JPS59181538A - Dry-etching apparatus - Google Patents

Dry-etching apparatus

Info

Publication number
JPS59181538A
JPS59181538A JP5375583A JP5375583A JPS59181538A JP S59181538 A JPS59181538 A JP S59181538A JP 5375583 A JP5375583 A JP 5375583A JP 5375583 A JP5375583 A JP 5375583A JP S59181538 A JPS59181538 A JP S59181538A
Authority
JP
Japan
Prior art keywords
mask
light
rays
ultraviolet light
reaction vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5375583A
Other languages
Japanese (ja)
Inventor
Makoto Sekine
誠 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5375583A priority Critical patent/JPS59181538A/en
Publication of JPS59181538A publication Critical patent/JPS59181538A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor

Abstract

PURPOSE:To reduce the loss of ultraviolet rays or X-rays and obtain a high etching speed by a method wherein a mask is provided as a light window of a reaction vessel and the etched material is placed facing the mask closely. CONSTITUTION:A mask 27 is fixed on a wall of a vessel 15. The mask 27 is composed of a substrate 28 made of the material transmitting ultraviolet rays, such as quartz, and a mask pattern 29 formed on the substrate 28 and reflects or absorbs ultraviolet rays. Ultraviolet rays emitted from an Hg-Xe lamp light source 30 are reflected by a mirror 31 and transmitted through a lens 32 and the mask 27 and introduced into the reaction vessel 15. This shadow pattern is transferred to a silicon wafer 16 loaded on a wafer loading table 17 which facilitates X-Y scanning. An X-Y scanning driving mechanism 20 permits required positions of the wafer to be irradiated by ultraviolet rays successively. For instance, chlorine gas is introduced through an introducing pipe 22 and exhausted through an exhaust pipe 24 maintaining the pressure in the reaction vessel 15 approximately 100Torr so that a mask pattern can be formed on the etched material 16 without using a mask.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、紫外光もしくはX線を利用した選択エツチン
グの為のドライエツチング装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a dry etching apparatus for selective etching using ultraviolet light or X-rays.

〔従来技術とその問題点〕[Prior art and its problems]

近年微細化の一途をたどる半導体集積回路の微細加工に
はプラズマエツチング技術が不可決でありその1つとし
て反応性イオンエツチング(RIE)法が主流となって
いる。しかしながらこの種の方法は被エツチング材料を
プラズマにさらすために種々の照射損傷が生じデバイス
の超LSI化に際し問題が多い。そのため無ダメージの
エツチング技術が切望さr’tその1つとして光照射に
より反応性ガスの活性種を生成し7さらに被エツチング
材料の表面を励起しエツチングする方法がある。この方
法は紫外光もしくはX線を用いるため荷電粒子による損
(、%は全くなくなり、また彼エツチング材料の表面が
紫外光もしくけX線で励起されなければエツチングされ
ないと(八う事実より選択的に紫外線もしくはX線を照
射することにより被エツチング材料に密着形成されるレ
ジスト等のマスクなしic >’?=択的にエツチング
できる利点がある。しかしこの方法はエツチング速度が
RIE等に比較し遅いことが実用化の問題となっている
。この原因として光導入系でのレンズ、フィルター等に
よる光の吸収と反応性ガスによる光の吸収により実際の
エツチングに必要な被エツチング材料表面付近まで到達
する紫外光もしくはX線が非常に少なくなる事実がある
。以下実験データより説明する。
Plasma etching technology is indispensable for microfabrication of semiconductor integrated circuits, which are becoming increasingly finer in recent years, and reactive ion etching (RIE) has become mainstream as one of these techniques. However, this type of method exposes the material to be etched to plasma, which causes various types of radiation damage, which causes many problems when the device is fabricated into a very large scale integrated circuit (LSI). Therefore, a damage-free etching technique is desperately needed, and one of them is a method in which active species of a reactive gas are generated by light irradiation, and the surface of the material to be etched is excited and etched. Since this method uses ultraviolet light or X-rays, there is no loss due to charged particles, and it is also selective due to the fact that the surface of the etching material will not be etched unless it is excited by ultraviolet light or X-rays. There is no need for a mask such as a resist that is formed in close contact with the material to be etched by irradiating ultraviolet rays or This is a problem in practical application.The reason for this is that light absorption by lenses, filters, etc. in the light introduction system and light absorption by the reactive gas may cause the light to reach near the surface of the material to be etched, which is necessary for actual etching. There is a fact that the amount of ultraviolet light or X-rays becomes extremely low.This will be explained below based on experimental data.

第2図は光源の1例としてHg  Xeランプからの光
のスペクトルを示したものである。横軸は光の波長、た
て軸はその強度である。○で表示したランプよりの直接
光に比較し、△で表示した従来の導入窓と同じ厚さ5咽
の溶融石英板を通した光は紫外の領域で著しく強度が低
下していることがわかる。エツチングガスとして塩素金
側にとれば、解離には波長280〜400nmの光が必
要なため光導入系での光の吸収は塩素ラジカルのl’に
減少させてエツチング速度ヲ著しく低下させるものであ
る。
FIG. 2 shows the spectrum of light from an Hg Xe lamp as an example of a light source. The horizontal axis is the wavelength of light, and the vertical axis is its intensity. It can be seen that the intensity of light passing through a fused silica plate with the same thickness as the conventional introduction window, shown as a △, is significantly reduced in the ultraviolet region, compared to the direct light from the lamp shown with ○. . If chlorine gold is used as the etching gas, light with a wavelength of 280 to 400 nm is required for dissociation, so the absorption of light in the light introduction system is reduced to l' of chlorine radicals, significantly reducing the etching rate. .

第3図は塩素雰囲気を50咽通過したHg −Xeラン
グよりの光を塩素の圧力に対して測定したものであり、
特に強度変化の犬き力っだ30・2.313.365n
mの光について示した。他の波長の光はこれらに比べ変
化は少なかった。このグラフ、よす100Torr k
lL素中では50瓢進むうちにその光の90%程度が吸
収さn被エツチング材料付近で実際にエツチングに寄与
する光は大幅に低下することになる。これらの事実によ
り従来装置では実用に十分なエツチング速度が得られな
いことが判明した。
Figure 3 shows the measurement of the light from an Hg-Xe rung that has passed through a chlorine atmosphere 50 times against the pressure of chlorine.
Especially the intensity change is 30・2.313.365n
The figure shows the light of m. Light of other wavelengths showed less change than these. This graph is 100 Torr k
Approximately 90% of the light is absorbed as the light travels through the 1L element, and the amount of light that actually contributes to etching decreases significantly near the material to be etched. Due to these facts, it has been found that the conventional apparatus cannot achieve a practically sufficient etching rate.

第4図に従来装置の構成図を示す。Hg−Xeランプ光
源(1)からの光はレンズ(2)、光導入窓(3)を通
過し、さらに反応性ガス(4)雰囲気中のマスク(5)
を西し、マスク(5)に対向配置された被エツチング材
料(6)に照射される。
FIG. 4 shows a configuration diagram of a conventional device. Light from the Hg-Xe lamp light source (1) passes through a lens (2), a light introduction window (3), and then a mask (5) in a reactive gas (4) atmosphere.
The material to be etched (6) placed opposite the mask (5) is irradiated.

ここで光導入窓(3)は光学的な作用はなく単に真空ン
ールとして設けてあり、また光導入窓(3)よりマスク
(5)までの反応性ガス雰囲気(4)はエツチングには
全く寄与していない。そしてこれらはトポした実験デー
タの示すごとくエツチング速度数丁の原因となっている
。また、マスク(5)を反応性ガス中に配置したためマ
スクツ(ターン(7)自体のエツチングやエツチング生
成物の付着が発生し、マスクの劣化が激しいという欠点
も生じた。
Here, the light introduction window (3) has no optical effect and is simply provided as a vacuum hole, and the reactive gas atmosphere (4) from the light introduction window (3) to the mask (5) does not contribute at all to etching. I haven't. As shown in the experimental data, these factors are responsible for the etching speed. Further, since the mask (5) was placed in a reactive gas, etching of the mask (turn (7) itself) and adhesion of etching products occurred, resulting in severe deterioration of the mask.

〔発明の目的〕[Purpose of the invention]

本発明は一ヒ述した従来方法の欠点を改良したものでレ
ジストレスで選択エツチングのできる、照射損傷が少く
、エツチング速度の高いドライエツチング装置?提供す
ることにある。
The present invention improves the drawbacks of the conventional methods mentioned above, and is a dry etching device that can perform selective etching without resisting, has little irradiation damage, and has a high etching speed. It is about providing.

〔発明の概要〕[Summary of the invention]

本発明は紫外光もしくはX線でマスク全通し、反応性ガ
ス雰囲気中の被エツチング材料にマスクのパターンを投
影し破エツチング材料の表面に直接レジスト等でエソチ
ングマスクヲ作成することなく、パターンを形成する装
置において、前記マスクを反応容器の光導入窓として設
置し被エツチ、ング材料をマスクに近接し対向配置させ
ることにより紫外光あるいはX線の損失金低減し高いエ
ツチング速度を得るものである。
In the present invention, ultraviolet light or X-rays are passed through the mask, the mask pattern is projected onto the material to be etched in a reactive gas atmosphere, and the pattern is created directly on the surface of the etching material without creating an etching mask with resist or the like. In the etching apparatus, the mask is installed as a light introduction window in the reaction vessel, and the material to be etched is placed close to and facing the mask, thereby reducing the loss of ultraviolet light or X-rays and achieving a high etching rate. .

〔発明の効果〕。〔Effect of the invention〕.

本発明によればプラズマを用いない照射1μ傷の。According to the present invention, irradiation of 1μ scratches without using plasma.

少いレジストレスドライエツチングが高いエツチング速
度で可能となった。
Dry etching with little resist stress is now possible at high etching speed.

〔発明の実施例〕[Embodiments of the invention]

第5図は本発明の一実施例全説明するための配室図であ
る。図に於いて反応容器(15)内には、破エツチング
材料(16) k載置する載置台(17)が設けられて
おり、この載置台(17)は軸受(18)により支承さ
れた軸(19)を介してX−Y走査のだめの駆動機構(
20)により移動可能となっている。また反応容器(1
5)には、反応性ガス(21)を導入するだめの導入管
(22)がマスフローメータ(233を通して接続され
ており、又排気管(24)を介して高真空時にはクライ
オボング(25)低真空時にはロータリーボング(26
)が接続され排気できるようになっている。
FIG. 5 is a room layout diagram for fully explaining one embodiment of the present invention. In the figure, a mounting table (17) on which a destructive etching material (16) is placed is provided inside the reaction vessel (15), and this mounting table (17) has a shaft supported by a bearing (18). (19) through the X-Y scanning drive mechanism (
20) makes it movable. In addition, the reaction vessel (1
5) is connected to an inlet pipe (22) for introducing the reactive gas (21) through a mass flow meter (233), and is connected to a cryobong (25) at low vacuum through an exhaust pipe (24). Rotary bong (26
) is connected to enable exhaust.

容器(15)壁にはマスク(27)が固定配置されCい
る。
A mask (27) is fixedly arranged on the wall of the container (15).

このマスク(27)は紫外線を透過する溶融石英等の基
板(28)とその表面上に形成された紫外線全反射もし
くは吸収するCr、AL等の金、寓で構成されたマスク
パターン(29)と力ら成っている。さらに容器(15
)外にはtIg−Xeランプ光源(30)が固定配置さ
れており、この光源(30)から発した紫外光fd ミ
ラー(31)で反射されレンズ(32) Kより平行光
線となり、マスク(27)へ照射され、選択的にマスク
(27)全J過する。1再過した紫外光は近接に対向配
置された載置台(17)上の被エツチング材料(16)
に照射される。この装置はステップアンドリピート方式
であって次のような動作を行なう。すなわち。
This mask (27) has a substrate (28) made of fused silica or the like that transmits ultraviolet rays, and a mask pattern (29) formed on the surface of the substrate made of gold such as Cr or AL that totally reflects or absorbs ultraviolet rays. It consists of power. Further containers (15
) A tIg-Xe lamp light source (30) is fixedly placed outside the light source (30), and the ultraviolet light emitted from this light source (30) is reflected by the FD mirror (31), becomes parallel light from the lens (32), and is transmitted to the mask (27). ) and selectively passes through the mask (27). 1. The re-passed ultraviolet light is applied to the material to be etched (16) on the mounting table (17) which is placed close to and opposite to the material to be etched.
is irradiated. This device is a step-and-repeat system and operates as follows. Namely.

Hg−Xeランプ光/M(30)から放出された紫外線
光はミラー(31)で反射さ往てレンズ(32) k経
てマスク(27)を通過し反応容器(15)内に導かれ
る。この影パターンはX−Y走査ヲvffrl!、にす
るつ1)・−載14台(17)上のシリコンウェハー(
16)に転写される。
The ultraviolet light emitted from the Hg-Xe lamp light/M (30) is reflected by the mirror (31), passes through the lens (32), passes through the mask (27), and is guided into the reaction vessel (15). This shadow pattern is an X-Y scan! , silicon wafers (1) on 14 machines (17)
16).

X−Y走査駆・動機構(20)はウニ・・−の所望箇所
全順次紫外線照射するだめの移動機構である。導入管(
22)から例えば塩素ガスが導入され、反応容器(15
)内の圧力全100To rr程度にしながら排気管(
24)から排気することでシリコンからなる破エツチン
グ材料(16)にマスクのパターンをレンスト全用いる
ことなく形成できる。
The X-Y scanning drive/movement mechanism (20) is a moving mechanism for sequentially irradiating all desired locations of the sea urchin with ultraviolet rays. Introductory tube (
For example, chlorine gas is introduced from the reaction vessel (15).
) while reducing the total pressure in the exhaust pipe (
By evacuating air from 24), a mask pattern can be formed on the etching material (16) made of silicon without using the entire length.

本装置において、マスク(27)と被エツチング材料(
16)の距離は実用的なエツチング速度を得るためには
反応性ガス圧力に対し第1図Vこ斜線で示した距離の範
囲に々ければならないことが実験より明らかとなった。
In this apparatus, a mask (27) and a material to be etched (
It has become clear from experiments that the distance 16) must be within the range shown by diagonal lines in FIG. 1, relative to the reactive gas pressure, in order to obtain a practical etching rate.

第6図は上述した装置において200WのHg−Xeラ
ング金用い、リン添加多結晶ノリコン全エツチングした
時のエツチング速度を反応容器内に導入した塩素ガスの
圧力に対して測定したものである。
FIG. 6 shows the etching rate measured against the pressure of chlorine gas introduced into the reaction vessel when phosphorus-added polycrystalline silicon was completely etched using a 200 W Hg-Xe Lang gold in the above-mentioned apparatus.

グラフAは本発明により改良された装fメグラフBは従
来の装置によるデータである。5〜150Torrにわ
たってエツチング速1fが改善されており特に20To
rr以にでは大幅にエツチング速度が向上しさらに塩素
圧力?上げることにより高速のエツチング装置が得らt
する。
Graph A is data obtained by the system improved by the present invention, and graph B is data obtained by a conventional device. The etching speed 1f has been improved from 5 to 150 Torr, especially at 20Torr.
The etching speed is greatly improved and the chlorine pressure is higher than rr. A high-speed etching device can be obtained by increasing the
do.

またマスクパターンが反応容器外に載置されただめマス
クの寿命について実用上全く間ji1がなくなった。
Furthermore, since the mask pattern is placed outside the reaction vessel, there is virtually no time limit to the life of the mask.

〔発明の他の実施例〕[Other embodiments of the invention]

第7図に本発明の他の実施例を示す。本発明は光導入窓
および反応性ガスによる光の損失を低減させ、エツチン
グ速度を向上させるものであるが第6図に示す実〃℃例
はさらに光の通路のうち大部分を占める空気中での光の
損失金低減するものである。先に示した第3図を得た反
応性ガス中の光の吸収を調べる実験において、大気圧の
空気全導入し測定したところ254〜438 nmの紫
外光において平iす10%程度の吸収が見らnた。そこ
でこの空気中での光の損失を少くするためにレンズとマ
スク間をX学にしたものである。第7図において)1g
−、、Xeランプ光源(36)よりの光はその直前のレ
ンズ(37)により平行光線とされ、マスク(38)(
[−通過し選択的に破エツチング材料(39)に照射さ
れる。
FIG. 7 shows another embodiment of the present invention. Although the present invention reduces the loss of light due to the light introduction window and the reactive gas and improves the etching speed, the actual example shown in FIG. It is intended to reduce the loss of light. In an experiment to investigate the absorption of light in a reactive gas that resulted in Figure 3 shown above, all air at atmospheric pressure was introduced and measurements were taken. I didn't see it. Therefore, in order to reduce the loss of light in the air, the distance between the lens and the mask is X-axis. In Figure 7) 1g
-,,The light from the Xe lamp light source (36) is made into parallel light beams by the lens (37) just before it, and the light from the mask (38) (
[- passing through and selectively irradiating the abrasive etching material (39);

ここでレンズ(37)とマスク(38)の間は真空排気
管を通じて真空にされ、この部分での光の損失はなくな
る。またレンズ(37) ’e真空シールに用いている
ため光導入室(40)を真空に保つために新たな光導入
窓などは必要なく本実施例は光の損失金極力低減したも
のとなりその結果第5図に示しだエツチング速度のさら
に数チの向上が認められた。
Here, the space between the lens (37) and the mask (38) is evacuated through the evacuation pipe, and there is no loss of light in this area. In addition, since the lens (37) is used for vacuum sealing, there is no need for a new light introduction window to keep the light introduction chamber (40) in a vacuum, and this embodiment reduces light loss as much as possible. As shown in FIG. 5, an improvement of several orders of magnitude in etching speed was observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、高速エツチングの為のマスクと被エツチング
材料の距離とガス圧の関係を示す特性図、第2図は、従
来装置の欠点を説明するためのHg −Xeラング光源
よりの光のスペクトル分布を示す時性図、第3図は、塩
素の圧力と光の強度の関係を示す特性図、第4図は、従
来装置の構成?示す配置図、第5図は、本発明の一実施
例を説明するための配置図、第6図は、本発明の一実施
例の装置ににおける塩素の圧力とリン添加多結晶ンリコ
ンのエツチング速度の関係ケ示す特性図、第7図は、不
発明の他の実施例の構成を示す配置図である。 l ・LIg−Xeランプ光源、2・・レンズ。 3・・・光導入窓、4・・・反応性ガス、5・・・マス
ク。 (3被エツチング材料、7・・マスクパターン。 8・載置台、9・1駆動軸、10・駆動機構。 11・・反応性ガス導入管、12・・・反応容器。 13  排気管、14  ・駆動軸軸受、15  反応
容器。 16  被エツチング材料、  17−Ri’tlit
台。 18・駆動軸軸受、19 ・駆動軸、20・・・駆動機
構。 21  反応性ガス、22  ガス導入管。 23・−マスフローメータ、24・・・排気v。 25  ・CRYOポンプ排気系。 26・・ロータリーボング排気系、27・・・マスク。 28  ・マスク基板、29  ・マスクパターン。 30−Hg−Xeランプ、31−ミラー、32・・・レ
ンズ。 33・・ダイアフラム真空計、34・・・0リング。 35・・ゲートバルブ、36・・Hg  Xeランプ。 、う7・・レンズ、38  ・マスク、39・・・被エ
ツチング材料。 40・・光導入室、41  ・、駆動軸軸受、42 ・
、駆動機構。 43・・・駆動軸、44 ・・載置台、45・・ダイア
フラムに空計。 46・・反応性ガス導入耐、47  ・排気管。 48・・・排気管。 (7317)弁理士 則 近 憲 佑 (ほか1名) 第1図 象責中61尤爪(m瓜) 第2図 う庚−aヒ  (ンtm) 第3図 鍵の五カ (Torr) 第  4  図 第5図 中 ヘパ 第6図 1漂、!7)五カ(7oとと)
Fig. 1 is a characteristic diagram showing the relationship between the distance between the mask and the material to be etched and the gas pressure for high-speed etching, and Fig. 2 is a characteristic diagram showing the relationship between the distance between the mask and the material to be etched and the gas pressure. Figure 3 is a temporal diagram showing the spectral distribution. Figure 3 is a characteristic diagram showing the relationship between chlorine pressure and light intensity. Figure 4 is the configuration of the conventional device. FIG. 5 is a layout diagram for explaining one embodiment of the present invention, and FIG. 6 is a diagram showing the chlorine pressure and etching rate of phosphorus-added polycrystalline silicon in the apparatus of one embodiment of the present invention. FIG. 7 is a layout diagram showing the structure of another embodiment of the present invention. l ・LIg-Xe lamp light source, 2...lens. 3...Light introduction window, 4...Reactive gas, 5...Mask. (3. Material to be etched, 7. Mask pattern. 8. Mounting table, 9. 1 Drive shaft, 10. Drive mechanism. 11. Reactive gas introduction pipe, 12. Reaction vessel. 13. Exhaust pipe, 14. Drive shaft bearing, 15 Reaction vessel. 16 Material to be etched, 17-Ri'tlit
The stand. 18. Drive shaft bearing, 19. Drive shaft, 20... Drive mechanism. 21 reactive gas, 22 gas introduction pipe. 23.-mass flow meter, 24...exhaust v. 25 ・CRYO pump exhaust system. 26...Rotary bong exhaust system, 27...Mask. 28 - Mask substrate, 29 - Mask pattern. 30-Hg-Xe lamp, 31-mirror, 32...lens. 33...Diaphragm vacuum gauge, 34...0 ring. 35...Gate valve, 36...Hg Xe lamp. , U7... Lens, 38 - Mask, 39... Material to be etched. 40... Light introduction chamber, 41... Drive shaft bearing, 42...
, drive mechanism. 43... Drive shaft, 44... Mounting table, 45... Empty gauge on diaphragm. 46.Reactive gas introduction resistance, 47. Exhaust pipe. 48...Exhaust pipe. (7317) Patent Attorney Noriyuki Chika (and 1 other person) Fig. 1: 61 尤子 (m 瓜) Fig. 2: Uko-ahi (ntm) Fig. 3: The Five Keys (Torr) 4 Figure 5 middle hepa Figure 6 1 drift,! 7) Goka (7o toto)

Claims (4)

【特許請求の範囲】[Claims] (1)反応性ガスが導入されかつ排気される反応容器と
、との寥器内に設けらf″Lだ被エツチング材料全戦1
!する移動可能な@置台と、この載置台を駆動する手段
と、紫外光もしくviX線の透過部及び非透過部を有す
るマスクと、前記マスクの紫外光もしくはX線の透過部
を通して紫外光もしくはX線を前記破エツチング材料へ
照射するだめの照射手段とを具備してなり前記マスクが
前記反応容器内′\の紫外光もしくUX線の導入窓とな
り、前記被エツチング材料が、前記マスクと前記反応性
ガスを介在させC近接して対向配置され、その対向距離
はイ1記反応性ガス圧力に対して第1図で斜線で示した
範囲に設定され、且つ前記マスクのパターンが前記反応
容器外に露出されていることを特徴とするドライエツチ
ング装置。
(1) A reaction vessel into which a reactive gas is introduced and exhausted;
! a movable @ mounting table, a means for driving the mounting table, a mask having an ultraviolet light or viX-ray transmitting part and a non-transmissive part, and an ultraviolet light or irradiation means for irradiating the etching material with X-rays, the mask serves as an introduction window for ultraviolet light or UV rays in the reaction vessel, and the material to be etched is They are placed close to each other and face each other with the reactive gas interposed therebetween, and the opposing distance is set within the range shown by diagonal lines in FIG. A dry etching device characterized by being exposed outside the container.
(2)マスクと紫外光あるいはX線源の間の光路にあた
る空間を真空に排気する手段勿具i捕してなることを特
徴とする特許請求の範囲第1項記載のドライエツチング
装置。
(2) The dry etching apparatus according to claim 1, further comprising means for evacuating a space corresponding to the optical path between the mask and the ultraviolet light or X-ray source.
(3)載置台は加熱または冷却手段全備えたこと分前 特徴とする特許請求の範囲第1項もしくけ第2項に記載
のドライエツチングWf’f。
(3) Dry etching Wf'f according to claim 1 and mechanism 2, wherein the mounting table is completely equipped with heating or cooling means.
(4)マスクは紫外光もしくはX線を透過する基板とこ
の基板表面に形成される紫外光もしくはX線を吸収もし
くは反射する材刺力らなるマスクパターンとから構成さ
れてなることを特徴とする特許請求の範囲第14項、第
2項もしくは第3項に記載のドライエツチング装R1
(4) The mask is characterized by being composed of a substrate that transmits ultraviolet light or X-rays, and a mask pattern formed on the surface of this substrate that is made of a material that absorbs or reflects ultraviolet light or X-rays. Dry etching apparatus R1 according to claim 14, 2 or 3
JP5375583A 1983-03-31 1983-03-31 Dry-etching apparatus Pending JPS59181538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5375583A JPS59181538A (en) 1983-03-31 1983-03-31 Dry-etching apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5375583A JPS59181538A (en) 1983-03-31 1983-03-31 Dry-etching apparatus

Publications (1)

Publication Number Publication Date
JPS59181538A true JPS59181538A (en) 1984-10-16

Family

ID=12951624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5375583A Pending JPS59181538A (en) 1983-03-31 1983-03-31 Dry-etching apparatus

Country Status (1)

Country Link
JP (1) JPS59181538A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101645A (en) * 1987-10-15 1989-04-19 Fujitsu Ltd Evaluation of semiconductor surface

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101645A (en) * 1987-10-15 1989-04-19 Fujitsu Ltd Evaluation of semiconductor surface

Similar Documents

Publication Publication Date Title
EP1026549B1 (en) Processing system adapted for semiconductor device manufacture
US6781685B2 (en) Process and device for in-situ decontamination of a EUV lithography device
EP0714119B1 (en) Pattern forming process and process for preparing semiconductor device utilizing said pattern forming process
JP3127511B2 (en) Exposure apparatus and method of manufacturing semiconductor device
US4643799A (en) Method of dry etching
US20090218521A1 (en) Gaseous neutral density filters and related methods
US5677113A (en) Method for ashing a photoresist resin film on a semiconductor wafer and an asher
US7391498B2 (en) Technique of suppressing influence of contamination of exposure atmosphere
US5347561A (en) X-ray exposure apparatus and semiconductor-device manufacturing method
TW200913008A (en) Substrate processing apparatus and method of manufacturing device
JPS59181538A (en) Dry-etching apparatus
JP4546902B2 (en) Scanning electron microscope
JPS5990930A (en) Method and apparatus for dry etching
US5145649A (en) Apparatus for cleaning an optical element for use with a radiation beam
JP2002252162A (en) X-ray reflection mask, method for protecting the mask, x-ray exposure system and method for manufacturing semiconductor device
JPH0419998A (en) Radiation takeout window
JPS6037733A (en) Dry etching apparatus
JPH10144588A (en) Stepping projection aligner and aligning method
JPS61210634A (en) Apparatus for treatment in vacuum
JP2001015057A (en) Charged particle beam device, and sample supply method for it
JPS60165723A (en) Forming method for fine pattern
JP2002280284A (en) Photomask housing device, photomask frame, photomask unit, projection aligner, method for projection alignment, and method of manufacturing semiconductor device
US6418187B1 (en) X-ray mask structure, and X-ray exposure method and apparatus using the same
JPH0817715A (en) X-ray apparatus using sr light source
JPH0555186A (en) Surface processing method