.

本発明の目的は、第1にRCo2磁石の耐食性の向上に
あわ、第2に硬質脆弱な磁石合金に粘さを付与すること
にある。
The purpose of the present invention is, firstly, to improve the corrosion resistance of RCo2 magnets, and secondly, to impart viscosity to a hard and brittle magnet alloy.

希土類元素として一般に知られているYやLa、Ce、
Sm、Pr等のうち、Smと遷移元素との化合物smc
o5は高い磁気特性を有することが理論的に予測され、
研究開発段階を経て、いまや工業的に広く用いられてい
る。
Y, La, Ce, which are generally known as rare earth elements,
Among Sm, Pr, etc., compounds of Sm and transition elements smc
It is theoretically predicted that o5 has high magnetic properties,
After passing through the research and development stage, it is now widely used industrially.

このようなRCo5磁石の製造方法として、一般に焼結
法、鋳造法および樹脂結合法の3種類が知られている。
これら3種類の方法のうち、磁気特性では焼結法が最も
すぐれておわ、樹脂結合法によるものは、焼結法の約1
/2にしかすぎない。しかし機械加工性では逆に樹脂結
合法が最もすぐれておわ、焼結法によるものは硬くて脆
いという欠点を有している。鋳造法では、このような焼
結法のもつ脆弱さを、Cuの含有によつていくらか改善
’している。またフ磁石の加工や長期使用における耐食
性、耐候性についても、樹脂で磁性粉末を被覆しながら
結合している樹脂結合法が、焼結法よシ格段にすぐれて
いる。このように、焼結法によつて製造されたRCo5
磁石は、磁気特性の点ではすぐれている、が、その他の
点では欠点が多い。本発明は、このような焼結法による
磁石を対象とし、磁気特性の低下を最少限に抑えながら
、耐食性の向上と強靭化を達成したものである。
There are generally three known methods for manufacturing such RCo5 magnets: sintering, casting, and resin bonding.
Of these three methods, the sintering method has the best magnetic properties, and the resin bonding method has about the same level of magnetic properties as the sintering method.
/2. However, in terms of machinability, the resin bonding method is the best, while the sintering method has the disadvantage of being hard and brittle. In the casting method, the brittleness of the sintering method is somewhat improved by the inclusion of Cu. Furthermore, in terms of corrosion resistance and weather resistance during processing and long-term use of magnets, the resin bonding method, in which magnetic powder is bonded while being coated with resin, is far superior to the sintering method. In this way, RCo5 manufactured by the sintering method
Although magnets have excellent magnetic properties, they have many drawbacks in other respects. The present invention is aimed at magnets produced by such a sintering method, and achieves improved corrosion resistance and toughness while minimizing deterioration in magnetic properties.

本来Smを代表とする希土類元素は非常に酸化フ しや
すく、常温でも反応が進む性質をもつているため、Co
との化合物もこの傾向がある。しかしこれに数%のCr
を添加すると耐食性が大幅に向上し、常温での酸化は全
く認められなくなる。また、Crの添加による磁気特性
、特に残留磁束密5 度Brの低下は、鋳造法において
Cuを添加した場合と同程度であり、樹脂結合法のよう
な大幅な特性の低下はみられない。さらに靭性において
も鋳造法と同等もしくはそれ以上の効果が得られる。し
たがつて、Crの添加量によつて磁石の性質を0 調整
することができる。Crの添加量は、Coに対して原子
比で0.03未満だと実用的に充分な耐食性が得られず
、また0.3を越えると磁気特性の低下が著しくなるの
で、0.03〜0.3の範囲が望ましい。5 また、化
合物RCo2については、Rとしてはsm以外&CCe
3ミッシエルメタル、Prあるいはそれらの化合物が考
えられ、またCo単独のもの以外にも、その一部をCu
或いはFeで置換したものも実用化されている。
Rare earth elements, represented by Sm, are extremely susceptible to oxidation and have the property of reacting even at room temperature.
Compounds with also have this tendency. However, in addition to this, a few percent of Cr
When added, corrosion resistance is greatly improved, and no oxidation is observed at room temperature. Furthermore, the reduction in magnetic properties, especially the residual magnetic flux density 5 degrees Br, due to the addition of Cr is about the same as when Cu is added in the casting method, and there is no significant reduction in properties as in the resin bonding method. Furthermore, in terms of toughness, the same or better effect than the casting method can be obtained. Therefore, the properties of the magnet can be adjusted to zero by adjusting the amount of Cr added. If the atomic ratio of Cr to Co is less than 0.03, practically sufficient corrosion resistance cannot be obtained, and if it exceeds 0.3, the magnetic properties will deteriorate significantly. A range of 0.3 is desirable. 5 In addition, for the compound RCo2, R is other than sm&CCe
3 Michel metal, Pr, or their compounds are considered, and in addition to Co alone, a part of it may be Cu.
Alternatively, those in which Fe is substituted have also been put into practical use.

さらにzについては、z=5が理想的な化学量論的組成
であるが、周知の如くRCO,化合物は、状態図的に広
がりをもち、また成分組成によつてもzが変わb得るも
のであるため、z=4.0〜5.8の範囲内ならば、R
CO5系磁石と言える。以下、実施例に基づいて詳述す
る。
Furthermore, regarding z, z = 5 is the ideal stoichiometric composition, but as is well known, RCO compounds have a wide range in phase diagram, and z can change depending on the component composition. Therefore, if z is within the range of 4.0 to 5.8, R
It can be said to be a CO5 magnet. The details will be explained below based on examples.

実施例 1. 希土類遷移金属化合物RMzとしてSmcO4.8なる
成分組成の合金と、この合金におけるCOの一部をCr
で置換したSm(COl=XCrX)4.8なる成分組
成で、Xがそれぞれ0.01,0.03,0.1,0.
3および0.4の合金を秤量し、それぞれ溶解、粉砕、
成形、焼結および熱処理の各工程を経て、複数種の磁石
を製作した。
Example 1. As the rare earth transition metal compound RMz, an alloy with a composition of SmcO4.8 and a part of CO in this alloy are replaced with Cr.
Sm substituted with (COl=XCrX) 4.8, where X is 0.01, 0.03, 0.1, 0.
3 and 0.4 alloys were weighed, melted, crushed, and
Multiple types of magnets were manufactured through the various steps of molding, sintering, and heat treatment.

得られた磁石のCrの添加量による磁気特性と、強靭性
を表わすパラメータの一つである曲げ強度の変化を第1
図に示す。第1図から明らかな如く、磁気特性を表わす
残留磁束密度Brと保持力BHcは、Crの量が多くな
るにつれて低下し、Crの原子比0.3前後でその低下
率が大きくなる。一方、曲げ強度σはCrの原子比にほ
ぼ比例して増加しており、Crの添加によつて強靭性が
向上しいいることがわかる。次に、これらの磁石の耐食
性を調べるため、+60℃の循環大気中に放置した。そ
のときの磁石の外観上の変化を第1表に示す。第1表か
ら明らかな如く、Cr無添加の場合はもちろんのこと、
原子比0.01の場合でも耐食性はさほど向上していな
いが、原子比0.03以上になると無添加の場合に比べ
て顕著な差が出ている。
First, we investigated the changes in magnetic properties and bending strength, which is one of the parameters representing toughness, depending on the amount of Cr added to the obtained magnet.
As shown in the figure. As is clear from FIG. 1, the residual magnetic flux density Br and coercive force BHc, which represent magnetic properties, decrease as the amount of Cr increases, and the rate of decrease becomes large when the atomic ratio of Cr is around 0.3. On the other hand, the bending strength σ increases almost in proportion to the atomic ratio of Cr, indicating that addition of Cr improves toughness. Next, in order to examine the corrosion resistance of these magnets, they were left in a circulating atmosphere at +60°C. Table 1 shows the changes in the appearance of the magnet at that time. As is clear from Table 1, not only in the case without Cr addition,
Even when the atomic ratio is 0.01, the corrosion resistance is not significantly improved, but when the atomic ratio is 0.03 or more, there is a noticeable difference compared to the case without additives.

したがつて、磁気特性の低下をできるだけ少なくして、
かつ実用上充分な強靭性および耐食性を得るためには、
Crの添加量は、原子比で0.03〜0.3の範囲が望
ましい。以上述べた如く本発明は、RCOz合金にCr
を添加することにより、耐食性の改善と機械的性質の向
上を可能ならしめたもので、実用効果はきわめて大であ
る。
Therefore, by minimizing the deterioration of magnetic properties,
In order to obtain sufficient toughness and corrosion resistance for practical use,
The amount of Cr added is preferably in the range of 0.03 to 0.3 in terms of atomic ratio. As described above, the present invention has the advantage of adding Cr to the RCOz alloy.
By adding , it is possible to improve corrosion resistance and mechanical properties, and the practical effect is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例1におけるCr添加量に対する磁気特
性と曲げ強度の変化を示す図である。
FIG. 1 is a diagram showing changes in magnetic properties and bending strength with respect to the amount of Cr added in Example 1.

Claims (1)

【特許請求の範囲】[Claims] 1 希土類元素の1種または2種以上から選ばれたRと
、Coとの比率が1:5である化合物を主体とするRC
oz(z=4.0〜5.8)からなる金属間化合物磁石
において、前記Coの一部を原子比で0.03〜0.3
のCrで置換したことを特徴とする金属間化合物磁石。
1 RC mainly composed of a compound in which the ratio of R selected from one or more rare earth elements and Co is 1:5
oz (z = 4.0 to 5.8), a part of the Co is 0.03 to 0.3 in atomic ratio.
An intermetallic compound magnet characterized in that Cr is substituted with Cr.
JP53140728A 1978-11-14 1978-11-14 intermetallic compound magnet Expired JPS5919453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53140728A JPS5919453B2 (en) 1978-11-14 1978-11-14 intermetallic compound magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53140728A JPS5919453B2 (en) 1978-11-14 1978-11-14 intermetallic compound magnet

Publications (2)

Publication Number Publication Date
JPS5567109A JPS5567109A (en) 1980-05-21
JPS5919453B2 true JPS5919453B2 (en) 1984-05-07

Family

ID=15275317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53140728A Expired JPS5919453B2 (en) 1978-11-14 1978-11-14 intermetallic compound magnet

Country Status (1)

Country Link
JP (1) JPS5919453B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2520450B2 (en) * 1988-06-02 1996-07-31 信越化学工業株式会社 Method for manufacturing corrosion resistant rare earth magnet

Also Published As

Publication number Publication date
JPS5567109A (en) 1980-05-21

Similar Documents

Publication Publication Date Title
JPS587702B2 (en) Fe-Cr-Co magnet alloy
JPH03188241A (en) Sintered permanent magnet material and its manufacture
JPS5919453B2 (en) intermetallic compound magnet
JPH0339451A (en) Permanent magnet material
JPS608297B2 (en) magnet alloy
JPS5910562B2 (en) intermetallic compound magnet
GB2086422A (en) Alloy for the manufacture of a permanent magnet
JPH04360501A (en) Manufacture of rare earth magnet
JPH01251704A (en) Rare earth permanent magnet with excellent oxidation resistance
JP2546988B2 (en) Permanent magnet with excellent oxidation resistance
JPS5952822A (en) Manufacture of permanent magnet
JPS6034632B2 (en) Method for manufacturing rare earth-containing permanent magnets
JP2654952B2 (en) Rare earth permanent magnet material and method for producing the same
JPS5812331B2 (en) intermetallic compound magnet
JP2529274B2 (en) Heat treatment method for nitrided alloy film
US3194654A (en) Manganese aluminum alloy magnets
JPS5887253A (en) Permanent magnet alloy
JPH04325670A (en) Production of target for sputtering and target for sputtering
JP2929219B2 (en) Permanent magnet alloy
JPS58213859A (en) Corrosion-resistant sintered material
JPS63272009A (en) Manufacture of rare earth-fe-b magnet
JPH0255497B2 (en)
JPS61174351A (en) Permanent magnet alloy
JPS646258B2 (en)
JPS6383246A (en) Magnet alloy