JPS59190665A - Flow system analytical apparatus - Google Patents

Flow system analytical apparatus

Info

Publication number
JPS59190665A
JPS59190665A JP6615183A JP6615183A JPS59190665A JP S59190665 A JPS59190665 A JP S59190665A JP 6615183 A JP6615183 A JP 6615183A JP 6615183 A JP6615183 A JP 6615183A JP S59190665 A JPS59190665 A JP S59190665A
Authority
JP
Japan
Prior art keywords
reagent
sample
specimen
reaction
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6615183A
Other languages
Japanese (ja)
Other versions
JPH041305B2 (en
Inventor
Junko Aida
合田 淳子
Hideo Uchiki
打木 英夫
Tadafumi Kuroishi
黒石 忠文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6615183A priority Critical patent/JPS59190665A/en
Publication of JPS59190665A publication Critical patent/JPS59190665A/en
Publication of JPH041305B2 publication Critical patent/JPH041305B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • G01N35/085Flow Injection Analysis

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To enhance analytical capacity by increasing the size of a detection signal, in a flow system analytical apparatus, by introducing a reaction liquid into a main flowline in such a state that a reagent region is interposed between specimen sections. CONSTITUTION:At first, a carrier liquid 2 is sent to a conduit 3 by a pump 1 and a definite amount of the specimen 5 held by an automatic sampler 16 is sucked and metered into two specimen loops 6 of a change-over valve 10 by a pump 14 and, at the same time, a reagent 8 is sucked and metered into the reagent loop 9 of a change-over valve 30 in a definite amount by a pump 15. In the next step, valves 10, 30 are changed over and the reagent is introduced into a main flowline so as to be interposed between the specimens. Whereupon, the introduced specimens advance through a reaction coil 12 while mixed and reacted with the reagent between them and the change amount of the reaction is detected by a detector 13. By this method, the introduction of a large amount of specimens is enabled and the dilution ratio of the specimen with the carrier liquid is small while reaction advances in a high specimen concn. state and a large change amount can be detected.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は流れ方式の分析装置に係シ、特にキャリヤー液
の流れに試料および試薬を載せて両者を反応させ、反応
液を検出する流れ方式分析装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a flow-type analysis device, and particularly to flow-type analysis in which a sample and a reagent are placed on a flow of a carrier liquid, the two are reacted, and the reaction liquid is detected. Regarding equipment.

〔発明の背景〕[Background of the invention]

流れ方式の分析装置は、例えば特開昭55−29791
号に示されている。この例を第1図を参照して説明する
。送液ポンプ1,21によシキャリャー溶液2を導管3
.23に送液する。ポンプ4により試料5を一定量試料
ループ6に吸引計量スル。また別のポンプ7により試薬
8を一定量試薬ルーブ9に吸引計量する。次に切シ換え
ノ(ルプ10.30を切シ換えることにより、キャリヤ
ー流中に試料及び試薬が別々の流路に導入される。
For example, a flow type analyzer is disclosed in Japanese Patent Application Laid-Open No. 55-29791.
No. This example will be explained with reference to FIG. The liquid carrier solution 2 is transferred to the conduit 3 by the liquid sending pumps 1 and 21.
.. 23. A fixed amount of sample 5 is sucked and measured into sample loop 6 by pump 4. Further, a fixed amount of reagent 8 is suctioned and measured into reagent lube 9 by another pump 7 . Sample and reagent are then introduced into separate channels in the carrier stream by switching switch 10.30.

合流点Aで試料と試薬が合流し、混合・反応しながら、
一定温度に設定された恒温槽11内の反応コイル12の
中を進行し、その反応によって生じた化学的・物理的変
化量を検知器13で検出し、その後反応液は排水される
The sample and reagent meet at confluence point A, and while mixing and reacting,
The reaction liquid advances through a reaction coil 12 in a constant temperature bath 11 set at a constant temperature, and the amount of chemical and physical changes caused by the reaction is detected by a detector 13, after which the reaction liquid is drained.

この方式では合流点人での試料と試薬の合流の様子が分
析精度に影響を及ぼす。たとえば導管の内径のわずかな
ばらつきや、送液ポンプの流量の安定性などによって、
合流点Aで必ずしも試料と試薬が最適の状態で合流しな
い。
In this method, the merging of the sample and reagent at the merging point affects the accuracy of analysis. For example, due to slight variations in the inner diameter of the conduit or the stability of the flow rate of the liquid pump,
At the confluence point A, the sample and reagent do not necessarily converge under optimal conditions.

そこでこの欠点を補い、さらに信頼性の高い試料・試薬
の導入方法が本願出願人によって検討されている。以下
に説明する技術は未公開である。
Therefore, the applicant of the present application is studying a method for introducing samples and reagents that compensates for this drawback and has even higher reliability. The technology described below has not been published.

この導入方法は試料が試薬に両側からはさまれた形で流
路内に導入されるもので、試料と試薬は必ず同じ状態で
混合・反応し、再現性の良い信号の検出ができる。これ
を試料サンドイッチ方式と呼ぶことにする。ところがこ
の方法では、真中に導入される試料量を増やした、場合
、両側の試薬の濃度分布が第2図に示す様に2つの山に
分かれ、その影響を′受けて反応による変化量も真中部
分が低くなシ、検出信号がある程度以上には増加せず検
出感度が低いという欠点がある。検出信号がふた山に割
れない程度に試料導入量を制限すると、キャリヤー溶液
によって試料が希釈される割合が大きく、低い試料濃度
でしか反応が進行しないので、ここでもまた検出信号量
の限界がある。
In this introduction method, the sample is sandwiched between reagents on both sides and introduced into the flow path, so that the sample and reagent always mix and react in the same state, allowing signal detection with good reproducibility. This will be called the sample sandwich method. However, with this method, when the amount of sample introduced into the center is increased, the concentration distribution of the reagents on both sides is divided into two peaks as shown in Figure 2, and as a result of this, the amount of change due to the reaction is also lower than that at the center. The disadvantage is that the detection signal is not increased beyond a certain level and the detection sensitivity is low. If the amount of sample introduced is limited to the extent that the detection signal does not split into two peaks, the sample will be diluted by the carrier solution to a large extent, and the reaction will only proceed at low sample concentrations, so there is also a limit to the amount of detection signal here. .

〔発明の目的〕[Purpose of the invention]

本発明の目的は、試薬使用量を節約できるにもかかわら
ず検出信号の大きさを増大させ、分析性能を向上させる
ことのできる流れ方式分析装置を提供することにある。
An object of the present invention is to provide a flow type analyzer that can increase the magnitude of a detection signal and improve analytical performance while reducing the amount of reagents used.

〔発明の概要〕[Summary of the invention]

本発明では、試料区域を前後の区域に分画し、その間に
試薬域をはさみこみ主流路内に導入するように構成した
ことに特徴がある。
The present invention is characterized in that the sample area is divided into front and back areas, and the reagent area is sandwiched between the areas and introduced into the main flow path.

〔発明の実施例〕[Embodiments of the invention]

本発明の実施例を第3図および第4図に示す。 An embodiment of the invention is shown in FIGS. 3 and 4.

送液ポンプ1によってキャリヤー溶液2を導管3に送液
する。第3図の様にポンプ14によってオートサンプラ
ー16に保持された試料5を切換パルプ10の2つの試
料ループ6に一定量吸引計量し、同時にポンプ15で試
薬8を切換パルプ30の試薬ループ9に一定量吸引計量
する。次に切シ換えパルプ10および30を切り換え、
第4図に示す様に試薬を試料ではさみこんだ形で主流路
に導入する。導入された試料は真中の試薬と混合・反応
しながら、一定温度に設定された恒温槽11内の反応コ
イル12の中を進行し、その反応によって生じた変化量
を検知器13で検出し、その後排水される。試料・試薬
の吸引用ポンプ14゜15、切jl)換えパルプ10、
オートサングラ−16の制御はすべて制御部17でおこ
ない、試料・試薬の吸引時間、切シ換えパルプの切シ換
えのタイミング、オートサンプラーによる試料供給のタ
イミングをこの制御部17で制御できるようにする。
A carrier solution 2 is sent to a conduit 3 by a liquid sending pump 1 . As shown in FIG. 3, a fixed amount of the sample 5 held in the autosampler 16 is sucked and measured by the pump 14 into the two sample loops 6 of the switching pulp 10, and at the same time, the reagent 8 is pumped into the reagent loop 9 of the switching pulp 30 by the pump 15. Suction and measure a certain amount. Next, the switching pulps 10 and 30 are switched,
As shown in FIG. 4, the reagent is sandwiched between samples and introduced into the main channel. The introduced sample moves through the reaction coil 12 in the constant temperature bath 11 set at a constant temperature while mixing and reacting with the reagent in the middle, and the amount of change caused by the reaction is detected by the detector 13. It is then drained. Sample/reagent suction pump 14゜15, off jl) Replacement pulp 10,
All controls for the autosampler 16 are performed by a control unit 17, and the control unit 17 can control the suction time of the sample/reagent, the timing of switching the switching pulp, and the timing of sample supply by the autosampler. .

本実施例によれば試料を前、後2区域に分けたことによ
って多量の試料の導入が可能であるため、キャリヤー溶
液で試料が希釈される割合も小さく、高い試料濃度のま
まで反応が進行し、大きな変化量を検出することができ
る。
According to this example, a large amount of sample can be introduced by dividing the sample into two areas, the front and the back, so the proportion of the sample diluted with the carrier solution is small, and the reaction can proceed while the sample concentration remains high. However, large amounts of change can be detected.

実際の測定例として亜硝酸イオンの分析結果を第5図に
示す。試料は亜硝酸性窒素濃度1 ppmである。その
時の諸系性及び試料量、試薬量を第1表、第2表に示す
As an example of actual measurement, the analysis results of nitrite ions are shown in FIG. The sample has a nitrite nitrogen concentration of 1 ppm. Tables 1 and 2 show the various system characteristics, sample amounts, and reagent amounts at that time.

第   1   表 第   2   表 第5図かられかるように、前述の試料サンドイッチ方式
Aでは吸光度0.5であるのに対し、本法Bを用いると
1.5となシ吸光度が3倍にも増加する。このため検出
限界が数倍上がシ分析性能が大巾に向上した。また、試
薬使用量も200μtかかかわらず試薬の節約が可能で
ある。試料消費量は、30μtから400μtに増加し
たが、これでも一般におこなわれている用手法の1/1
0程度である。例えば工業用水や工場廃水など多量採取
が容易な一般的試料に対しては本法が非常に有効である
As can be seen from Table 1, Table 2, and Figure 5, the absorbance was 0.5 in the sample sandwich method A described above, whereas the absorbance was 1.5 using this method B, which tripled the absorbance. To increase. For this reason, the detection limit was increased several times, and the analytical performance was greatly improved. Furthermore, reagents can be saved regardless of the amount of reagent used, which is 200 μt. The sample consumption increased from 30μt to 400μt, but this is still 1/1 of the commonly used method.
It is about 0. For example, this method is very effective for general samples that can be easily collected in large quantities, such as industrial water and factory wastewater.

次に第6図および第7図に本発明の別の実施例を示す。Next, FIGS. 6 and 7 show another embodiment of the present invention.

この例ではへ方切シ換えパルプ18′ff:1個用いて
いる。第6図に示す様に、ポンプ19゜20によシ試料
5を試料ループ6に一定量吸引計量し、同じくポンプ2
1によって試薬8を試薬ループ9に一定量吸引計量する
。次にへ方切シ換えパルプ18を切り換えることによっ
て第7図の様に試薬を試料ではさんだ形で主流路内に導
入する。
In this example, one piece of hemi-switching pulp 18'ff is used. As shown in FIG.
1, a fixed amount of reagent 8 is aspirated and measured into reagent loop 9. Next, by switching the forward switching pulp 18, the reagent is introduced into the main flow path in the form of being sandwiched between samples as shown in FIG.

第3図の切シ換えパルプ10では、導入口から排出口ま
でのデッドボリュームが数ミリメートルあるが、第6図
のへ方切り換えパルプ18においては、導入口と排出口
が直接つながる構造となっているのでゲットボリューム
がほとんどなく、分析精度を向上させる上で有利である
In the switching pulp 10 in FIG. 3, there is a dead volume of several millimeters from the inlet to the discharge port, but in the switching pulp 18 in FIG. 6, the inlet and discharge port are directly connected. Since there is a large amount of data, there is almost no target volume, which is advantageous in improving analysis accuracy.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、混合時に試料が試薬によって希釈され
るのを低減できるので、検出感度を向上できるという効
果がある。
According to the present invention, it is possible to reduce the dilution of a sample with a reagent during mixing, and therefore, there is an effect that detection sensitivity can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来技術の流路説明図、第2図は未公開ノ試料
サンドイッチ法における多量試料側定例全説明するため
の図、第3図および第4図は本発明の一実施例の動作を
説明するための図、第5図は第3図の実施例による亜硝
酸イオンの分析例を示す図、第6図および第7図は本発
明の他の実施例の動作を説明するための図である。 3・・・導管、5・・・試料、6.9・・・定容量ルー
プ、8・・・試薬、lo、18.30・・・切換パルプ
、12・・・反応コイル、13・・・検出器、16・・
・オートサンプ薯1図 寓2図 ノしれの方m −
Fig. 1 is an explanatory diagram of the flow path of the prior art, Fig. 2 is a diagram for explaining all the regular procedures on the large sample side in the unpublished sample sandwich method, and Figs. 3 and 4 are the operations of an embodiment of the present invention. FIG. 5 is a diagram showing an analysis example of nitrite ions according to the embodiment of FIG. 3, and FIGS. 6 and 7 are diagrams for explaining the operation of other embodiments of the present invention. It is a diagram. 3... Conduit, 5... Sample, 6.9... Constant volume loop, 8... Reagent, lo, 18.30... Switching pulp, 12... Reaction coil, 13... Detector, 16...
・Autosamp 1st figure 2nd figure m -

Claims (1)

【特許請求の範囲】[Claims] 1、反応液を検出する検出器に通じておシ導入された試
料と試薬とを混合せしめる流路と、との流路内にキャリ
ー溶液を流す手段とを備えた流れ方式分析装置において
、上記流路の途中に、試料容器から導入した試料を複数
区域に分画し、その分画区域の間に試薬液を割シ込ませ
て上記流路に導入せしめる手段を設けたことを特徴とす
る流れ方式分析装置。
1. In a flow type analyzer equipped with a channel for mixing a sample and a reagent introduced through a detector for detecting a reaction solution, and a means for flowing a carrier solution into the channel, the above-mentioned The method is characterized in that a means is provided in the middle of the flow path for fractionating the sample introduced from the sample container into a plurality of areas, and for introducing the reagent solution into the flow path between the divided areas. Flow method analyzer.
JP6615183A 1983-04-13 1983-04-13 Flow system analytical apparatus Granted JPS59190665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6615183A JPS59190665A (en) 1983-04-13 1983-04-13 Flow system analytical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6615183A JPS59190665A (en) 1983-04-13 1983-04-13 Flow system analytical apparatus

Publications (2)

Publication Number Publication Date
JPS59190665A true JPS59190665A (en) 1984-10-29
JPH041305B2 JPH041305B2 (en) 1992-01-10

Family

ID=13307574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6615183A Granted JPS59190665A (en) 1983-04-13 1983-04-13 Flow system analytical apparatus

Country Status (1)

Country Link
JP (1) JPS59190665A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2777349A1 (en) * 1998-04-08 1999-10-15 Hycel Diagnostics Sampling fluids from two sources without cross contamination, particularly applicable to blood analysis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11933771B2 (en) 2018-12-20 2024-03-19 Shimadzu Corporation Analysis control device, liquid chromatographic system and analysis execution method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2777349A1 (en) * 1998-04-08 1999-10-15 Hycel Diagnostics Sampling fluids from two sources without cross contamination, particularly applicable to blood analysis

Also Published As

Publication number Publication date
JPH041305B2 (en) 1992-01-10

Similar Documents

Publication Publication Date Title
US4645647A (en) Method and apparatus for continuous flow analysis of liquid sample
EP0098550B1 (en) Method and apparatus for conducting flow analysis
GB1503246A (en) Automatic blood analyzers
CN101793902A (en) Device for fluidly injecting and rapidly analyzing residual chlorine of water quality and analysis method thereof
US2967764A (en) Apparatus for analysis and other processing of fluids
US3615234A (en) System for processing and analyzing biological samples
US4300906A (en) Method for the operation of automated analysis apparatus
CN103399163B (en) Online phosphorus and fluorine content measuring analyzer
JPS59190665A (en) Flow system analytical apparatus
JP2783449B2 (en) Analyzer line control system
JPH04221764A (en) Continuous percoalting and analyzing apparatus and operating method of such analyzing apparatus
CN112666160B (en) Multi-element online titration method and device
JP4082815B2 (en) Sample processing equipment
EP0412046A2 (en) Method of measuring a component in a liquid
JPH0593718A (en) Process liquid chromatograph
CN118330119A (en) Intelligent ion chromatograph with concentration judging function and control method thereof
CN118393033A (en) Intelligent analyzer with sample dilution function and control method thereof
JP3395407B2 (en) Analysis equipment
JP3245690U (en) Diversion accessories and analyzers with diversion accessories
JP3254073B2 (en) Automatic analysis system
JPS5860259A (en) Continuous determination
US20240201217A1 (en) Method of washing a fluidic system of an in-vitro diagnostic analyzer
JP3340775B2 (en) Continuous analysis of slurry composition
CN118443848A (en) Intelligent analyzer for online desulfurization wastewater and control method thereof
CN114578080A (en) Multi-range sample injection device