JPS59186606A - Manufacture of separation membrane - Google Patents

Manufacture of separation membrane

Info

Publication number
JPS59186606A
JPS59186606A JP58059735A JP5973583A JPS59186606A JP S59186606 A JPS59186606 A JP S59186606A JP 58059735 A JP58059735 A JP 58059735A JP 5973583 A JP5973583 A JP 5973583A JP S59186606 A JPS59186606 A JP S59186606A
Authority
JP
Japan
Prior art keywords
membrane
gas
dense layer
separation
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58059735A
Other languages
Japanese (ja)
Inventor
Munehisa Okada
宗久 岡田
Yoshiteru Kobayashi
芳照 小林
Isao Konno
勲 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP58059735A priority Critical patent/JPS59186606A/en
Publication of JPS59186606A publication Critical patent/JPS59186606A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • B01D67/00111Polymer pretreatment in the casting solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To obtain the separation membrane having a high separation performance along with a high permeation velocity by film-forming a soln. of a polymeric material which is filtered with a microfilter having <=6mu maximum bore. CONSTITUTION:The gas separation membrane is manufactured by film-forming a soln. of a polymeric material which is filtered by a microfilter having <=6mu maximum bore and consists especially of a mixture of polyorganosilane and organopolysiloxane. In manufacturing the gas separation membrane, since the floating dust or a foreign matter such as insoluble polymer in the soln. is removed by the above-mentioned microfilter, the generation of defective parts is prevented in the dense layer of an asymmetric membrane which consists of a single layer consisting solely of the dense layer showing a selective gas separation property, or which consists of two layers of the dense layer and a porous layer showing no selective separation property and united to the dense layer. Thus the dense layer having extremely thin thickness can easily be formed.

Description

【発明の詳細な説明】 本発明は分離膜の製造法に関する。更に訃しくは、製膜
浴液を特定のミクロフィルターで沢過することにより、
良好な透過速度と分離性能を同時に有する分離膜を製造
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a separation membrane. Even more tragically, by filtering the film-forming bath liquid through a specific microfilter,
The present invention relates to a method for producing a separation membrane having good permeation rate and separation performance at the same time.

こCような方法によって得らhた分前膜は物質渭金物、
%に気体混合物の選択的分1mに威力を発揮するので、
以下気体分If Mx Kついて説明する。
The pre-prepared membrane obtained by this method is a metal material,
Since it exerts its power over 1m of selective gas mixture in %,
The gas component If Mx K will be explained below.

近年、気体混合物から特定の気体を富化又は分離する手
段として、合成高分子膜を用いる連続法が注目され、実
用化に向けて盛んに研究されている。例えば、空気中力
・ら酸素又は窒素を分離・濃縮することによる燃焼用、
医療用、廃水処理用、発酵用等に供する酸素富化空気の
製造、天然ガス等からのヘリウムq〕分離、回収、コー
クスガス等からの水素の分版が挙げられる。
In recent years, continuous methods using synthetic polymer membranes have attracted attention as a means of enriching or separating specific gases from gas mixtures, and are being actively researched for practical use. For example, for combustion by separating and concentrating oxygen or nitrogen from air,
Production of oxygen-enriched air for medical use, wastewater treatment, fermentation, etc., separation and recovery of helium q from natural gas, etc., separation of hydrogen from coke gas, etc.

し力)しながら従来の膜は、気体の透過速度が小さいた
めに多くの膜面積を必要とし、分離のための装置が大2
)化するという欠点があつ′に、。
However, conventional membranes require a large membrane area due to the low gas permeation rate, and require large separation equipment.
) has the disadvantage of becoming

従って装部“各槓当りの鳴動膜面積を向−上させるだめ
の神々の手法が実施プれる一方で、高す選択性を保持し
たま号で透過速度を大幅に向上させるという本質的な膜
の改良が望まれていた。
Therefore, while the "magical method of increasing the area of the ringing membrane per ram" has been implemented, the essential membrane that greatly increases the permeation rate while maintaining high selectivity is being implemented. Improvements were desired.

気体の透過速度R(cc/−・渡・amHg )はで表
わさハる。ただし、Pけ透購係数 1f(cc/m)、Sは膜面積(cfI)、 ΔPは膜
の一次側と二次側の圧力差である。従って気体0透通速
度Rけ腹fはさんでの圧力差ΔPを一定とすれば気体の
透過係ePと脚の厚さに依存する。そのうち、透過係数
は気体c3類と用いる高分子膜材料によって一義的に法
定されるので膜をdさんでの圧力差に耐える限り、最小
の膜厚にすることによって最大の透過速度が得られる。
The gas permeation rate R (cc/-·Water·amHg) is expressed as H. However, P is the transmission coefficient 1f (cc/m), S is the membrane area (cfI), and ΔP is the pressure difference between the primary and secondary sides of the membrane. Therefore, if the pressure difference ΔP between the zero gas permeation rate R and the flank f is constant, it depends on the gas permeation coefficient eP and the thickness of the legs. Among these, the permeability coefficient is uniquely determined by the gas C3 and the polymer membrane material used, so as long as the membrane can withstand the pressure difference at d, the maximum permeation rate can be obtained by minimizing the membrane thickness.

従来の気体分離膜材料のうち、特公昭&7−6/7/J
’号、同ハト、2. / 0.2 /号公報記載のポリ
ビニルトリオルガノシランは良好な気体分離性能を有す
るが、透過係数が小さく不充分であった。このような小
さい気体透過能の欠点を改良する材料と[−て、ポリビ
ニルトリオルガノシランとポリシロキサンの混合物が特
開昭J−g −j6り?f号公報で提案された。
Among conventional gas separation membrane materials, Tokko Sho & 7-6/7/J
' No., same pigeon, 2. The polyvinyltriorganosilane described in the /0.2/ publication had good gas separation performance, but its permeability coefficient was small and insufficient. A mixture of polyvinyltriorganosilane and polysiloxane has been proposed as a material to improve the drawback of such low gas permeability, as disclosed in Japanese Patent Application Laid-Open No. It was proposed in Publication No. f.

該混合物を気体分離膜の材料として使用した場合、ポリ
ビニルトリオルガノシラン膜に比較して、高透過速度側
では改良された気体分離性能を治していた。しかしそれ
でもなお%透過速度をさらに太きくしようとすれば、気
体分離性能が急激に、しかも著しく低下する傾向があっ
た、 このような欠点は気体分離に限らず液体、その他の混合
物の分離に共通した問題点であり改良する必要がある。
When the mixture was used as a material for a gas separation membrane, it exhibited improved gas separation performance on the high permeation rate side compared to a polyvinyltriorganosilane membrane. However, if the % permeation rate was still increased, the gas separation performance tended to drop rapidly and significantly.Such drawbacks are common not only to gas separation but also to the separation of liquids and other mixtures. This is a problem that needs to be improved.

そこで本発明者等は分離性能を保持したまま、できる限
り大きな透過速度を有する分離膜を毀造干る方法f鋭意
検討した結果、特定の平均孔径を有するミクロフィルタ
ーでC遇した高分子材料の溶液を用いて製膜することに
よって、従来得られなかった高す分離マ性能と同時に高
す透過速度を有する分離膜を製造する方法を見い出し、
本発明に到達した。
Therefore, the present inventors have conducted extensive research into a method of destroying and drying a separation membrane that has as high a permeation rate as possible while maintaining separation performance. We have discovered a method of manufacturing a separation membrane that has improved separation membrane performance and permeation rate, which was previously unobtainable, by forming the membrane using a solution.
We have arrived at the present invention.

本発明の要旨は、最大孔径6μ以下σ゛ミクロフイルタ
ーで沖過した高分子農相1ptZ、s溶液を用いて製膜
することを特徴とする分熊膜の製造法に存する。
The gist of the present invention resides in a method for producing a bulk membrane, which is characterized in that the membrane is formed using a 1ptZ,S solution of polymeric agricultural phase filtered through a microfilter with a maximum pore size of 6μ or less.

以下、本発明をポリビニルトリオルガノシランとオルガ
ノポリシロキザンの混合物を高分子膜材料として用込た
気体分離膜の製造法を例として、詳細に説明するが、本
発明けB−ff+合物に限定さhるものではない。即ち
、本発明が従来から知られている高分子膜材料例えd゛
セルロースアセテートエチルセルロース等のセルロース
類、ポリスルホン、ポリフェニレンオキサイド等を使用
して製膜する場合も適用されることけ肖うまでもなり0
本発明に用いられる特定のポリビニルトリオルガノシラ
ンは式(1)%式% (1) (式中、R1け水素原子、アルキル基、シクロアルキル
基、アリール基、又はアラルキル基を表わし、R2およ
びRsけアルキル基、シクロアルキル基、アリール基又
はアラルキル基を表わ寸。
Hereinafter, the present invention will be explained in detail by taking as an example a method for manufacturing a gas separation membrane using a mixture of polyvinyltriorganosilane and organopolysiloxane as a polymer membrane material. It is not limited. That is, the present invention is also applicable to the case where films are formed using conventionally known polymer membrane materials, such as celluloses such as cellulose acetate ethyl cellulose, polysulfone, and polyphenylene oxide.
The specific polyvinyltriorganosilane used in the present invention has the formula (1)% (1) (where R1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or an aralkyl group, and R2 and Rs A size that represents an alkyl group, cycloalkyl group, aryl group, or aralkyl group.

R1、R2およびR3け互1h KP+−であっても、
異っていても良い)で表わされる禍造単位を礼数個含む
高分子化合物を隔味し2、更に、2.1℃シクロヘキサ
ン中で測定j、た値で代表される固有粘度が/、Odl
/f以上、好捷1−<け/、!〜グ、sdl/yである
必要がある。ここでポリビニルトリオルガノシランの固
有粘度が/、Odi/9未満では、得らねる気体分離膜
の機械的強Kが小寧いだけでなぐ、高透過速度領域での
分離性能が極めて低く実用的でなし、。
Even if R1, R2 and R3 are mutually 1h KP+-,
A polymer compound containing a certain number of structural units represented by
/f or more, good luck 1-<ke/,! ~g, sdl/y. If the intrinsic viscosity of polyvinyltriorganosilane is less than /, Odi/9, the mechanical strength of the gas separation membrane obtained is not only low, but also the separation performance in the high permeation rate region is extremely low, making it impractical. By the way.

上記のポリビニルトリオルガノシランは一般には一種又
はそれ以上のビニルトリオルガノシランfa当な触媒を
用すて重合することによって得られる。ビニルトリオル
ガノシランの具体例としては、ビニルトリメチルシラン
、ビニルトリエチルシラン、ビニルトリプロピルシラン
、ビニルトリメチルシラン、ビニルジメチルエチルシラ
ン、ビニルジエチルメチルシラン、ビニルトリシクロへ
キシルシラン、ビニルジメチルシクロへキシルシラン、
ビニルジメチルフェニルシラン、ビニルジメチルベンジ
ルシラン及びビニルジメチルフニルシランが誉けられる
The above-mentioned polyvinyltriorganosilanes are generally obtained by polymerizing one or more vinyltriorganosilanes fa using a suitable catalyst. Specific examples of vinyltriorganosilane include vinyltrimethylsilane, vinyltriethylsilane, vinyltripropylsilane, vinyltrimethylsilane, vinyldimethylethylsilane, vinyldiethylmethylsilane, vinyltricyclohexylsilane, vinyldimethylcyclohexylsilane,
Vinyldimethylphenylsilane, vinyldimethylbenzylsilane and vinyldimethylphenylsilane are honored.

また、本発明におけるポリビニルトリオルガノシランの
中には式(1)の朴)造却位以外Cユ構造単位−+、2
S*X%以内の割合で含む高分子化合物も包含される。
In addition, in the polyvinyltriorganosilane in the present invention, the C structural units other than the Pak) position of formula (1) -+, 2
A polymer compound containing a proportion within S*X% is also included.

せ牟ボリヒニル)・リメ′ル力ノシランは二>h以上の
?M合物であってもよい。
Is the strength of silane greater than or equal to 2>h? It may also be an M compound.

次に本発明に用いられるオルガノ乃ス1ノシロキザンは
基本的に81−0−81結合骨格力〉らなる化合物であ
り、次の一般式、(2)、(3)、(4)および(5)
のうちの/ 1jli又はそれ以上f繰返1穎9位とし
て言む化合物、及びそれらの?1<合物が摩げらfl−
る。
Next, the organosiloxane used in the present invention is basically a compound consisting of 81-0-81 bond skeletal forces, and has the following general formulas (2), (3), (4) and (5 )
Of / 1 jli or more f repeats 1 glume 9 of the compounds, and their? 1< compound ga magera fl-
Ru.

H4’             l(’1 %          鳴 (式中、R4、R5およびがけアルキル基、アルケニル
基、シクロアルキル基、シクロアルキル基、アリール基
、これらの基の水素原子の一部もしくけ全部が〕・ロゲ
ン原子で置換された基、水素原−r=、ノ・ロゲン原子
、アミノ基、アミド基、アルコキシ基等の官能性基を示
し、互1.−.に同一でも異っていてもよい)、又、本
発明に用いらハるオルガノポリオキサンハ/棟又はそれ
以上のm合物であってもよい。
H4'l('1% ring (in the formula, R4, R5 and a substituted alkyl group, alkenyl group, cycloalkyl group, cycloalkyl group, aryl group, some or all of the hydrogen atoms of these groups)]・Rogen Indicates a functional group such as a group substituted with an atom, a hydrogen atom -r=, a hydrogen atom, an amino group, an amide group, an alkoxy group, and may be the same or different from each other), Further, the organopolyoxane used in the present invention may be a compound of one or more organopolyoxanes.

本発明におけるオルガノポリシロキサンと1ては、低分
子負の化合物から高分子闇の化合物まで広範囲の化合物
が含せれるが、hdL制料としては低沸点C゛ものは好
ましくなく、沸点は少なくとも、200℃以上であると
2が好ましい。更に具体的にけ数平均分子月が/、00
0以上のものが好ましい。
The organopolysiloxane used in the present invention includes a wide range of compounds, from low-molecular negative compounds to high-molecular dark compounds, but those with a low boiling point C are not preferred as hdL control materials, and those with a boiling point of at least 2 is preferred if the temperature is 200°C or higher. More specifically, the number average molecular month is /, 00
It is preferably 0 or more.

オルガノポリシロキサンの具14例としての特開昭jク
ー、3′62とt号公報記載の化合物を全て挙けること
ができる。
Fourteen examples of organopolysiloxanes include all the compounds described in Japanese Patent Application Laid-Open No. 2003-120001, published by J. Kou, No. 3'62, and No. t.

ポリビニルトリオルガノシランとオルガノポリシロキサ
ンとの混合割合は、ポリビニルトリオルガフッ2フフ重
量部に対してオルガノポリシロキサン0.0J〜/、θ
重貫部の範囲から選択されるが、好1しくは0.7〜0
.6ル聞部、特に好ま[〈けO1/!〜0.り重邦部か
ら選択される。ポリビニルトリオルガノシランに対する
オルガノボリシロキザンty2y合比率が増大するに従
ってポリシロキサンの効果が期待でキル力、その一方で
、膜の強度が低下し、膜に欠陥和か生じ易くなり分離性
能が低下する。また、逆にオルガノポリシロキサンの混
合比率が減少するに従って、分離性能の低下し始める透
過速度が小さくなり、もろく伸びの小さい膜になる。
The mixing ratio of polyvinyltriorganosilane and organopolysiloxane is 0.0 J to 2 parts by weight of polyvinyltriorganosiloxane/, θ
It is selected from the range of the heavy part, preferably 0.7 to 0.
.. 6 Le part, especially favorite [〈keO1/! ~0. Selected from Japan. As the ratio of organoborisiloxane ty2y to polyvinyltriorganosilane increases, the effect of polysiloxane is expected to increase and kill power, but on the other hand, the strength of the membrane decreases, and the membrane becomes more likely to have defects, resulting in a decrease in separation performance. . Conversely, as the mixing ratio of organopolysiloxane decreases, the permeation rate at which the separation performance begins to deteriorate decreases, resulting in a membrane that is brittle and has low elongation.

本発明の気体分離膜1−t、上述した特定のポリビニル
トリオルガノシランとオルガノポリシロキサンとのり7
合物を膜材料(!−子るが、該混合物の膜としての本質
的な特性を失わない限り、有機物、無機物などの第3成
分を含有していてもよい、、マたポリアミド、ポリエス
テルなどの合成繊維又は天然繊維の不織布を強化材とし
て含有していてもよい。
Gas separation membrane 1-t of the present invention, the above-mentioned specific polyvinyltriorganosilane and organopolysiloxane glue 7
The compound may be used as a membrane material (!--but may contain a third component such as an organic substance or an inorganic substance, as long as the essential properties of the mixture as a membrane are not lost. Polyamide, polyester, etc.) A nonwoven fabric made of synthetic fibers or natural fibers may be included as a reinforcing material.

上記膜材料を溶解する溶媒としては、非対称膜を製造す
る場合には、稜記の如く選ばれ、均質膜、複合膜を製造
する場合は、シクロヘキサン、ベンゼン、トルエン、キ
シレンのコトキ脂肪族および芳香族炭化水素、およびジ
クロロメ炭化水素から選ばれる。溶液中の膜材料濃度け
θ、/〜SO重量%、好渣L<け7〜70重量%である
As a solvent for dissolving the above membrane materials, when manufacturing an asymmetric membrane, the solvent is selected as shown in the table below, and when manufacturing a homogeneous membrane or a composite membrane, solvents such as cyclohexane, benzene, toluene, xylene, aliphatic and aromatic solvents are selected. hydrocarbons, and dichloromethane hydrocarbons. The membrane material concentration in the solution is θ, /~SO weight %, and the residue L is 7 to 70 weight %.

本発明の気体分離膜の製造に除しては、上記膜月料の1
1!!膜溶液を、最大孔径が6μ以下、好ましくけZμ
以下のミクロフィルターでFJして溶液中の浮遊塵又は
不溶ポリマー等の異物を除去する必要がある。例えば、
後述の非対称膜の製造の際に、該0’過処理を実施しな
ズ)工った場合にけ、透過速度が亀太するに従って選択
分画性が低下する。このような分離性の低下1透過速度
の増大に従って、即ち非対称Mkの緻密層の膜厚が小宴
くなるに従って和激力・つ大幅に起こるが、こハは緻密
層に上記放物が混入1て欠陥を41.じ易くするためと
渚えられる。従って本発明方法においては#膜溶液を%
定のミクロフィルターで治産することにより、緻密層、
・の欠陥部分の発生を防」トシて、后、透過速度側での
篩い選択分離性を保持することが可能となったのである
。本発明における特定(ごミクロフィルターの相賀は製
膜溶液を形成する溶媒及び尚分子腔I料に不活性であり
、力・つτL・近処到中に鹸フィルターとしての性能及
び榛能が保持されるものであれば制限はなく、無機及び
有(で、相和から適:h選択妊れる。
For the production of the gas separation membrane of the present invention, 1 of the above membrane charges shall be
1! ! The membrane solution has a maximum pore size of 6μ or less, preferably Zμ.
It is necessary to perform FJ using the following microfilter to remove foreign substances such as floating dust or insoluble polymers in the solution. for example,
If the 0' overtreatment is not carried out during the production of the asymmetric membrane described below, the selective fractionation will decrease as the permeation rate increases. As the permeation rate increases, that is, as the thickness of the dense layer of asymmetric Mk becomes smaller, the separation property decreases significantly. 41. It is said that it is to make it easier for him. Therefore, in the method of the present invention, the # membrane solution is
By treating with a fixed micro filter, the densified layer,
It has become possible to prevent the occurrence of defective areas and maintain the selective separation property of the sieve on the permeation rate side. The characteristics of the present invention (the microfilter is inert to the solvent forming the membrane-forming solution and the molecular cavity I material, and maintains its performance and performance as a sapon filter during the application of power, heat, and heat). There is no restriction as long as it is compatible with both inorganic and organic materials.

以上の方法で得られる膜は気体C″選択分離性の緻密層
のみから構成されている単−増であってもよいが、選択
分離性の緻密J−と翻1f<と一体となった選択分離性
を示さない多孔層とC両層力・ら構成さねている非対称
膜では、欠陥のない極めて薄い緻密層を比較的容易に形
成し易く、従って大きい透過速度と分離性能を同時に滌
足したものが得られる点で好ましい。本発明の気体分離
族では、特に緻密層のJqさを小さくしても欠陥部分が
極めて生じにくく、従って高い分離性能を保持した−1
:捷、旨い透過速度が得られるという特徴を有する。こ
こで、緻密層とけ厳密かつ無孔で、気体又d蒸気に対し
て層の構成材料(前記混合物を主成分とする)と実質的
に同じ選択的透過性を示す層を意味し、多孔j曽とVi
緻q+、一層と同一の構成材料から形成はれ、開放孔と
気体が自由に通過し得るスポンジ状構造とを有し、単に
孔に沿って気体又は蒸気が移動するために全く迷択的透
進性を示芒ない不活性層を廟味する。緻密層の厚みけ透
過速度から考えてθ、Q /〜/μであることが好−E
l−mが、本発明においてはこの範囲においても気体選
択性の低下はほとんど起こらず、強く、安定な緻密層全
形成しているこ七が判る。一方。多孔層の厚みは膜の機
械的強度〉よび取扱い易プから考えて10μ以上%%i
’C100〜/θθθμであることが好11いが、他の
第3成分による補強又は、他の多孔性の膜を本発明の膜
の支持体として個用する場合にけ、10μ未満の厚さK
するときもできる。
The membrane obtained by the above method may be a monolayer consisting only of a dense layer with selective separation property of gas C'', but it may be a single membrane consisting of only a dense layer with selective separation property of gas C'', or a membrane with a dense layer with selective separation property of In an asymmetric membrane composed of a porous layer that does not exhibit separation properties and a C double layer, it is relatively easy to form an extremely thin dense layer without defects, and therefore, it simultaneously achieves high permeation rate and separation performance. In the gas separation group of the present invention, defects are extremely difficult to occur even when the Jq of the dense layer is made small, and therefore high separation performance is maintained.
: It has the characteristic of being able to obtain a good permeation rate. Here, a dense layer is strictly non-porous and exhibits substantially the same selective permeability to gas or vapor as the material constituting the layer (mainly composed of the above-mentioned mixture); Zeng and Vi
It is formed from the same constituent material as the single layer, has open pores and a spongy structure through which gas can freely pass, and has no permeability due to the mere movement of gas or vapor along the pores. Examine the inert layer that shows no signs of aggressiveness. Considering the permeation rate through the thickness of the dense layer, it is preferable that θ, Q /~/μ.
It can be seen that even in this range of l-m, in the present invention, there is almost no decrease in gas selectivity, and a strong and stable dense layer is completely formed. on the other hand. The thickness of the porous layer is 10μ or more considering the mechanical strength of the membrane and ease of handling.
'C100~/θθθμ is preferably 11, but when reinforcing with another third component or using another porous membrane as a support for the membrane of the present invention, the thickness is less than 10μ. K
I can do it when I do.

上記のような緻密層と多孔層とからなる非対称膜は、例
えば以下の方法によって′#8漬することができる。即
ち び2棟類の溶媒、及び、2神知の溶媒のうち、より揮発
性の溶媒(以下、「軽溶媒」と称する。、)より窩す沸
点を有し、11つ中介体に対≠− して負溶婢である/柚類の溶lν妙・らとる3成分系混
合溶妹にオルガノポリシロキサン及ヒポリビニルトリオ
ルガノシランを街合溶解し、た溶液を支持体上に流しく
一2fΦ類の溶媒e〕うち、より不揮発性の溶媒を以下
「重参媒」と利、−する。)、 (b)  主として軽溶媒の一剖、又は全部を除去しく
C)  生成したフ・イルムを凝固液(貧溶媒)で処理
し、ぞして (d)  該フィルムを乾燥する ことにより製造される。
An asymmetric membrane consisting of a dense layer and a porous layer as described above can be dipped, for example, by the following method. In other words, it has a boiling point lower than that of the more volatile solvents (hereinafter referred to as "light solvents") among the two types of solvents and the two types of solvents, and has a boiling point lower than that of the 11 intermediates. - Dissolve organopolysiloxane and hypolyvinyltriorganosilane in a three-component mixed solution of citron, which has a negative solubility, and pour the solution onto a support. 2fΦ class solvent e] Among them, the more nonvolatile solvent is hereinafter referred to as "heavy solvent". ), (b) mainly by removing part or all of the light solvent, C) treating the produced film with a coagulating solution (poor solvent), and (d) drying the film. Ru.

軽溶媒及び重溶媒はシクロヘキサン、ベンゼン、トルエ
ン及びキシレンのごとき脂肪族および力香加炭化水素、
及びジクロロメタン、ジクロロエタン、ブトラクロロエ
チレン、クロロホルム、クロロベンゼン及ヒシクロロベ
ンゼンのごときハロゲン化炭化水素から適尚に漣ばれる
Light and heavy solvents include aliphatic and aromatic hydrocarbons such as cyclohexane, benzene, toluene and xylene;
and halogenated hydrocarbons such as dichloromethane, dichloroethane, butrachloroethylene, chloroform, chlorobenzene and hiscyclobenzene.

貧溶媒には水、メタノール、エタノール、第1級、第、
2紐及び第3酵ブタノールの如きアルコールが含せれる
。軽溶媒、重溶媒及びれ溶媒妙・らなる3成分系混合物
の具体的な組合せ例としては、トルエン−ジクロロメタ
ン−イソブタノール、ベンゼン−ジクロロメタン−イソ
ブタノール、モノクロロベンゼン−クロロホルム−イソ
ブタノール、トルエンークロロホルムーイソブタノール
、トルエン−ジクロロメタン−第2Mブタノールが挙け
らハる。ここで3成分糸の717合物にオルガノポリシ
ロキサン及びボリビニルトリオルガノシ〉ンを溶解1−
1た溶Mを調製する為てそハぞれの物ηおよび溶媒を添
加子る順序は特に限定しない。
Poor solvents include water, methanol, ethanol, primary,
Alcohols such as two-string and three-ferment butanol are included. Specific examples of combinations of ternary mixtures consisting of light solvents, heavy solvents, and light solvents include toluene-dichloromethane-isobutanol, benzene-dichloromethane-isobutanol, monochlorobenzene-chloroform-isobutanol, and toluene-chloroform. Examples include -isobutanol, toluene, dichloromethane, and 2M butanol. Here, organopolysiloxane and polyvinyl triorganosine were dissolved in the 717 compound of the three-component yarn.
In order to prepare the first solution M, the order in which the respective substances and solvents are added is not particularly limited.

一方、流し込み成型に用いら九る支持体の選択−%K 
’JB定ヒないが、回分式操f[および連続m ft−
ではステンレス鋼又はアルミ製ベルトが用られるが、回
分式でtd−/jシス孜も使用できる。
On the other hand, the selection of supports used in casting - %K
'JB constant, but batchwise operation f [and continuous m ft-
In this case, a stainless steel or aluminum belt is used, but a td-/j system belt can also be used in a batch type.

寸だ、膜厚10θμ以上の非対称カムを製造する隙は、
表面をメッキ処セJ・した後、伊贋処坤叫により表面が
平ン1jであるステンレス鋼又はアルミ板を支持体々1
−で用いるのが好寸しく、良好な気体分離膜が得ら!土
る。支持体の形によって平担な膜又は管状の膜をイqる
ことがて゛きる。
The opportunity to manufacture an asymmetric cam with a film thickness of 10θμ or more is
After the surface has been plated, stainless steel or aluminum plates with a flat surface are plated as supports 1.
- It is suitable for use in - and a good gas separation membrane can be obtained! Soil. Depending on the shape of the support, it is possible to produce flat or tubular membranes.

次の軽溶媒を除去−する段1侶において、除去される軽
溶ρνの割合は形成される緻密層の厚さに重大な影警゛
を及ぼ→−0即ち、軽1冒゛除去の割合が小さい杵、よ
り博い緻庇層が得られる。蒸発時間及び温度を含む蒸発
条件によって我なるが、よJ、体向な軽溶Wの除去割合
d/θ〜soXが望′まし−が、この範囲ゆ、りtもあ
り得る。%に本発明においては、特定の固不粘度を有す
るポリビニルトリオルガノシランを用することによって
70%以下の除去割合でも気体分離性能を示すj、@台
がある。MK?Jする気体鋳鍋速度は緻密)曽のル2み
に依存するから、こぐ〕軽溶射を除去する段階が気体の
透過速度を制御する上で1]秩である。Ijl、lち、
気体C〕透過速度C〕犬き々膜を得る為には、軽溶媒の
除去量を小宴くし、緻密層σノ厚みをできる限り小さく
すればよいが、他方、史に緻密層を博くすると遂にけ欠
陥部分(ここで伺う欠陥とυ、款なる気体に対して同一
の透過速度を与え、気体相互の分離性能を失った膜の状
態を意味する)を生じるので好ましくない。
In the next step of removing the light solvent, the proportion of the light solvent ρν removed has a significant influence on the thickness of the dense layer formed → -0, i.e., the proportion of the light solvent removed The smaller the pestle, the wider and denser the eaves layer will be. Although it is desirable to have a suitable removal rate of lightly dissolved W, d/θ to soX, although it depends on the evaporation conditions including evaporation time and temperature, it is possible to deviate from this range. In the present invention, by using polyvinyltriorganosilane having a specific solid viscosity, gas separation performance can be achieved even at a removal rate of 70% or less. MK? Since the gas ladle velocity depends on the precise flow rate, the step of removing the light spray is the most important step in controlling the gas permeation rate. Ijl, lchi,
Gas C] Permeation rate C] In order to obtain a dog-like membrane, the amount of light solvent removed should be small and the thickness of the dense layer σ should be made as small as possible. This is undesirable because a defective portion (defects and υ here refer to a state in which the membrane gives the same permeation rate to all gases and loses its ability to separate gases) is undesirable.

従ってこの様な欠陥を生じない程度に軽溶媒の除去量を
制御することが望捷しい。
Therefore, it is desirable to control the amount of light solvent removed to such an extent that such defects do not occur.

凝(l!iJgは重合体溶液をゲル化させる目的に使用
され、又は軽溶媒の蒸発によってゲ/I−の生成が開始
シている場合fullこのゲルの生方yを完了させる目
的に役立つ。従って凝固液U上記の軽溶媒・重溶妙・貧
溶媒と群和し得る溶媒が選はれ、このゲル化処理は溶媒
がi%+−固フイ、ILムからできる限り溶出するまで
続けられる。勿酔この+8脛−禅ハ的又は断続的に実施
できる。凝固液の具体例とし又U、メタノール、エタノ
ール、メタノール−エタノール渭合液、水−メタノール
、水−ジオキサン混合液宿が皐けらtする。浸漬時間は
特に限定せず、ポリマー溶液を梠成する溶媒の大部分が
溶出するに光分な時間であれはよい。一般には、歴温に
おいて0.7〜/時間の浸漬時間で充分である。
The coagulation (l!iJg) is used for the purpose of gelling the polymer solution, or serves the purpose of completing the formation of this gel if the formation of G/I- is initiated by evaporation of the light solvent. Therefore, a solvent that can group together with the light, heavy, and poor solvents mentioned above in the coagulation solution U is selected, and this gelation process is continued until as much of the solvent as possible is eluted from the i% + - solid film and IL. This can be carried out continuously or intermittently.Specific examples of the coagulating liquid include U, methanol, ethanol, methanol-ethanol mixture, water-methanol, water-dioxane mixture. The immersion time is not particularly limited, as long as it is long enough to elute most of the solvent that composes the polymer solution.In general, an immersion time of 0.7 to 1 hour at a historical temperature is sufficient. That's enough.

凝固フィルムQ−゛乾燥は、周囲孟、度又はそれ以−上
の温度で行々うことができるが、必要で応じて一!00
℃以下、好甘しくけ/θ0〜/ど0℃で熱処理すること
もできる。
Drying of the coagulated film can be carried out at ambient temperatures of 100°C or higher, but if necessary lower than 100°C. 00
The heat treatment can also be carried out at temperatures below 0.degree. C., preferably between .theta.0 and 0.degree.

本発明方法により得らハる膜は特に気体の高透過速度に
おいて選択分九性にすぐねており、又実用的な(ヤJ械
的強度と取扱8易さを有しており、混合気体からある気
体をより多くの割合で分離・濃縮する目的で多くqシ分
野に使用できる。
The membrane obtained by the method of the present invention has excellent selectivity, especially at high gas permeation rates, and has practical mechanical strength and ease of handling. It can be used in many fields for the purpose of separating and concentrating a certain gas at a higher rate.

このような膜が利用できる分野は1例えば天然ガスから
のヘリウム2+回収、水素添加ル応のガス流妙)らの水
素の濃縮、空気中の酸素陽動による燃焼用、医療用・廃
水処理等への利用などがあり、酸素、窒素、水素、二酸
化炭素、−酸化炭素、ヘリウム、アルゴン、メタンその
他の気体を含む気体溜合物がらこハらの気体を分Mlす
るのに′逸している。
Fields where such membranes can be used include recovery of helium 2+ from natural gas, concentration of hydrogen in hydrogenated gases, combustion by diversion of oxygen in the air, medical use and wastewater treatment, etc. Gaseous distillates containing oxygen, nitrogen, hydrogen, carbon dioxide, carbon oxide, helium, argon, methane, and other gases are being used to separate large amounts of gases.

以下、本発明を実施例によ−り具体的に説明するが、こ
れら実施例に示でれる特定の物質、方法等によって本発
明が欽定さノアるものではない。
Hereinafter, the present invention will be explained in detail with reference to Examples, but the present invention is not limited to the specific materials, methods, etc. shown in these Examples.

比4悲2汐り / 〜嘔ど ビニルトリメチルシランをn−ブチルリチウムを触媒と
して室温下で重合し、2J′℃シクロヘキサン中の固有
粘度が/、s、2dl/fのポリビニルトリメチルシラ
ンを得だ。
Polyvinyltrimethylsilane was polymerized at room temperature using n-butyllithium as a catalyst to obtain polyvinyltrimethylsilane with an intrinsic viscosity of /, s, and 2 dl/f in cyclohexane at 2 J'°C. .

上記ポリビニルトリメチルシラン’1.Of )ルエン
ーθノ、およびクロロホルム62.3?および−ル/ 
、2./ fを添加して均一溶液を得た。次いで、得ら
れた均一溶液をG−41(孔径/θ〜76μ)のガラス
フィルターで沖禍・してから、50Oμの厚さにフェロ
板上に流延し、所定時間空気中Kv湿温下放向して主と
し1クロロホルムを蒸発尽せて後、膜を7二ロ鈑と共に
室温のメタノール浴中に浸漬した。約7.5′分の後、
膜を省力)ら取り出[、で風乾した。得られた膜の気体
透過速度(以下単KRで示す)の測定法i−1′膜装懺
に本発明の膜を固定し、2!(において於の一方の面に
所定の気体を7.0klj/dゲージに加圧に、一定時
間に膜の他の自力・ら透過流出する気体の量をガスビュ
ーレットで測定した。
The above polyvinyltrimethylsilane '1. Of) Luene-θ, and chloroform 62.3? and - rule/
, 2. /f was added to obtain a homogeneous solution. Next, the obtained homogeneous solution was filtered through a G-41 (pore size/θ ~ 76 μ) glass filter, then cast onto a ferro plate to a thickness of 50 μ, and left in the air at Kv humidity and temperature for a predetermined period of time. After mainly 1 chloroform was evaporated, the membrane was immersed in a room temperature methanol bath together with 72 plates. After about 7.5' minutes,
The membrane was taken out and air-dried. Method for measuring the gas permeation rate (hereinafter referred to as KR) of the obtained membrane i-1' The membrane of the present invention was fixed on a membrane mount, and 2. A predetermined gas was pressurized to 7.0 klj/d gauge on one side of the membrane, and the amount of gas permeating through the other side of the membrane over a certain period of time was measured using a gas burette.

以上の製膜における蒸発φ件および気体透過性能の結果
1d表−7に示1−だ。表−/〃・ら判るようにRO2
(酸素の透過速度を示す)が約/θ−3CC(STP)
 /(d 、 sec −crnHf/  付近75−
ら急激17Ro2/Ry2の比が低下し始め、a−gの
ガラスフィルターで均一溶液をP簿した場合d1高透過
速度側で選択分離性が低下してbる。
The results of the evaporation φ and gas permeation performance in the above film formation are shown in Table 1d-7. As you can see from the table, RO2
(indicating oxygen permeation rate) is approximately /θ-3CC (STP)
/(d, sec -crnHf/ around 75-
The ratio of 17Ro2/Ry2 begins to decrease rapidly, and when the homogeneous solution is filtered through the glass filters a to g, the selective separation decreases on the high permeation rate side of d1.

実施例/ ビニルトリメチルシランをn−ブチルリチウムを触媒と
して重合し、26℃シクロヘキサン中の固有粘度が/、
t7di/yのポリビニルトリとして信越化学社製KF
i#13RTV O,/J−f f加t、 次mでトル
エンz、op、クロロポルム!、す2を加えて溶解した
後に、インブタノール30.2りを添加して均−溶液上
した。次いでミリボアフイ#ターRAWP(孔径/1.
2±o、3p)で溶液を濾過した後に7エロ板上に製膜
して非対称膜を得た。斤おこの時の蒸発時間5分であっ
た。
Example: Vinyltrimethylsilane was polymerized using n-butyllithium as a catalyst, and the intrinsic viscosity in cyclohexane at 26°C was /,
KF manufactured by Shin-Etsu Chemical Co., Ltd. as polyvinyl tri of t7di/y
i#13RTV O, /J-f f addition, next m toluene z, op, chloroporm! After adding and dissolving 2 ml of inbutanol, 30.2 ml of inbutanol was added to form a homogeneous solution. Next, millibore diameter RAWP (pore diameter/1.
After filtering the solution through 2±o, 3p), a membrane was formed on a 7-layer plate to obtain an asymmetric membrane. The evaporation time when the loaf was heated was 5 minutes.

得られた膜の膜厚け、26/μであセ透過速度けRo2
= 、2./ X /θ−”c(sTP)/7−冠−o
nH,。
The thickness of the obtained membrane is 26/μ, and the permeation rate is Ro2.
= ,2. /X/θ-”c(sTP)/7-crown-o
nH,.

RN2−7.7 ×10−’ CC(STP) /7−
 sec −BHIであり速度比けRo2/ RN、 
= 2.7であった。
RN2-7.7 ×10-' CC(STP) /7-
sec -BHI and speed ratio Ro2/RN,
= 2.7.

明ら力・に、高透過速度側でも逆折分離性能が高く、沖
過e)カフ来が表われてbることが判る。
It is clearly seen that the reverse refraction separation performance is high even on the high permeation rate side, and cuff loss appears.

実施例−〜り 、、2!℃シクロヘキザン中の固廟粘度が7.7とdi
/fのポリビニルトリメチルシラン3.Ofとオルガノ
ポリシロキサンとして信越化学社製KE/θ3RTVθ
、り、jyKトルエン/j9およびクロロポルム、/7
.シタを加えて溶解した後、イソブタノールタ、6ノを
加えて均一溶液とした。
Example - 2! The solid viscosity in cyclohexane is 7.7 di.
/f polyvinyltrimethylsilane3. KE/θ3RTVθ manufactured by Shin-Etsu Chemical Co., Ltd. as Of and organopolysiloxane
, ri, jyK toluene/j9 and chloroporum,/7
.. After adding and dissolving the mixture, isobutanol and 6 pieces were added to form a homogeneous solution.

次すでこe〕均−溶g、を実施例/と全< lT5.1
様にし−て製膜し、得られた膜の気体透湿性能は表−2
に示した。
[Next Sudeko e] Uniform melt g, Example / and total < lT5.1
The gas vapor permeability of the membrane obtained is shown in Table 2.
It was shown to.

実施例j 、2!℃シクロヘキサン中q)固有粘度が/、ざ6di
/9のポリビニルトリメチルシラン以外は実施例/と全
く同様にして均−浴数をい1興し、次いて同様にして製
膜した。得られた膜の気体透/ 実施例4においてオルガノポリシロキサンをθ、−!7
用いて均一溶液を調製した以外は全く同様K 1.て製
膜[た。得られた腔の気体透過性能は表−2VC示した
Example j, 2! ℃ q) Intrinsic viscosity in cyclohexane /, 6di
A uniform bath was prepared in exactly the same manner as in Example 1, except that polyvinyltrimethylsilane with a concentration of 9 was used, and then a film was formed in the same manner. Gas permeability of the obtained membrane/In Example 4, the organopolysiloxane was θ, -! 7
Exactly the same except that a homogeneous solution was prepared using K1. film formation [ta]. The gas permeability of the obtained cavity is shown in Table 2VC.

実施例2 坤−溶液を//θθμの厚さに7エロ板上に流延する以
9Sは実施例−と全く同様の均一溶液を用いて製膜して
、表−3(g−示した月−性能を得た。
Example 2 The solution was cast onto a 7-layer plate to a thickness of Moon - obtained performance.

得られた膜の厚さけよ72μであって、充分な機械的強
度を有するために、取扱いが非常に容易であった。しか
も選択分離性能は膜厚が約−倍あっても実施例コで得ら
れた膜とほぼ同等であった。
The resulting film had a thickness of 72 μm and had sufficient mechanical strength, making it very easy to handle. Moreover, the selective separation performance was almost the same as that of the membrane obtained in Example 2 even though the membrane thickness was about - times larger.

実施例?、り 、2!℃シクロヘキサン中の固治粘度が3.ヨ2dll
tのポリビニルトリメチルシランを用いて実施例2と同
様にして得られた均一溶液を100θμの厚さにフェロ
板上に流延して、 Iij様にして製膜した結果は表−
3に示した。実施例7の膜性能と同様に高い選択分離性
を有Uていた。従って膜厚と気体の選択透過性能は鎮関
係であることが判る。
Example? , Ri, 2! The solid viscosity in cyclohexane is 3. Yo2dll
A homogeneous solution obtained in the same manner as in Example 2 using polyvinyltrimethylsilane of T was cast onto a ferro plate to a thickness of 100θμ, and a film was formed in the same manner as Iij. The results are shown in Table-
Shown in 3. The membrane had high selective separation performance similar to that of Example 7. Therefore, it can be seen that there is a strong relationship between membrane thickness and gas selective permeability.

実施例/θ 、2j℃シクロヘギザン中の固有粘度が/、22dl 
/ yであるポリビニルトリメチルシランを用いる以外
は実施例ざと全く同様にして均一溶液を調製して與腰し
た。得られた脱性能の1呆は衣−3に示した。
Example / θ, 2j °C Intrinsic viscosity in cyclohegizan /, 22 dl
A homogeneous solution was prepared and prepared in exactly the same manner as in Example except that polyvinyltrimethylsilane having the following properties was used: The obtained removal performance is shown in Cloth-3.

実施例// 実施例/θにおいて、蒸光[1、・聞分//分とした以
/Aは同様の均一溶液を用いて全く同様シでして製膜(
−た、イむられた月4ごの透コ昂姻U↓纒Rを1A是々
の気体r(ついて測定し、た。(単位は全てcc (S
TP )/  c+イ ・ 9うC−cmH?)■(0
□= 7./ X /θ−4 HN2−2.6×/θ−4 Rco2=/、と×/θ−3 RH2= 、2.j X 1O−3 ROH4= 3./ x 10−’ 一方速度比は Ro2/ kh+2= +2.7 Rco、/丘N2=6.9 R1−1,/ R++2= 7.6 RO)+4 / Rt+2=八96 てパあつTZ。
Example// In Example/θ, vaporization [1, minute//min] was used, and A is a film formed using the same homogeneous solution in exactly the same manner (
- I measured the 4 months of transparent excitement U ↓ 纒 R with 1 A of gas R (all units are cc (S
TP)/c+I・9UC-cmH? )■(0
□=7. /X/θ-4 HN2-2.6x/θ-4 Rco2=/, and x/θ-3 RH2=, 2. j X 1O-3 ROH4=3. / x 10-' On the other hand, the speed ratio is Ro2/kh+2=+2.7 Rco,/hill N2=6.9 R1-1,/R++2=7.6 RO)+4/Rt+2=896 Tepaatsu TZ.

/ / 7・/ /′ / / 7/ // / 7./ /′ / / 7/ /

Claims (3)

【特許請求の範囲】[Claims] (1)最大孔径6 p以下のミクロフィルターでtj過
した高分子膜材料の溶液を用すて製脱すると七を%徴と
する分離膜の製造法
(1) A method for producing a separation membrane that has a 7% characteristic when it is produced using a solution of a polymer membrane material that has been filtered through a microfilter with a maximum pore size of 6 p or less.
(2)分離膜9が気体選択性の緻密層と気体選択性を示
さ彦い多孔層とから構成されている非対称膜である債許
粕求の範囲第1項記載の分^)[膜の製造法
(2) The separation membrane 9 is an asymmetric membrane composed of a dense layer exhibiting gas selectivity and a porous layer exhibiting gas selectivity.
(3)高分子膜材料がポリビニルトリオルガノシラン/
λ量部とオルガノポリシロキサン0.θり〜/重皿部の
混合物である特許請求の卸[f14第1項および第コ項
^己載の分−(を膜の製造法
(3) The polymer membrane material is polyvinyltriorganosilane/
λ amount part and organopolysiloxane 0. The wholesaler of the patent claim which is a mixture of θri~/heavy plate part [f14 paragraph 1 and paragraph
JP58059735A 1983-04-05 1983-04-05 Manufacture of separation membrane Pending JPS59186606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58059735A JPS59186606A (en) 1983-04-05 1983-04-05 Manufacture of separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58059735A JPS59186606A (en) 1983-04-05 1983-04-05 Manufacture of separation membrane

Publications (1)

Publication Number Publication Date
JPS59186606A true JPS59186606A (en) 1984-10-23

Family

ID=13121763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58059735A Pending JPS59186606A (en) 1983-04-05 1983-04-05 Manufacture of separation membrane

Country Status (1)

Country Link
JP (1) JPS59186606A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0238276A2 (en) * 1986-03-17 1987-09-23 Membrane Products Kiryat Weizmann Ltd. Novel membranes and process for making them

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5456985A (en) * 1977-10-14 1979-05-08 Mitsubishi Chem Ind Ltd Gas-separaing membrane
JPS583604A (en) * 1981-06-25 1983-01-10 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− Rapid cooling of reverse osmosis membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5456985A (en) * 1977-10-14 1979-05-08 Mitsubishi Chem Ind Ltd Gas-separaing membrane
JPS583604A (en) * 1981-06-25 1983-01-10 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− Rapid cooling of reverse osmosis membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0238276A2 (en) * 1986-03-17 1987-09-23 Membrane Products Kiryat Weizmann Ltd. Novel membranes and process for making them

Similar Documents

Publication Publication Date Title
US4689267A (en) Composite hollow fiber
JPS5827963B2 (en) Method for manufacturing selectively permeable membrane
JPH0665374B2 (en) Polyimide gas separation membrane containing phenylindane
JPS5854841B2 (en) Method for manufacturing selectively permeable membrane
JPS62723B2 (en)
JPS59209610A (en) Permselective membrane
JPS59209609A (en) Permselective membrane
JPS59225705A (en) Composite membrane and preparation thereof
JPS5959221A (en) Prearation of composite perrmeable membrane for separating gas
JPS63190607A (en) Polyamide separating membrane
JPS6268504A (en) Supported membrane and its production
JPS6178402A (en) Separation of organic liquid mixture
JPS62250929A (en) Semipermeable membrane mainly comprising polycarbonate derived from tetrahalobisphenol
JPS59186606A (en) Manufacture of separation membrane
JP3020120B2 (en) Method for separating hydrogen from gas mixtures using a semipermeable membrane based on polycarbonate derived from tetrahalobisphenol
JPS59225703A (en) Porous membrane and preparation thereof
JPS6274411A (en) Production process for separating membrane
JPS5959220A (en) Preparation of composite permeable membrane for separating gas
KR100198198B1 (en) The method of manufacture of gas separation membrane and gas separation membrane
JPH0112530B2 (en)
JPS587324B2 (en) Manufacturing method of selectively permeable membrane
JPH119976A (en) Separation membrane for unsaturated hydrocarbon and separation method
KR100418859B1 (en) Composition for producing polyethersulfone membrane and method for preparing microfilteration membrane using the same
JPH0338226A (en) Porous separation membrane
KR102693118B1 (en) Water separation membrane, filter for water treatment including same, and method for manufacturing the same