JPS59193737A - Continuous casting method of al and al alloy - Google Patents

Continuous casting method of al and al alloy

Info

Publication number
JPS59193737A
JPS59193737A JP6887183A JP6887183A JPS59193737A JP S59193737 A JPS59193737 A JP S59193737A JP 6887183 A JP6887183 A JP 6887183A JP 6887183 A JP6887183 A JP 6887183A JP S59193737 A JPS59193737 A JP S59193737A
Authority
JP
Japan
Prior art keywords
belt
mold
ingot
thickness
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6887183A
Other languages
Japanese (ja)
Inventor
Yasushi Watanabe
康 渡辺
Akira Yamazaki
明 山崎
Hideaki Kudo
秀明 工藤
Takaaki Nishiyama
西山 隆昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP6887183A priority Critical patent/JPS59193737A/en
Publication of JPS59193737A publication Critical patent/JPS59193737A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/0648Casting surfaces
    • B22D11/0654Casting belts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To improve quality by using a low carbon steel for the belt of a belt wheel type continuous casting machine, and selecting the thickness of the belt and the charging temp. by a mathematical expression so that a casting ingot larger than the size of a casting mold is formed and the ingot is cooled by the tight contact with the casting mold. CONSTITUTION:A metallic endless belt 3 is moved by a pressure wheel 4 in contact with a part of the outside circumferential surface of a rotary wheel 1 for a casting mold having a hollow groove 2 on the outside circumferential surface, thereby forming a water cooled casting mold 5. A melt 7 of Al or an Al alloy is charged through a nozzle 6 into a casting mold 5 from one end thereof and a solidified casting ingot 8 is drawn from the other end. A low carbon steel is used for the belt 3, and the charging temp. and the belt thickness are so selected that the relation between the charging temp. T1 deg.C and the thickness (t)mm. of the belt satisfies the inequalities I when the m.p. or the solidification initiating temp. of the molten metal is designated at T0 deg.C.

Description

【発明の詳細な説明】 本発明はA(及びA1合金の連続鋳造方法に関するもの
で、特に鋳塊品質を向上し、その後の加工にお(プる欠
陥の拡大がなく、歩留りを向上しlcものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuous casting of A (and A1 alloys), which particularly improves the quality of the ingot, prevents the expansion of defects during subsequent processing, and improves the yield. It is something.

A、e及びA(合金の連続鋳造には、外周面に凹溝を有
する鋳型用回転輪の一部外周面に、金属無端ベルトを接
動させて形成した水冷鋳型に鋳造するベルト・ホイール
型連続鋳造方法と称する方法が用いられており、金属無
端ベルトには、通常厚さ2〜3 mmの低炭素鋼が使用
されている。
A, e, and A (for continuous casting of alloys, a belt/wheel type is used for casting in a water-cooled mold formed by moving an endless metal belt into contact with a part of the outer circumferential surface of a rotary mold ring having grooves on the outer circumferential surface. A method called a continuous casting method is used, and low carbon steel with a thickness of 2 to 3 mm is usually used for the endless metal belt.

一般にA(又はAぶ合金の鋳造では、鋳型に溶湯を注湯
すると同時に凝固殻が生成し、この時点から凝固殻は収
縮を始め、鋳型と鋳塊との間に微小なギャップを生じる
。このギャップは凝固が進むにつれて大ぎくなり、鋳型
−鋳塊間の熱伝達に悪い影響を及ぼす。このような現象
はベルト・ホイール型連続鋳造方法にもみられ、性能、
品質、生産性において問題にされている。
Generally, when casting A (or A) alloy, a solidified shell is generated at the same time as the molten metal is poured into the mold, and from this point on, the solidified shell begins to shrink, creating a minute gap between the mold and the ingot. The gap becomes larger as solidification progresses, and has a negative effect on heat transfer between the mold and the ingot.Such a phenomenon is also observed in the belt-wheel continuous casting method, which affects performance and
There are problems with quality and productivity.

本発明者等はこれについて種々検問の結果ベルト・ホイ
ール型連続鋳造方法では、ベルトの厚さと注湯温度を選
定することにより、凝固殻の外寸を大きくすることが可
能で、鋳型−鋳塊間のギャツブを一方向になくせること
を知見した。即ちベル1〜・ホイール型連続鋳造方法で
は、鋳型内に溶湯が注渇されると溶湯は鋳型に熱を奪わ
れ、即座に表面層が凝固して凝固殻が形成される。一方
鋳型は溶湯の熱を受【プて温度が上昇する。鋳型の一部
を形成するベルトには通常低炭素鋼が使用されおり、低
炭素鋼は熱伝導が悪いため溶湯と触れるベルト中央部と
溶湯が触れない端部とで温度差が生じ、この時の熱膨服
差はベルトが外側にふくれることで吸収される。
The inventors of the present invention have conducted various investigations regarding this issue, and found that in the belt-wheel type continuous casting method, it is possible to increase the outer dimensions of the solidified shell by selecting the belt thickness and pouring temperature, and the mold-ingot We discovered that it is possible to eliminate the gap in one direction. That is, in the Bell 1 to wheel type continuous casting method, when the molten metal is poured into the mold, heat is taken away from the molten metal by the mold, and the surface layer immediately solidifies to form a solidified shell. On the other hand, the temperature of the mold increases as it absorbs the heat of the molten metal. Low-carbon steel is usually used for the belt that forms part of the mold, and because low-carbon steel has poor thermal conductivity, a temperature difference occurs between the center of the belt that comes into contact with the molten metal and the end that does not come into contact with the molten metal. The difference in thermal expansion is absorbed by the belt expanding outward.

従って溶湯の注湯温度を十分高くするど、ベルトは熱容
量が小さいため、溶湯はベル1−に触れてもすぐには凝
固せず、一方ベル1〜は熱を受けて外側にふくらみ、ふ
くらんだ状態でベルト側の凝固が始まることになる。ベ
ルトのふくらみは溶湯が触れると急激に進み、ピークを
呈した後低減する。
Therefore, even if the pouring temperature of the molten metal is set to a sufficiently high temperature, since the belt has a small heat capacity, the molten metal will not immediately solidify even if it touches bell 1-, while bells 1~ will receive heat and swell outward. In this state, the belt side will begin to solidify. The bulge of the belt increases rapidly when it comes into contact with molten metal, reaches a peak, and then decreases.

ピーク時のベルトのふくらみは0.6mm程度であり、
製出した鋳塊を調べると、ベルト側が0.5#程ちり上
った形状を呈している。ベルトのふくらみは、その後冷
却水がかけられて減少し、やがでもとのフラットな状態
に戻る。この際凝固殻の寸法は、厚み方向で鋳型司法よ
り大ぎくなるためベルi−が、フラットな状態にもどっ
た後、鋳塊はベルト及び回転輪の凹溝底部とよく密着す
るようになり、凝固が促進する。
The bulge of the belt at its peak is about 0.6mm,
When the produced ingot was examined, it was found that the belt side had a chipped shape of about 0.5#. Cooling water is then applied to reduce the bulge in the belt, and it eventually returns to its original flat state. At this time, the dimensions of the solidified shell are larger than those of the mold in the thickness direction, so after the bell returns to its flat state, the ingot comes into close contact with the belt and the bottom of the concave groove of the rotating wheel. Coagulation is accelerated.

本発明はこれに鑑み、凝固殻の外寸が鋳型厚さより大き
くなるような条件について種々実験の結果、ベルト厚さ
と注湯温度を選定して凝固殻の外寸を大きくし、鋳塊と
鋳型の密着性を良くすることにより、冷却効率が高くな
って生産性及び品質が向上することを知り、A℃及びA
(合金の連続鋳造方法を開発したもので、外周面に凹溝
を右Jる鋳型用回転輪の一部外周面に、金属無端ヘルド
を接動させて水冷鋳型を形成し、該鋳型の一端よりA(
又はAぶ合金溶湯を注潔し、凝固した鋳塊を他端Jこり
連続的に製出する方法において、ベルトに炭素鋼を使用
し、溶湯金属のhl;点又(J凝固開始湿度をTOoC
とすると、ベル[−の厚さt tnmと注湯温度T1℃
の関係が T+  −To    ≧35...−(1)7−[ を満足するようにベルト厚さと注湯温度を選定すること
を特徴とするものである。
In view of this, the present invention has conducted various experiments on conditions in which the outer dimensions of the solidified shell are larger than the mold thickness, and the belt thickness and pouring temperature are selected to increase the outer dimensions of the solidified shell, and the ingot and mold By improving the adhesion of A℃ and A℃, we learned that cooling efficiency increases and improves productivity and quality.
(A continuous casting method for alloys has been developed, in which a water-cooled mold is formed by moving an endless metal heddle to a part of the outer circumferential surface of a rotary mold ring that has a groove on the outer circumferential surface, and one end of the mold is From A(
Alternatively, in a method in which the molten aluminum alloy is poured and a solidified ingot is continuously produced at the other end, carbon steel is used for the belt, and the molten metal is heated at
Then, the thickness of the bell [- t tnm and the pouring temperature T1℃
The relationship is T+ -To ≧35. .. .. -(1) 7-[ The belt thickness and pouring temperature are selected so as to satisfy the following.

即ら本発明は第1図に示すような外周面に凹溝(2)を
有する鋳型用回転輪(1)の一部外周面に金属製無端ベ
ルト(3)をプレッシャーホイール(4)により接動し
て水冷鋳型(5)を形成し、該鋳型(5)の一端よりノ
ズル(6)を通して溶湯(7)を注湯し、凝固した鋳塊
(8)を他端より製出する方法において、ベルト(3)
に低炭素鋼を用い、溶湯金属の融点又は凝固開始温度を
10℃とすると、注湯温度T1℃とベル1〜の厚さt 
nmの関係が上記(1)式を満足するように注湯温度T
I℃とベルト厚さt’mmを選定することにより、凝固
殻外寸を鋳型サイズより大ぎい鋳塊とし、鋳型と鋳塊の
密着性を良くして冷却効率を高め、鋳塊品質を向上せし
めたものである。
That is, the present invention connects a metal endless belt (3) to a part of the outer circumferential surface of a mold rotary ring (1) having a concave groove (2) on the outer circumferential surface as shown in FIG. A method in which a water-cooled mold (5) is formed by moving the mold (5), molten metal (7) is poured from one end of the mold (5) through a nozzle (6), and a solidified ingot (8) is produced from the other end. , belt (3)
Assuming that low carbon steel is used in
The pouring temperature T is adjusted so that the relationship between nm and satisfies the above equation (1).
By selecting I℃ and belt thickness t'mm, the outer dimensions of the solidified shell are larger than the mold size, which improves the adhesion between the mold and the ingot, increases cooling efficiency, and improves the quality of the ingot. It was forced upon me.

これを純AJ2の例につい説明すると、ベルトの厚さが
2.7mmの場合上記(1)式より112719℃とな
り、注湯温度が719℃未満ではベルト面での凝固が、
ベルトがふくらむ以前に起り、凝固殻外用が鋳型サイズ
より大ぎくならず、鋳塊品質は改善されない。凝固殻外
寸を鋳型サイズより大きくするためには、注湯温度を7
19°C以上とする必要がある。
To explain this using the example of pure AJ2, if the belt thickness is 2.7 mm, it will be 112,719°C from the above equation (1), and if the pouring temperature is less than 719°C, solidification on the belt surface will occur.
This occurs before the belt swells, and the solidified shell is not larger than the mold size, so the quality of the ingot is not improved. In order to make the outer dimension of the solidified shell larger than the mold size, the pouring temperature should be set to 7.
The temperature must be 19°C or higher.

以下本発明を実施例について説明4る。The present invention will be explained below with reference to Examples.

実施例(1) 第1図に示すベルト・ホイール型連続鋳造機において、
直径1.4TrLの銅製鋳型用回転輪ど厚さ1、a、、
iと2.7mmの低炭素鋼ベルトを用い、回転輪の上端
でベルトが接合開始し、水平方向に開口づ−る断面積2
100.、、m2の台形状水冷鋳型を形成し、ベルト接
合開始部にノズルを取付け、該ノズルを通して鋳型内に
純度99.7%の純A(を注渇し、鋳型開口部より鋳塊
を連続的に製出した。
Example (1) In the belt-wheel type continuous casting machine shown in Fig. 1,
Copper mold rotating ring with a diameter of 1.4 TrL and a thickness of 1, a.
i and a 2.7 mm low carbon steel belt, the belt starts joining at the upper end of the rotating wheel, and the cross-sectional area 2 opens in the horizontal direction.
100. A trapezoidal water-cooled mold of . Manufactured.

この連続鋳造において、注湯温度、即ちノスル内の溶湯
温度を変えて12 yrt /分の鋳造速度で鋳造し、
得られた鋳塊について熱間圧延を行ない、該圧延におけ
る欠陥発生数を調査した。その結果を従来り法と比較し
て第1表に示す。
In this continuous casting, the pouring temperature, that is, the temperature of the molten metal in the nostle was changed, and casting was performed at a casting speed of 12 yrt/min.
The obtained ingots were hot rolled, and the number of defects generated during the rolling was investigated. The results are shown in Table 1 in comparison with the conventional method.

第1表 第1表から明らかなようにベル1へ厚さ1.8mmで上
記(1)式を満足する注湯温度708℃以上、ヘルド厚
さ2.7 nmで上記(1)式を満足する注湯温度71
9℃以上である本発明方法No、1〜7によるものは、
何れも従来方法No、8〜12に比較し欠陥数が著しく
少なくなっており、また鋳塊温度も低く、生産性の向上
に有益であることが判る。
Table 1 As is clear from Table 1, the pouring temperature to bell 1 is 708°C or higher, which satisfies the above equation (1) when the thickness is 1.8 mm, and the above equation (1) is satisfied when the heald thickness is 2.7 nm. Pouring temperature 71
Those according to the present invention method No. 1 to 7 whose temperature is 9°C or higher,
In all cases, the number of defects is significantly smaller than in conventional methods Nos. 8 to 12, and the ingot temperature is also lower, which indicates that they are beneficial for improving productivity.

実施例(2) 実施例(1)ど同じベルト・ホイール型連続鋳造機を用
い、同様にしてAf−Mq−Si系合金ヲ&R%した。
Example (2) Using the same belt-wheel type continuous casting machine as in Example (1), an Af-Mq-Si alloy was produced in the same manner as in Example (1).

MgとSi量はMOzsi(7)形で1.3%添加した
。この合金の凝固開始温度は650℃であっ゛た。
The amount of Mg and Si was added in the form of MOzsi (7) at 1.3%. The solidification onset temperature of this alloy was 650°C.

ノズル内の溶湯温度を変えて11 m /分の鋳造速度
で鋳造し、得られた鋳塊について熱間圧延を行ない、該
圧延におりる欠陥発生数を調査した。その結果を従来方
法と比較して第2表に示で。
Casting was performed at a casting speed of 11 m/min while changing the temperature of the molten metal in the nozzle, and the resulting ingots were hot rolled, and the number of defects occurring during the rolling was investigated. The results are shown in Table 2 in comparison with the conventional method.

第2表 第2表から明らかなようにベルト厚さ1.8mで上記く
1)式を満足する注湯温度691℃以上、ベルト厚さ2
.7#l/Itぐ上記(1)式を満足する注湯温度10
8℃以上である本発明方法No、13〜18によるもの
は何れも従来方法No、19〜22ど比較し、欠陥数が
著しく少なくなっており、また鋳塊温度ら低く、生産性
の向上に有益であることが判る。
Table 2 As is clear from Table 2, when the belt thickness is 1.8 m and the above formula 1) is satisfied, the pouring temperature is 691°C or higher, and the belt thickness is 2.
.. Pouring temperature 10 that satisfies the above formula (1) 7#l/It
Compared to conventional methods Nos. 19 to 22, the number of defects in all of the methods No. 13 to 18 of the present invention, which have a temperature of 8° C. or higher, was significantly lower, and the ingot temperature was lower, resulting in improved productivity. It turns out to be beneficial.

このように本発明方法によれば、鋳塊品質が著しく向上
し、その後の加工におりる欠陥の拡大がなく、歩留りも
向上する等工業上顕著な効果を奏するものである。
As described above, the method of the present invention significantly improves the quality of the ingot, prevents the spread of defects during subsequent processing, and improves the yield, resulting in significant industrial effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はベルト・ホイール型連続鋳造機の一例を示す説
明図である。 1、・・・川・・・鋳型用回転輪 2、・・・・・・川口 溝 3、・・・町・・金属製無端ベルト 4、・・・川・・・プレッシャーホイール5、・・・・
・・・・・鋳 型 6、・・・・・・・・・ノズル 7、・・・・・・・・・溶 湯 6、・・・・・・・・・鋳塊
FIG. 1 is an explanatory diagram showing an example of a belt-wheel type continuous casting machine. 1,...Kawa...Rotating wheel for mold 2,...Kawaguchi groove 3,...Machi...Metal endless belt 4,...Kawa...Pressure wheel 5,...・・・
...Mold 6, Nozzle 7, Molten metal 6, Ingot

Claims (1)

【特許請求の範囲】 外周面に凹溝を有する鋳型用回転輪の一部外周面に、金
属無端ベルトを接動させて水冷鋳型を形成し、該鋳型の
一端よりAJ2又はA(合金溶湯を注湯し、凝固した鋳
塊を他端より連続的に製出する方法において、ベルトに
低炭素鋼を使用し、溶湯金属の融点又は凝固開始温度を
To℃とすると、ベルトの厚さtmll+と注湯温度T
+−℃の関係が、T+ −To   ≧ 35 t を満足するようにベルト厚さと注湯温度を選定すること
を特徴とするA(及び八(合金の連続鋳造方法。
[Claims] A water-cooled mold is formed by bringing an endless metal belt into contact with a part of the outer peripheral surface of a rotating mold ring having a groove on the outer peripheral surface, and AJ2 or A (alloy molten metal) is poured from one end of the mold. In a method of pouring molten metal and continuously producing a solidified ingot from the other end, if low carbon steel is used for the belt and the melting point or solidification start temperature of the molten metal is To°C, then the belt thickness tmll+ Pouring temperature T
A (and 8) continuous casting method for alloys, characterized in that the belt thickness and pouring temperature are selected so that the +-°C relationship satisfies T+ -To ≧ 35 t.
JP6887183A 1983-04-19 1983-04-19 Continuous casting method of al and al alloy Pending JPS59193737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6887183A JPS59193737A (en) 1983-04-19 1983-04-19 Continuous casting method of al and al alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6887183A JPS59193737A (en) 1983-04-19 1983-04-19 Continuous casting method of al and al alloy

Publications (1)

Publication Number Publication Date
JPS59193737A true JPS59193737A (en) 1984-11-02

Family

ID=13386152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6887183A Pending JPS59193737A (en) 1983-04-19 1983-04-19 Continuous casting method of al and al alloy

Country Status (1)

Country Link
JP (1) JPS59193737A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018256A (en) * 1983-07-12 1985-01-30 Furukawa Electric Co Ltd:The Production of creep-resistant al alloy conductor
US7681626B2 (en) 2003-07-23 2010-03-23 Showa Denko K.K. Continuous casting method, cast member, metal worked article, and continuous casting apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6018256A (en) * 1983-07-12 1985-01-30 Furukawa Electric Co Ltd:The Production of creep-resistant al alloy conductor
JPH0313935B2 (en) * 1983-07-12 1991-02-25 Furukawa Electric Co Ltd
US7681626B2 (en) 2003-07-23 2010-03-23 Showa Denko K.K. Continuous casting method, cast member, metal worked article, and continuous casting apparatus

Similar Documents

Publication Publication Date Title
JP3260487B2 (en) Apparatus and method for continuous belt casting of metal strip
JP3058185B2 (en) Austenitic stainless steel continuous cast slab
JP4553901B2 (en) Nonferrous metal and light metal belt casting method and apparatus therefor
JPH08294751A (en) Casting drum of twin drum type continuous casting machine
JPS59193737A (en) Continuous casting method of al and al alloy
JPS5577962A (en) Continuous casting method of steel
JPH08279B2 (en) Manufacturing method of steel forgings
JPS6040650A (en) Continuous casting method
JP3000371B2 (en) Continuous casting method
JP4576657B2 (en) Steel continuous casting method
JPH02247049A (en) Manufacture of cast strip
JPS59215257A (en) Casting method in twin roll type continuous casting machine
JP3419437B2 (en) Horizontal continuous casting method of brass and method of manufacturing brass strip
JPS586754A (en) Continuous casting method for al or al alloy
SU1424950A1 (en) Method of continuous casting of a blank
JPH0117789B2 (en)
JP4076155B2 (en) Manufacturing method of iron alloy-based thixocasting material
SU899238A1 (en) Hollow ingot production method
JPH07100594A (en) Twin roll type continuous casting method and apparatus thereof
JPH0366459A (en) Method for continuously casting cast strip
JPH02299748A (en) Roll for producing twin roll type rapid cooled strip and method for using this
JPS5952013B2 (en) Continuous casting method for seawater resistant steel
RU2002841C1 (en) Method for manufacturing charge for melting aluminum alloys and device for embodying it
JPS6025217B2 (en) Method for manufacturing ultra-quenched metal ribbon
JPH11239849A (en) Roll for continuously casting thin strip