JPS59180095A - Lubricating oil excessive supply preventing mechanism in compressor - Google Patents

Lubricating oil excessive supply preventing mechanism in compressor

Info

Publication number
JPS59180095A
JPS59180095A JP5465683A JP5465683A JPS59180095A JP S59180095 A JPS59180095 A JP S59180095A JP 5465683 A JP5465683 A JP 5465683A JP 5465683 A JP5465683 A JP 5465683A JP S59180095 A JPS59180095 A JP S59180095A
Authority
JP
Japan
Prior art keywords
chamber
oil
pressure
compression chamber
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5465683A
Other languages
Japanese (ja)
Inventor
Mitsukane Inagaki
稲垣 光金
Isato Ikeda
勇人 池田
Takashi Ban
伴 孝志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Jidoshokki Seisakusho KK
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Jidoshokki Seisakusho KK, Toyoda Automatic Loom Works Ltd filed Critical Toyoda Jidoshokki Seisakusho KK
Priority to JP5465683A priority Critical patent/JPS59180095A/en
Publication of JPS59180095A publication Critical patent/JPS59180095A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/021Control systems for the circulation of the lubricant

Abstract

PURPOSE:To prevent the excessive supply of oil for a compression chamber by a method wherein an oil path is closed by a control valve mechanism provided in an oil supplying path connecting the oil sump and the compression chamber under a condition that the compressor has been stopped. CONSTITUTION:Under a condition that the operation of the compressor is stopped, a pressure in the compression chamber 6 leaks to the side of a suction chamber 9 through a gap formed between a rotor 5 as well as vanes 8...8 and both side plates 3F, 3R, therefore, pressures of respective parts in the compression chamber 6 become the same as a suction pressure. As a result, pressures in a high pressure chamber 23 and a low pressure chamber 24 become the same in the control valve mechanism 21 for opening and closing a path, which is provided in the oil supplying path 20 connecting the oil sump 17 and the compression chamber 6. A spool 22 is energized toward the high pressure chamber 23 by a spring 25 and blocks the oil supplying path 20, therefore, supply of oil for the compression chamber 6 is stopped and the excessive supply of the oil may be prevented.

Description

【発明の詳細な説明】 技術分野 本発明は圧縮機における潤滑油の供給過剰防止機構、更
に具体的には圧縮ガス中より分離されたオイルを利用し
て圧縮室の摺動部を潤滑する様に設けられる潤滑油の供
給機構に関するものである。
Detailed Description of the Invention Technical Field The present invention relates to a mechanism for preventing oversupply of lubricating oil in a compressor, and more specifically, a mechanism for lubricating sliding parts of a compression chamber using oil separated from compressed gas. The present invention relates to a lubricating oil supply mechanism installed in a lubricating oil supply mechanism.

従来技術 圧縮機において、圧縮室の摺動部を潤滑する方法の一つ
として、圧縮ガス中より分離されて分離室(吐出室)d
底部に貯溜されるオイルを同分離室内の圧力を介して圧
縮室に送り込む方法が従来より一般的に用いられている
In conventional compressors, one method of lubricating the sliding parts of the compression chamber is to separate the compressed gas from the compressed gas into a separation chamber (discharge chamber) d.
Conventionally, a method has been commonly used in which oil stored at the bottom is fed into the compression chamber via the pressure within the separation chamber.

しかして上記方法にあっては運転状態より運転を停止し
た場合において、運転停止後においても分離室内に高圧
力状態が残存することに起因してオイルが圧縮室に供給
されてしまうという不具合を生ずる。即ち運転停止後に
圧縮室に供給されたオイルは圧縮室内に滞溜してしまう
ことにより、再起動時において液圧縮を誘発することと
なるのである。
However, in the above method, when the operation is stopped due to the operating state, a high pressure state remains in the separation chamber even after the operation is stopped, resulting in a problem that oil is supplied to the compression chamber. . That is, the oil supplied to the compression chamber after the operation is stopped accumulates in the compression chamber, thereby inducing liquid compression when the engine is restarted.

上記不具合に対する改善案としては、例えばスライドベ
ーン型の圧縮機において、オイル分離室の底部に形成さ
れるオイル溜りと、圧縮室に形成される処のベーンに対
する背圧付与用の給油孔とを連通ずるオイル供給通路中
に開閉弁を設け、同開閉弁を圧縮室の圧縮行程、更に具
体的には吐出孔より吐出される直前の圧力(以下「圧縮
行程末期の圧力Palという)と、分離室内の圧力(吐
出圧)との間に生ずる差圧によって」二記開閉弁を開く
様に設け、これにより圧縮機の運転中はオイル供給通路
が開放状態にあり、圧縮機の運転を停止した状態におい
てオイル供給通路を閉塞し、圧縮室に対するオイルの供
給を停止する方法(特開昭55−134’785号)。
As an improvement plan for the above problem, for example, in a slide vane compressor, the oil reservoir formed at the bottom of the oil separation chamber is connected to the oil supply hole for applying back pressure to the vane formed in the compression chamber. An on-off valve is provided in the oil supply passage, and the on-off valve is connected to the compression stroke of the compression chamber, more specifically, the pressure immediately before being discharged from the discharge hole (hereinafter referred to as "pressure at the end of the compression stroke Pal"), and the pressure in the separation chamber. The on-off valve (2) is opened by the differential pressure generated between the pressure (discharge pressure) of A method of closing the oil supply passage to stop the supply of oil to the compression chamber (JP-A-55-134'785).

あるいはスクIJ、−型の圧縮機において吐出口の連通
部に逆止弁を設け、圧縮機が運転を停止した状態におい
て吐出管路からの逆流を防止する様に設けるとともに吐
出室(分離室)の底部に形成されるオイル溜りと、圧縮
室の圧縮行程(更に具体的には吐出孔近傍位置)とを連
通ずるオイルインジェクション通路を設け、オイル溜り
に貯溜されるオイルを吐出室(分離室)内の吐出圧を介
して圧縮室へ噴射させる方法(実開昭56−13988
2号)等が提案されているのであるが、前者の方法にあ
っては圧縮行程末期の圧JJP2Lと、分離室内の圧力
Pdは常時圧縮行程末期の圧力Paが高いとは限らない
。即ち低速運転にて高圧縮比運転が行なわれた場合には
圧縮行程末期の圧力Paの導圧孔に作用する平均圧力よ
りも分離室内の圧力“Paの方が高くなることがあり(
第12図参照)、この場合には運転時において開閉弁が
開かれないという不具合を生ずる。
Alternatively, a check valve is provided in the communication part of the discharge port in a SKU IJ, - type compressor to prevent backflow from the discharge pipe when the compressor is stopped, and a discharge chamber (separation chamber) is installed. An oil injection passage is provided that communicates the oil reservoir formed at the bottom of the oil reservoir with the compression stroke of the compression chamber (more specifically, the position near the discharge hole), and the oil stored in the oil reservoir is transferred to the discharge chamber (separation chamber). Method of injecting into the compression chamber via the discharge pressure in the
No. 2) etc. have been proposed, but in the former method, the pressure JJP2L at the end of the compression stroke and the pressure Pd in the separation chamber are not always higher than the pressure Pa at the end of the compression stroke. That is, when high compression ratio operation is performed at low speed operation, the pressure "Pa" in the separation chamber may become higher than the average pressure acting on the pressure guiding hole of the pressure Pa at the end of the compression stroke (
(See FIG. 12), in this case, a problem arises in that the on-off valve is not opened during operation.

又後者の方法にあっては圧縮機が運転を停止した状態に
おいて吐出室内に送り込まれた圧縮ガスが吐出孔、圧縮
室を逆流して吸入室方向に逃げてしまうという不具合(
従ってON、OFFが頻繁に繰返される車輌空調用の圧
縮機には適さない)に加えて、圧縮機運転中においても
一部の圧縮ガスが圧縮室へ逆流して再膨張するため動力
損失が大きいという不具合を生ずる。尚吐出室から圧縮
室への逆流を防止する手段としては吐出孔の開口部に吐
出弁を設ける方法(実開昭57−152490号)があ
るが、この様に吐出孔の開口部に吐出弁を設けた場合上
記不具合は解消出来る反面、運転を停止した後において
吐出室と圧縮室間に差圧状態(吐出室〉圧縮室)が維持
されるためオイル溜りのオイルが運転停止後も圧縮室へ
送られてしまうという不具合、即ち同オイルが圧縮室内
に貯溜され再起動時に液圧室を招来するという不具合を
生ずることとなる。
Also, in the latter method, when the compressor is not operating, the compressed gas sent into the discharge chamber flows backward through the discharge hole and the compression chamber and escapes toward the suction chamber (
Therefore, it is not suitable for compressors for vehicle air conditioning, which are frequently turned ON and OFF).In addition, even when the compressor is operating, some compressed gas flows back into the compression chamber and expands again, resulting in a large power loss. This causes a problem. As a means to prevent backflow from the discharge chamber to the compression chamber, there is a method of installing a discharge valve at the opening of the discharge hole (Utility Model Application No. 57-152490). Although the above problem can be resolved if a In other words, the same oil is stored in the compression chamber and causes a hydraulic pressure chamber when the engine is restarted.

発明の目的 本発明は上記の様な従来の実情に鑑みてその改善を試み
たものであって圧縮室の摺動部に対するオイルの供給過
剰を防止すること、更に具体的には信頼性の高いオイル
制御機構を得ることをその目的とするものである。
Purpose of the Invention The present invention is an attempt to improve the conventional situation as described above. The purpose is to obtain an oil control mechanism.

発明の構成 即ち本発明は圧縮機の運転時は圧縮室の摺動部に対する
オイル供給通路を開き、圧縮機がその運転を停止すると
同時にオイル供給通路を閉じる作用を得るべくオイル供
給通路中にオイルの制御弁を設けるに同制御弁の開閉を
圧縮室の圧縮行程と吸入室若しくは圧縮室の吸入行程と
の間に生ずる差圧を利用して開閉させる様に設けること
により、圧縮機の運転が停止すると同時にオイル供給を
遮断し、圧縮室に対するオイルの滞溜を防止するととも
に制御弁の開閉をいかなる運転状態においても確実に開
閉させることが出来る様にしたことをその特徴とするも
のであって、本発明の゛要旨はオイル分離室の底部に形
成するオイル溜りと圧縮室を連通するオイル供給通路と
交差させて開閉弁を進退自在に設け、同開閉弁の両端部
には、圧縮室の圧縮行程に連通ずる高圧室と、吸入室若
しくは圧縮室の吸入行程に連通ずる低圧室を対峙させて
設け、上記開閉弁は圧縮機の停止時において高圧室側に
押圧されてオイル供給通路を閉塞する状態にある様に構
成したことにある。
Structure of the Invention In other words, the present invention opens the oil supply passage to the sliding part of the compression chamber when the compressor is operating, and at the same time closes the oil supply passage when the compressor stops operating. The operation of the compressor can be improved by providing a control valve that opens and closes the control valve using the differential pressure that occurs between the compression stroke of the compression chamber and the suction stroke of the suction chamber or compression chamber. The oil supply is cut off at the same time as the engine stops, thereby preventing oil from accumulating in the compression chamber and ensuring that the control valve can be opened and closed in any operating state. The gist of the present invention is that an on-off valve is provided so as to be movable forward and backward so as to intersect with an oil supply passage that communicates an oil reservoir formed at the bottom of an oil separation chamber with a compression chamber. A high-pressure chamber that communicates with the compression stroke and a low-pressure chamber that communicates with the suction chamber or the suction stroke of the compression chamber are provided facing each other, and the on-off valve is pressed toward the high-pressure chamber when the compressor is stopped, blocking the oil supply passage. The reason is that it is configured so that it is in a state where it can be used.

実施例 以下に本発明の具体的な実施例を例示の図面について説
明する。第1図乃至第4図は第1の実施例、即ちスライ
ドベーン型圧縮機に対する実施例を表わす図面であって
、(1)は圧縮機の外殻を構成するハウジングを示す。
EXAMPLES Specific examples of the present invention will be described below with reference to illustrative drawings. 1 to 4 are drawings showing a first embodiment, that is, an embodiment for a slide vane type compressor, and (1) shows a housing forming the outer shell of the compressor.

同ハウジング(1)は一端に開口部を存して有底円筒状
に形成するリヤハウジング(IR)と、同リヤハウジン
グ(IR)の開口部を被覆するフロントハウジング(I
 F)により形成される。(2)は上記リヤハウジング
(]R)に内蔵するシリンダーブロックであって、同シ
リンダーブロック(2)は前後両端部に開口部を存して
中空円筒状に形成される。(3F) (3R)は上記シ
リンダーブロック(2)の前後両開口部を遮蔽する如く
リヤハウジング(I R)に内蔵する前後一対のサイド
プレートであって、(3F)はフロントサイドプレート
、(3R)はりャサイドプレートを示す。(4)はシリ
ンダーブロック(2)に対してその中心線を偏寄させて
両サイドプレー) (3F) (3R)間に横架する駆
動軸であって、同駆動軸(4)にはローター(5)が一
体的に固Mされる。同ローター(5)はシリンダーブロ
ック(2)に対してその外周壁の一部が上記シリンダー
ブロック(2)の内壁面に対して摺接可能な如く内蔵さ
れ、同ローター(5)の外周壁とシリンダーブロック(
2)の内壁面間には圧縮室(6)が形成される。(7)
・・・は上記ローター(5)に対して4箇所に刻設する
ベーン溝であって、各ベーン溝(7ン・會・はローター
(5)の長手方向、即ち軸方向に対しては第1図に示す
様に前後両端面間に亘って[’]通状に設けられる。そ
して各ベーンh’7 (7)・・・にはその基部に背圧
室(7Yを存してベーン(8)・・・が出没自在に・嵌
挿される。
The housing (1) includes a rear housing (IR) formed into a bottomed cylindrical shape with an opening at one end, and a front housing (IR) that covers the opening of the rear housing (IR).
F). (2) is a cylinder block built into the rear housing (R), and the cylinder block (2) is formed into a hollow cylindrical shape with openings at both front and rear ends. (3F) (3R) is a pair of front and rear side plates built into the rear housing (IR) so as to shield both the front and rear openings of the cylinder block (2), (3F) is a front side plate, (3R) ) Shows the side plate. (4) is a drive shaft installed horizontally between (3F) and (3R) with its center line offset to the cylinder block (2), and the rotor is attached to the drive shaft (4). (5) is solidified integrally. The rotor (5) is built into the cylinder block (2) so that a part of its outer peripheral wall can slide against the inner wall surface of the cylinder block (2), and the outer peripheral wall of the rotor (5) and Cylinder block (
A compression chamber (6) is formed between the inner wall surfaces of 2). (7)
. . . are vane grooves carved at four locations on the rotor (5), and each vane groove (7.0.5) is the first groove in the longitudinal direction of the rotor (5), that is, in the axial direction. As shown in Figure 1, it is provided in a ['] shape between the front and rear end surfaces. Each vane h'7 (7)... has a back pressure chamber (7Y) at its base, and the vane ( 8) ... is inserted and inserted freely.

フロントハウジング(IF)とフロントサイドプレー 
)(3F)間には吸入室(9)が設けられ、フロントサ
イドプレー)(3F)には圧縮室(6)の一端、即ちロ
ーター(5)の回転方向に沿う始端部と相対応して吸入
孔00が開口される。一方圧縮室(6)の他端、即ちロ
ーター(5)の回転方向に沿う終端部と相対応する位置
にはシリンダーブロック(2)の一部を切欠いてリヤハ
ウジング(IR)の内壁面との間に吐出室0])が形成
され、同吐出室α1)と圧縮室(6)の終端部間は吐出
孔(2)によって連通される。0■は同吐出孔02を覆
う吐出弁、′0■′は同吐出弁0坤の開き角度を規制す
るテーナーを示す。
Front housing (IF) and front side play
) (3F) is provided with a suction chamber (9), and the front side play (3F) is provided with a suction chamber (9) corresponding to one end of the compression chamber (6), that is, the starting end along the rotational direction of the rotor (5). Suction hole 00 is opened. On the other hand, a part of the cylinder block (2) is cut out at the other end of the compression chamber (6), that is, at a position corresponding to the terminal end along the rotational direction of the rotor (5), so that it is connected to the inner wall surface of the rear housing (IR). A discharge chamber 0]) is formed therebetween, and the discharge chamber α1) and the terminal end of the compression chamber (6) are communicated through a discharge hole (2). 0■ indicates a discharge valve that covers the discharge hole 02, and '0■' indicates a retainer that regulates the opening angle of the discharge valve 0K.

O→はリヤハウジング(IR)の後壁部とりャサイドブ
レー) (3R)間に形成されるオイルの分離室であっ
て、同分離室04)はりャサイドプレー)(3R)に開
口する通孔Q均を介して上記吐出室0◇と連通ずる如く
設けられ、同通孔00の先端部にはフィルター(l[9
が設けられる。又同分離室(141の下端部には上記フ
ィルター〇〇によって分離されるオイルの溜り部Qカが
形成される。リヤサイドプレー) (3R)の内側面、
即ちローター(5)の後端面との摺接面には給油溝(ハ
)と圧力溝01が刻設される。給油溝(至)と圧力溝0
燵はローター(5)側に設けられるベーン溝(7)の基
部、即ち間部に設けられる背圧室CRTの回転軌跡に沿
って円弧状に設けられる。
O → is the oil separation chamber formed between the rear wall of the rear housing (IR) (3R), and the through hole Q that opens to the separation chamber (04) (3R) is A filter (l[9
is provided. In addition, at the lower end of the separation chamber (141) there is formed a reservoir Q of oil that is separated by the filter 〇〇.The inner surface of the rear side play (3R),
That is, an oil supply groove (c) and a pressure groove 01 are carved in the sliding surface of the rotor (5) that comes into sliding contact with the rear end surface of the rotor (5). Oil supply groove (to) and pressure groove 0
The kettle is provided in an arc shape along the rotation locus of the back pressure chamber CRT provided at the base of the vane groove (7) provided on the rotor (5) side, that is, between the vane grooves (7).

給油溝(ト)は圧縮室(6)の他端、即ちローター(5
)の回転方向に沿う終端部側に吐出孔02と相対応させ
て設けられる。更に具体的には第2図に示す様にベーン
(8)の先端部がトップ位置より圧縮室(6)の始端部
を摺接する状態においてその基部に形成される背圧室C
RTが給油溝(ト)と連通ずる状態が得られる様に設け
られる。そして同給油溝(至)は分離室04の下端部に
形成される前記溜り部αカに対して同温り部Q7)より
立上るオイル供給通路翰を介して連通ずる如く設けられ
る。そして又リヤサイドプレー) (3R)には上記オ
イル供給通路(1)と相対応させて制御弁機構eυが設
けられる。
The oil supply groove (T) is located at the other end of the compression chamber (6), that is, the rotor (5).
) is provided on the terminal end side along the rotational direction so as to correspond to the discharge hole 02. More specifically, as shown in FIG. 2, when the tip of the vane (8) slides into contact with the starting end of the compression chamber (6) from the top position, a back pressure chamber C is formed at the base of the vane (8).
It is provided so that RT can communicate with the oil supply groove (G). The oil supply groove (to) is provided so as to communicate with the reservoir part α formed at the lower end of the separation chamber 04 via an oil supply passage extending up from the same temperature part Q7. Also, a control valve mechanism eυ is provided in the rear side play (3R) in correspondence with the oil supply passage (1).

同制御弁機構e◇にはスプール翰が上記オイル供給通路
翰と交差する方向に向けて摺動自在に設けられ、同スブ
ー、ル(イ)の両端部には高圧室(ハ)と低圧室(ハ)
が対峙させて設けられる。そして高圧室(社)は導圧孔
げを介して圧縮室(6)の圧縮行程寄り位置に連通し、
又低圧室(財)は導圧孔(ハ)′を介して圧縮室(6)
の吸入行程寄り位置に連通ずる如く設けられる。そして
低圧室(ハ)にはばね(ハ)が介装され、常時は高圧室
り方向に向けて付勢されて上記オイル供給通路翰を閉塞
する状態にある様に設けられる。
The control valve mechanism e◇ is provided with a spool handle that is slidable in a direction intersecting the oil supply passage handle, and a high pressure chamber (c) and a low pressure chamber are located at both ends of the spool (a). (c)
are set up facing each other. The high pressure chamber (6) communicates with the compression chamber (6) at a position closer to the compression stroke via the pressure hole.
Also, the low pressure chamber (F) is connected to the compression chamber (6) via the pressure conducting hole (C)'.
It is provided so as to communicate with the intake stroke at a position near the suction stroke. A spring (C) is interposed in the low pressure chamber (C), and is normally biased toward the high pressure chamber to close the oil supply passageway.

一方圧力溝0りは上記給油溝a枠と連続する如くロータ
ー(5)の回転方向に沿う始端部側、即ちトップ位置よ
り吸入孔00の開口部と相対応する位置にかけて設けら
れる。そして同圧力溝0Iは導圧路(ハ)を介して圧縮
室(6)の圧縮行程と連通ずる如く設けられる。
On the other hand, the pressure groove 00 is provided so as to be continuous with the oil supply groove a frame from the starting end side along the rotational direction of the rotor (5), that is, from the top position to a position corresponding to the opening of the suction hole 00. The pressure groove 0I is provided so as to communicate with the compression stroke of the compression chamber (6) via a pressure guiding path (c).

第5図乃至第9図は第2の実施例、即ちスクリーー型圧
縮機に対する実施例を表わす図面であって、(3]、F
)はフロントハウジング、(31R)はリヤハウジング
、0ノはシリンダーブロックであって、同シリンダーブ
ロック0ツとフロントハウジング(31F)間にはフロ
ントサイドプレート(33F)が介装され、又シ1)ン
ダーブロノク0のとリヤハウジング(31R)間にはり
ャサイドプレー)(33R)が介装される。
5 to 9 are drawings showing a second embodiment, that is, an embodiment for a scree type compressor, (3], F
) is the front housing, (31R) is the rear housing, and 0 is the cylinder block. A front side plate (33F) is interposed between the cylinder block 0 and the front housing (31F), and 1) A rear side play (33R) is interposed between the rear housing (31R) and the rear housing (31R).

フロントサイドプレー)(33F)とフロントハウジン
グ(31F)間にはフロントベアリング室(34F)が
股C″Iられ、又リヤサイドブレー)(33R)にはリ
ヤベアリング室(34R)が設けられる。そして両ベア
リング室(a 4F) (34R)には各一対の軸受は
部(35F) (35F) 、(35R) (35R)
が対峙させて設けられ、各軸受は部(35F) (35
R)、(35F)(35R)には一対のローターが平行
させて横架される。同ローターは螺旋方向に沿って複数
本の凸条を突設するオスローター(36A)と、同じく
螺旋方向に沿って複数本の四条を刻設するメスローター
(36B)より成り、両口−ター (36A) (36
B)は上記凸条及び四条を選択的に噛合させることが可
能な如く設けられる。
A front bearing chamber (34F) is provided between the front side brake (33F) and the front housing (31F), and a rear bearing chamber (34R) is provided in the rear side brake (33R). Each pair of bearings is in the bearing chamber (a 4F) (34R).
are provided facing each other, and each bearing has a section (35F) (35
R), (35F) and (35R), a pair of rotors are horizontally suspended in parallel. The rotor consists of a male rotor (36A) with a plurality of protruding ridges protruding along the helical direction, and a female rotor (36B) with a plurality of four ridges engraved along the helical direction. (36A) (36
B) is provided so that the protruding stripes and the four stripes can be selectively engaged with each other.

又シリンダーブロック0■の中空部には同ブロック6カ
の内壁面と」二記両ローター(36A)(36B)間に
形成される隙間内に圧縮室(ロ)が形成され、且つ同圧
縮室(ロ)と連通させて吸入室(ト)か形成される。
In addition, in the hollow part of cylinder block 0, a compression chamber (b) is formed in the gap formed between the inner wall surface of cylinder block 6 and the two rotors (36A) (36B). A suction chamber (g) is formed by communicating with (b).

そして(至)′は吸入口を示す。And (to)' indicates the inlet.

一方リャハウジング(31R)とりャサイドプレート(
33R)間には吐出室−が形成される。同吐出室09は
吐出孔−を介して前記圧縮室(ロ)と連通ずる如く設け
られ、同吐出孔輪の吐出室翰側の開目端には吐出弁(4
1)が、吐出室(ト)方向に向けて開くことが可能な如
く設けられる。そして(41fは同吐出弁03の開き角
度調整用のりテーナーを示す。
On the other hand, the rear housing (31R) and the rear side plate (
33R) A discharge chamber is formed between the two. The discharge chamber 09 is provided so as to communicate with the compression chamber (B) through a discharge hole, and a discharge valve (4) is provided at the open end of the discharge hole ring on the discharge chamber side.
1) is provided so as to be able to open toward the discharge chamber (G). (41f indicates a glue retainer for adjusting the opening angle of the discharge valve 03.

同吐出室(2)には上記吐出弁(4])及びリテーナ−
(4]yを囲繞する如くフィルター02が設けられ、底
部には分離オイルの溜り部θ榎が形成される。溜り部輪
からはりャサイドプレート(33R)及びシリンダーブ
ロック0→内を貫通させてオイル供給通路−が延設され
、その先端部は圧縮室艷に臨む如く設けられる。そして
同オイル供給通路(ロ)と相対応させて制御弁機構に)
が設けられる。
The discharge chamber (2) has the above-mentioned discharge valve (4]) and a retainer.
(4) A filter 02 is provided to surround y, and a separated oil reservoir θ is formed at the bottom.The filter 02 is passed from the reservoir ring through the side plate (33R) and the inside of the cylinder block 0. An oil supply passage is extended, and its tip is provided so as to face the compression chamber.The oil supply passage (b) corresponds to the control valve mechanism.
is provided.

制御弁機構(ハ)において上記オイル供給通路■と交差
させてスプールθ傍が進退自在に設けられ、同スプール
θΦの両端部には高圧室θカと低圧室■が対峙させて設
けられる。そして高圧室0ηは導圧孔θrを介して圧縮
室(ロ)の圧縮行程と連通ずる如く設けられ、又低圧室
■は導圧孔(7)′を介してフロントベアリング室(3
4F)及び吸入室(ハ)と連通ずる如く設けられる。そ
して又同低圧室(財)にほぼねθ値が介装され、常時は
スプール(ト)を高圧室07)方向に付勢して上記オイ
ル供給通路−を遮断する状態にある様に設けられる。
In the control valve mechanism (c), a spool θ is provided so as to be movable forward and backward so as to intersect with the oil supply passage (3), and a high pressure chamber θ and a low pressure chamber (2) are provided facing each other at both ends of the spool θΦ. The high pressure chamber 0η is provided so as to communicate with the compression stroke of the compression chamber (B) through the pressure guiding hole θr, and the low pressure chamber (2) is connected to the front bearing chamber (3) through the pressure guiding hole (7)'.
4F) and the suction chamber (c). In addition, approximately θ value is interposed in the low pressure chamber, and the spool is normally biased toward the high pressure chamber 07 to block the oil supply passage. .

上記オイル供給通路0→からは制御弁機構(ハ)よりも
圧縮室(ロ)寄り位置より複数本のオイル供給通路(5
0F)(50R)が分岐延設され、その一方のオイル供
給通路(5oF)はフロントベアリング室(34F)に
臨む如く設けられ、又もう一方のオイル供給通路(50
R)はリヤベアリング室(34R)に臨む如く設けられ
る。
From the oil supply passage 0→, there are multiple oil supply passages (5) from a position closer to the compression chamber (B) than the control valve mechanism (C).
0F) (50R) are branched and extended, one oil supply passage (5oF) is provided facing the front bearing chamber (34F), and the other oil supply passage (50F) is provided so as to face the front bearing chamber (34F).
R) is provided facing the rear bearing chamber (34R).

第1O図及び第11図は第3の実施例、即ち上記実施例
と同じくスクIJ、−型圧縮機に対する実施例を表わす
図面であって、オイル供給通路(財)と交差させて制御
弁機構(ハ)′が設けられる。開制御弁機構イにおいて
上記供給通路θ→中にテーパー状に形成する弁座(51
)を設けるに同弁座(51)はその絞り方向を圧縮室(
ロ)方向に向けて(溜り部−側に大径部を形成し、圧縮
室(ロ)側に小径部を形成する。)設けられ、同大径部
にはボール弁(52)が遊転自在に封入される。そして
又開制御弁機構θ句′には上記弁座(51)と相対応さ
せてスプール(53)が進退自在に設けられる。更に具
体的には同スプール(53)より突片(53ブが延設さ
れ、その先端部は弁座(51)内に臨む如く設けられる
。そして同スプール■の両端部には高圧室0ηと低圧室
(ハ)が対峙させて設けられる。更に具体的には突片(
5:gを延設する側に低圧室(財)が設けられ、同低圧
室θ秒は導圧孔イを介してフロントベアリング室(34
F)及び吸入室(至)と連通ずる如く設けられる。又高
圧室θ乃は導圧孔θカ′を介して圧縮室(ロ)の圧縮行
程と連通ずる如く設けられる。
FIGS. 1O and 11 are drawings showing a third embodiment, that is, an embodiment for an IJ-type compressor similar to the above embodiment, in which the control valve mechanism is (c)' is provided. In the open control valve mechanism A, a valve seat (51) formed in a tapered shape in the supply passage θ→
), the valve seat (51) has its throttle direction aligned with the compression chamber (
A ball valve (52) is provided in the direction (a large diameter part is formed on the reservoir side and a small diameter part is formed on the compression chamber (b) side), and a ball valve (52) is installed in the large diameter part. Enclosed freely. Further, a spool (53) is provided in the opening control valve mechanism θ' in correspondence with the valve seat (51) so as to be movable forward and backward. More specifically, a projecting piece (53) is extended from the spool (53), and its tip is provided so as to face the inside of the valve seat (51).The spool (2) has a high pressure chamber 0η and a high pressure chamber 0η at both ends. Low pressure chambers (c) are provided facing each other.More specifically, protrusions (c) are provided.
5: A low pressure chamber is provided on the side where g is extended, and the low pressure chamber θ is connected to the front bearing chamber (34
F) and the suction chamber (to). Further, the high pressure chamber θ is provided so as to communicate with the compression stroke of the compression chamber (b) via the pressure guiding hole θ.

次にその作用について説明する。第1図乃至第4図に示
す第1の実施例において、圧縮機が停止した状態におい
ては圧縮機内の各部、即ち吸入室(9)、圧縮室(6)
、吐出室01)、分離室0→の各部は夫々その圧力がそ
の圧力がバランスした状態にある。又制御弁機構Qυに
おいても高圧室(ハ)と低圧室(ハ)の圧力はバランス
した状態にあり、スプール勾ははね(ハ)を介して高圧
室(ハ)方向に向けて付勢されてオイル供給通路(1)
を閉塞する状態にある。
Next, its effect will be explained. In the first embodiment shown in FIGS. 1 to 4, when the compressor is stopped, each part inside the compressor, namely the suction chamber (9), the compression chamber (6)
, the discharge chamber 01), and the separation chamber 0→ are in a state where their respective pressures are balanced. Also, in the control valve mechanism Qυ, the pressures in the high pressure chamber (C) and low pressure chamber (C) are in a balanced state, and the spool gradient is urged toward the high pressure chamber (C) via the spring (C). Oil supply passage (1)
is in a state of occlusion.

そして」−記の様に圧縮機が停止した状態より、電磁ク
ラッチ(図示省略)の接続操作を介して駆動軸(4)を
回転駆動させることにより、ローター(5)及びベーン
(8)・・・の回転作用を介して吸入室(9)内の冷媒
ガスを吸入孔OQより圧縮室(6)内に吸引する作用が
得られる。そしてこの様にして圧縮室(6)内に吸引さ
れた冷媒ガスは圧縮室(6)内を吸入側より吐出側に向
けて送られる間に次第に圧縮される。そして吐出孔(イ
)位置迄圧送された冷媒ガスは吐出孔02、吐出室01
)、通孔00を経て分・熱室04)内に送り込まれる。
Then, when the compressor is stopped as shown in the figure, the rotor (5) and vane (8) are rotated by rotating the drive shaft (4) by connecting an electromagnetic clutch (not shown). The effect of sucking the refrigerant gas in the suction chamber (9) into the compression chamber (6) through the suction hole OQ is obtained through the rotational action of . The refrigerant gas sucked into the compression chamber (6) in this manner is gradually compressed while being sent from the suction side to the discharge side within the compression chamber (6). Then, the refrigerant gas pressure-fed to the discharge hole (a) position is discharged through the discharge hole 02 and the discharge chamber 01.
), and is fed into the heating chamber 04) through the through hole 00.

分離室04)内に送り込まれた冷媒ガスは間部において
オイルが分離され、オイルは溜り部0乃に貯溜される一
方、冷媒ガスは吐出口1より吐出管路内を凝縮器(図示
省略)方向に向け1て送り出される。そしてこの様な圧
縮作用が得られることにより同圧縮室(6)内には吸入
行程と圧縮行程との間に圧力差が生ずることとなるので
あるが、制御弁機構Qノにおいて高圧室(ハ)は導圧孔
(ハ)′を介して圧縮室(6)の圧縮行程と連通し、又
低圧室(ハ)は導圧孔(ハ)′を介して圧縮室(6)の
吸入行程と連通していることにより、圧縮室(6)にお
いて吸入行程と圧縮行程との間に生ずる圧力差がばね(
ハ)の設定用を上回った状態においてスプール(イ)は
はね(ハ)の付勢圧に打ち勝って低圧室(ハ)方向に向
けて押圧されてオイル供給通路翰を開放する状態が得ら
れる。オイル供給通路(イ)が開放されることにより、
分離室04)の溜り部θ乃に貯溜されるオイルは同分離
室04)内の圧力を介してオイル供給通路(1)内を押
し上げられてベーン溝(7)に供給される。そしてこの
様にしてオイルがベーン溝(7)に供給されることによ
り各ベーン(8)・・・に対して背圧を付与し、各ベー
ン(8)・・・を圧縮室(6)内に押し出す作用が得ら
れるとともに各ベーン溝(7)とベーン(8)間におけ
る潤滑作用及びシール作用が得られる。
Oil is separated from the refrigerant gas sent into the separation chamber 04), and the oil is stored in the reservoir 0, while the refrigerant gas flows through the discharge pipe from the discharge port 1 to the condenser (not shown). It is sent out in one direction. Since such a compression effect is obtained, a pressure difference is generated in the compression chamber (6) between the suction stroke and the compression stroke, but a high pressure chamber (HA) is generated in the control valve mechanism Q. ) communicates with the compression stroke of the compression chamber (6) through the pressure guiding hole (c)', and the low pressure chamber (c) communicates with the suction stroke of the compression chamber (6) through the pressure guiding hole (c)'. Due to the communication, the pressure difference that occurs between the suction stroke and the compression stroke in the compression chamber (6) is reduced by the spring (
When the pressure in C) exceeds the setting value, the spool (A) overcomes the biasing pressure of the spring (C) and is pushed toward the low pressure chamber (C), opening the oil supply passageway. . By opening the oil supply passage (a),
The oil stored in the reservoir θ of the separation chamber 04) is pushed up through the oil supply passage (1) through the pressure within the separation chamber 04) and is supplied to the vane groove (7). By supplying oil to the vane groove (7) in this way, back pressure is applied to each vane (8), and each vane (8) is moved into the compression chamber (6). A pushing action is obtained, and a lubrication action and a sealing action are obtained between each vane groove (7) and the vane (8).

一方圧縮機の運転を停止させた場合において、圧縮室(
6)内の圧力はローター(5)及びベーン(8)・・・
と両サイドプレー) (3F)(3R)間覧形成される
隙間を経て吸入室(9)側にリークしてしまうことによ
り圧縮室(6)内の各部(吸入行程及び圧縮行程)は吸
入圧と同圧状態となる。
On the other hand, when the compressor operation is stopped, the compression chamber (
6) The pressure inside the rotor (5) and vane (8)...
(3F) (3R) (3F) (3R) As a result of leakage to the suction chamber (9) side through the gap formed, each part (suction stroke and compression stroke) in the compression chamber (6) is under suction pressure. The pressure is the same as that of

そしてこの様に圧縮室(6)内の各部が吸入圧と同圧状
態となることにより、制御弁機構0])において高圧室
(財)と低圧室(ハ)は同圧状態となる。即ちスプール
(イ)は再ひばね(ハ)により高圧室の方向に付勢され
てオイル供給通路翰を閉塞する状態が得られる。オイル
供給通路(ホ)が閉塞されることにより圧縮機が運転を
停止した状態においてベーン溝(7)に対するオイルの
供給が停止され、ベーン溝(7)に対する。オイルの供
給過剰を防止することが出来る。即ち供給過剰となった
オイルが圧縮室(6)内に滞溜することを防止すること
が出来、これにより再起動時における液圧縮の発生を防
止することが出来る。
Since each part in the compression chamber (6) is brought to the same pressure state as the suction pressure in this way, the high pressure chamber (1) and the low pressure chamber (c) in the control valve mechanism 0]) are brought to the same pressure state. That is, the spool (A) is biased toward the high pressure chamber by the spring (C), and a state is obtained in which the oil supply passageway is closed. When the oil supply passage (e) is blocked, the supply of oil to the vane groove (7) is stopped when the compressor is stopped, and the oil supply to the vane groove (7) is stopped. Oversupply of oil can be prevented. That is, it is possible to prevent excess oil from accumulating in the compression chamber (6), thereby preventing the occurrence of liquid compression at the time of restart.

第5図乃至第9図に示す第2の実施例において、圧縮機
が停止した状態においては吸入室(ハ)、圧縮室(ロ)
、吐出室に)の各部は同圧状態にあることにより、制御
弁機構(ハ)′において高圧室o71と低圧室(ハ)は
同圧状態にある。即ちスプール(ト)はばねθ呻により
高圧室t4カ方向に付勢されてオイル供給通路−を閉塞
する状態にある。
In the second embodiment shown in FIGS. 5 to 9, when the compressor is stopped, the suction chamber (c) and the compression chamber (b)
, the discharge chamber) are in the same pressure state, so that the high pressure chamber o71 and the low pressure chamber (c) in the control valve mechanism (c)' are in the same pressure state. That is, the spool (T) is biased toward the high pressure chamber t4 by the spring θ, and is in a state of closing the oil supply passage.

上記の様に圧縮機が停止した状態より、電磁フラノ千(
図示省略)の接続操作を介してオスローター(36A)
、メスローター(3a B)を駆動させることにより両
口−ター(36A) (36B)の噛合回転を介して吸
入室(9)内の冷媒ガスを圧縮室(ロ)内に吸引し、同
圧縮室(財)内を吐出室(ト)方向に向けて圧送する作
用、即ち同冷媒ガスを圧縮する作用が得られる。そして
この様にして圧縮室(ロ)内を終端位置迄圧送された冷
媒ガスは吐出孔■を経て吐出室(ハ)内に送り込まれる
。吐出室(ハ)内に送り込まれた冷媒ガスは同吐出室(
ハ)内においてオイルが分離され、オイルは溜り部θ■
に貯溜される一方、冷媒ガスは吐出管路内を凝縮器(図
示省略)方向に向けて送り出される。
As mentioned above, when the compressor is stopped, the electromagnetic flannel
male rotor (36A) through the connection operation of
By driving the female rotor (3a B), the refrigerant gas in the suction chamber (9) is sucked into the compression chamber (b) through the meshing rotation of the two-end rotors (36A) and (36B), and the refrigerant gas is compressed. This provides an effect of forcefully feeding the inside of the chamber toward the discharge chamber (G), that is, an effect of compressing the refrigerant gas. The refrigerant gas thus forced into the compression chamber (B) to the terminal position is sent into the discharge chamber (C) through the discharge hole (3). The refrigerant gas sent into the discharge chamber (c) is
The oil is separated in c), and the oil is stored in the pool θ■
While the refrigerant gas is stored in the discharge pipe, the refrigerant gas is sent out toward a condenser (not shown).

そして制御弁機構θQ′において高圧室θカは導圧孔0
7yを介して圧縮室(ロ)と連通状態にあることにより
圧縮室(ロ)の吐出孔00近傍部における圧力かばねG
I[相]の設定圧を上回った状態においてスプール顛は
はねθつの付勢圧に打ち勝って低圧室(ハ)方向に向け
て押圧されてオイル供給通路−を開放する状態が得られ
る。オイル供給通路θ→が開放されることにより吐出室
(ト)の溜り部θ榎に貯溜されるオイルは同吐出室(イ
)内の圧力を介してオイル供給通路θ→内を押し上げら
れて圧縮室(ロ)内に供給される。そして圧縮室(イ)
内に供給されたオイルは両口−ター(36A) (36
B)と圧縮室(ロ)の内壁面間及び両口−ター(3a 
A) (36B)の噛合部における潤滑及びシール作用
が得られる。
In the control valve mechanism θQ', the high pressure chamber θ is the pressure guiding hole 0.
By being in communication with the compression chamber (b) through 7y, the pressure spring G in the vicinity of the discharge hole 00 of the compression chamber (b)
When the set pressure of phase I is exceeded, the spool head overcomes the urging pressure of θ and is pressed toward the low pressure chamber (c), thereby opening the oil supply passage. When the oil supply passage θ→ is opened, the oil stored in the reservoir θ of the discharge chamber (G) is pushed up inside the oil supply passage θ→ by the pressure in the discharge chamber (A) and compressed. Supplied into the chamber (b). and compression chamber (a)
The oil supplied inside the tank is connected to both ports (36A) (36
Between the inner wall surfaces of B) and the compression chamber (B) and between both ports (3a
A) Lubrication and sealing action at the meshing part (36B) can be obtained.

又オイル供給通路■内を押し上げられたオイルの一部は
同オイル供給通路θ→より分岐し、オイル供給通路(5
0F) (50F()内を圧送されてフロントベア 1
Jンク室(34F)及びリヤベアリング室(34R)に
送り込まれ軸受は部(35F) (35R)を潤滑する
作用が得られる。
In addition, a part of the oil pushed up inside the oil supply passage ■ branches from the same oil supply passage θ → to the oil supply passage (5
0F) (Front Bear 1
The bearing is fed into the J tank chamber (34F) and the rear bearing chamber (34R) and has the effect of lubricating the bearing parts (35F) (35R).

一方圧縮機の運転を停止させた場合において、圧縮室(
6)内の圧力は吸入圧と同圧状態に戻ることにより、制
御弁機構0句において高圧室071と低圧室0→はその
圧力がバランスする。即ちスプール00ははねθつの付
勢圧により高圧室0乃方向に向けて押圧されてオイル供
給通路04を閉塞する状態が得られる。
On the other hand, when the compressor operation is stopped, the compression chamber (
6) By returning the internal pressure to the same pressure state as the suction pressure, the pressures of the high pressure chamber 071 and the low pressure chamber 0→ are balanced in the control valve mechanism 0 clause. In other words, the spool 00 is pressed toward the high pressure chamber 0 by the urging pressure of θ, so that a state is obtained in which the oil supply passage 04 is closed.

第10図及び第11図に示す第3の実施例において圧縮
機の運転時、制御弁機構00′においてスプール(5の
は高圧室17)と低圧室0椋間に生ずる差圧により低圧
室(ハ)方向に押圧された状態、即ち低圧室(財)側に
設けられる突片(5りによってボール弁(5→を弁座(
5拍より離れる方向に押圧し、オイル供給通路θ→を連
通ずる状態が得られる。又運転を停止した場合において
高圧室θカと低圧室(ハ)の圧力は吸入圧と同圧状態に
てバランスし、高圧室θη及び低圧室(財)のいずれの
方向にも自由にスライド可能な状態が得られる一方、吐
出室(至)には吐出圧力が残溜していることにより、上
記吐出室(至)と高圧室0乃及び低圧室に)間には圧力
差が生じることになるのであるが、この圧力差によって
ボール弁0→は弁座(5])に密着する方向に押圧され
てオイル供給通路θ→を閉塞する状態が得られる。
In the third embodiment shown in FIGS. 10 and 11, during operation of the compressor, the pressure difference generated between the spool (5 is the high pressure chamber 17) and the low pressure chamber 0 in the control valve mechanism 00' causes the low pressure chamber ( In the state of being pressed in the direction (C), the ball valve (5 →
By pressing in the direction away from 5 strokes, a state is obtained in which the oil supply passage θ→ is communicated. In addition, when the operation is stopped, the pressure in the high pressure chamber θη and the low pressure chamber (c) is balanced at the same pressure as the suction pressure, and the high pressure chamber θη and the low pressure chamber (c) can freely slide in any direction. On the other hand, since the discharge pressure remains in the discharge chamber (to), a pressure difference will occur between the discharge chamber (to) and the high pressure chamber (0 to low pressure chamber). However, due to this pressure difference, the ball valve 0→ is pressed in a direction in which it comes into close contact with the valve seat (5]), and a state is obtained in which the oil supply passage θ→ is closed.

効果 本発明は以上の様に構成されるものであって、上記の様
に圧縮室において圧縮された冷媒ガス中より分離された
オイルを圧縮室の摺動部に供給することにより同摺動部
の潤滑及びシール作用を得る様に設けられる圧縮機にお
いて、上記オイルの溜り部と圧縮室をつなぐオイル供給
通路中に同通路開閉用の制御弁機構を設け、圧縮機の運
転時は圧縮室の圧縮行程と吸入室、あるいは圧縮室の吸
入行程間(圧縮機内で差圧がっけばよいのであって圧縮
行程初期と末期としてもよい)に生ずる差圧を介してオ
イル供給通路を開放することにより圧縮室に対してオイ
ルを供給する作用が得られ、又圧縮機が運転を停止した
状態においては、ばねの付勢圧あるいは吐出室(分離室
)の圧、力によりオイル供給通路を閉塞し、圧縮室に対
するオイルの供給を遮断する作用が得られる様に設けた
ことにより、圧縮室に対するオイルの供給過剰を防止す
ることが出来るに至った。即ち運転停止状態において圧
縮室に対してオイルが供給され、同オイルが圧縮室内に
滞溜することに起因して発生する処の液圧縮を効果的に
防止することが出来るに至った。
Effect The present invention is constructed as described above, and by supplying the oil separated from the refrigerant gas compressed in the compression chamber to the sliding portion of the compression chamber, In a compressor that is installed to obtain lubrication and sealing effects, a control valve mechanism for opening and closing the oil supply passage connecting the oil reservoir and the compression chamber is installed to open and close the oil supply passage, and when the compressor is operating, the oil supply passage connects the oil reservoir and the compression chamber. Opening the oil supply passage through the differential pressure that occurs between the compression stroke and the suction chamber, or between the suction stroke of the compression chamber (as long as there is a differential pressure within the compressor, it may also be at the beginning and end of the compression stroke). This provides the effect of supplying oil to the compression chamber, and when the compressor is not operating, the oil supply passage is blocked by the biasing pressure of the spring or the pressure and force of the discharge chamber (separation chamber). By providing an effect of blocking the supply of oil to the compression chamber, it has become possible to prevent excessive supply of oil to the compression chamber. In other words, it has become possible to effectively prevent liquid compression that would otherwise occur due to oil being supplied to the compression chamber in the stopped state and the oil remaining in the compression chamber.

又本発明にあっては運動時において圧縮室の圧縮行程と
吸入室若しくは圧縮室の吸入行程との間に生ずる差圧を
利用してオイル供給通路を開放させる様に設けたことに
より、圧縮機がいかなる運転状態(例えば高速回転状態
、低速回転状態)にある場合においても確実にオイル供
給通路を開放する状態を得ることが出来、その信頼性を
高めることが出来るに至った。
Further, in the present invention, the oil supply passage is opened by utilizing the differential pressure generated between the compression stroke of the compression chamber and the suction stroke of the suction chamber or compression chamber during motion, so that the compressor It has become possible to obtain a state in which the oil supply passage is reliably opened in any operating state (for example, a high-speed rotation state, a low-speed rotation state), and to improve its reliability.

そして又制御弁機構において高圧室と低圧室の圧力を任
意に設定することが出来、その自由性を高めることが出
来ることに加えて、制御弁機構を部品点が少なく且つ簡
単な構造とすることが出来、圧縮機に対する組込みを容
易化することが出来るに至った。
Furthermore, in the control valve mechanism, the pressures in the high pressure chamber and the low pressure chamber can be set arbitrarily, increasing the flexibility, and in addition, the control valve mechanism has a simple structure with fewer parts. This has made it possible to easily integrate it into a compressor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は第1の実施例を表わす図面であって
、第1図は第2図におけるA−B−C線断面図、第2図
は第1図におけるD−D線断面図、第3図は第1図にお
けるE−E線断面図、第4図は同作用状態を示すE−E
線断面図である。第5図乃至第9図は第2の実施例を表
わす図面であって、第5図は第6図におけるF−E線断
面図、第6図は第1図におけるG−G線断面図、第7図
は第5図におけるH−H線断面図、第8図及び第9図は
制御弁機構部分の作用状態を表わす拡大断面図である。 第10図及び第1]図は第3の実施例を表わす図面であ
って、制御弁機構部分の作用状態を表わす拡大断面図で
ある。又第12図は従来構造の圧力変化を表わすグラフ
図である。 (])ハウジング、0→フロントハウジング1.(LF
t)リヤハウジング、(2)シ”リンダ−ブロック、(
3F)フロントサイドプレート、OR)リヤサイドプレ
ート、(4)駆動軸、(5)ローター、(6)圧縮室、
(7)ベーン溝、(7)′背圧室、(8)ベーン、(9
)吸入室、θ0吸入孔、(ITJ吐出室、0功吐出孔、
o3吐出弁、Q:1’ IJテーナー、04)分離室、
00通孔、OGフィルター、θカ溜り部、α榎給油溝、
00圧力溝、(イ)オイル供給通路、oI)制御弁機構
、(イ)スプール、(ハ)高圧室、(イ)′導圧孔、(
ハ)低圧室、(財)′導圧孔、(ハ)ばね、(ホ)導圧
路、O1→フロントハウジング、(3]、9リヤハウジ
ング、I3椴シリンダーブロック、63→フロントサイ
ドプレート、03→リヤザイドプレート、6419フロ
ントベアリング室、◎40リヤベアリング室、o5→■
5→軸受けN 、65→オスローター、06→メスロー
ター、(ロ)II M 室、(ハ)吸入室、(至)′吸
入口、0り吐出室、CII’吐出口、(ハ)吐出孔、@
ノ吐出弁、(4−1fリテーナ−1(6)フィルター、
03溜り部、■オイル供給通路、に)に)′制御弁機構
、θΦスプール、hi高圧室、07)′導圧孔、に)低
圧室、(財)′導圧孔、θつばね、(50→(50→オ
イル供給通路、Φη弁座、(5→ボール弁、(5東スプ
ール、(5→′突片。
1 to 4 are drawings showing the first embodiment, in which FIG. 1 is a cross-sectional view taken along line A-B-C in FIG. 2, and FIG. 2 is a cross-sectional view taken along line D-D in FIG. Figure 3 is a sectional view taken along line E-E in Figure 1, and Figure 4 is a sectional view taken along line E-E in Figure 4, showing the same operating state.
FIG. 5 to 9 are drawings showing the second embodiment, in which FIG. 5 is a sectional view taken along line FE in FIG. 6, FIG. 6 is a sectional view taken along line GG in FIG. FIG. 7 is a sectional view taken along the line H--H in FIG. 5, and FIGS. 8 and 9 are enlarged sectional views showing the operating state of the control valve mechanism. 10 and 1] are drawings showing the third embodiment, and are enlarged sectional views showing the operating state of the control valve mechanism portion. Further, FIG. 12 is a graph showing pressure changes in the conventional structure. (]) Housing, 0 → Front housing 1. (LF
t) Rear housing, (2) cylinder block, (
3F) Front side plate, OR) Rear side plate, (4) Drive shaft, (5) Rotor, (6) Compression chamber,
(7) Vane groove, (7)' back pressure chamber, (8) vane, (9
) Suction chamber, θ0 suction hole, (ITJ discharge chamber, 0 function discharge hole,
o3 discharge valve, Q:1' IJ retainer, 04) separation chamber,
00 hole, OG filter, θ reservoir, α Enoki oil supply groove,
00 pressure groove, (a) oil supply passage, oI) control valve mechanism, (a) spool, (c) high pressure chamber, (b)' pressure guide hole, (
C) Low pressure chamber, (Foundation)' Pressure guiding hole, (C) Spring, (E) Pressure guiding path, O1 → Front housing, (3), 9 Rear housing, I3 Cylinder block, 63 → Front side plate, 03 →Rear side plate, 6419 front bearing chamber, ◎40 rear bearing chamber, o5→■
5 → bearing N, 65 → male rotor, 06 → female rotor, (b) II M chamber, (c) suction chamber, (to)' suction port, zero discharge chamber, CII' discharge port, (c) discharge hole , @
discharge valve, (4-1f retainer-1 (6) filter,
03 Reservoir part, ■Oil supply passage, 2) Control valve mechanism, θΦ spool, hi high pressure chamber, 07) 2 Pressure guiding hole, 2) Low pressure chamber, 2) Pressure guiding hole, θ spring, ( 50 → (50 → oil supply passage, Φη valve seat, (5 → ball valve, (5 east spool, (5 → 'projection piece.

Claims (1)

【特許請求の範囲】[Claims] (1)  圧縮室の吐出側にオイル分離室を形成し、同
オイル分離室の底部に”形成するオイル溜りと圧縮室を
オイル供給通路により連通ずる圧縮機において、上記オ
イル供給通路と交差させて開閉弁を進退自在に設け、同
開閉弁の両端部には、圧縮室の圧縮行程に連通ずる高圧
室と、吸入室若しくは圧縮室の吸入行程に連通ずる低圧
室を対峙させて設け、上記開閉弁は圧縮機の停止時にお
いて高圧室側に押圧されてオイル供給通路を閉塞する様
に設けて成る圧縮機における潤滑油の供給過剰防止機構
(1) In a compressor in which an oil separation chamber is formed on the discharge side of the compression chamber, and an oil reservoir formed at the bottom of the oil separation chamber is communicated with the compression chamber by an oil supply passage, the oil supply passage intersects with the oil supply passage. An on-off valve is provided so as to be able to move forward and backward, and at both ends of the on-off valve, a high pressure chamber communicating with the compression stroke of the compression chamber and a low pressure chamber communicating with the suction chamber or the suction stroke of the compression chamber are provided facing each other. The valve is a mechanism for preventing oversupply of lubricating oil in a compressor, which is provided so that when the compressor is stopped, it is pressed toward the high pressure chamber and closes the oil supply passage.
JP5465683A 1983-03-30 1983-03-30 Lubricating oil excessive supply preventing mechanism in compressor Pending JPS59180095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5465683A JPS59180095A (en) 1983-03-30 1983-03-30 Lubricating oil excessive supply preventing mechanism in compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5465683A JPS59180095A (en) 1983-03-30 1983-03-30 Lubricating oil excessive supply preventing mechanism in compressor

Publications (1)

Publication Number Publication Date
JPS59180095A true JPS59180095A (en) 1984-10-12

Family

ID=12976823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5465683A Pending JPS59180095A (en) 1983-03-30 1983-03-30 Lubricating oil excessive supply preventing mechanism in compressor

Country Status (1)

Country Link
JP (1) JPS59180095A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0761975A1 (en) * 1995-09-01 1997-03-12 Seiko Seiki Kabushiki Kaisha Gas compressor
EP1120568A2 (en) * 1995-09-01 2001-08-01 Seiko Seiki Kabushiki Kaisha Gas compressor
US8628317B2 (en) 2006-04-10 2014-01-14 Wabco Automotive Uk Limited Vacuum pump with an axial oil feed conduit
US9683570B2 (en) 2011-08-17 2017-06-20 Wabco Automotive Uk Limited Vacuum pump

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57135294A (en) * 1981-02-16 1982-08-20 Nippon Denso Co Ltd Rotary compresssor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57135294A (en) * 1981-02-16 1982-08-20 Nippon Denso Co Ltd Rotary compresssor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0761975A1 (en) * 1995-09-01 1997-03-12 Seiko Seiki Kabushiki Kaisha Gas compressor
EP1120568A2 (en) * 1995-09-01 2001-08-01 Seiko Seiki Kabushiki Kaisha Gas compressor
EP1120568A3 (en) * 1995-09-01 2001-08-29 Seiko Seiki Kabushiki Kaisha Gas compressor
US8628317B2 (en) 2006-04-10 2014-01-14 Wabco Automotive Uk Limited Vacuum pump with an axial oil feed conduit
US9683570B2 (en) 2011-08-17 2017-06-20 Wabco Automotive Uk Limited Vacuum pump
US10371148B2 (en) 2011-08-17 2019-08-06 Wabco Automotive Uk Limited Vacuum pump

Similar Documents

Publication Publication Date Title
US4834634A (en) Sliding-vane rotary compressor for bearing lubrication
JPS6331679B2 (en)
JPS59180095A (en) Lubricating oil excessive supply preventing mechanism in compressor
US4564344A (en) Rotary compressor having rotary sleeve for rotation with vanes
JP2022533946A (en) Spool valve used in variable vane pump
JPS6346272B2 (en)
JPS6131315B2 (en)
JPH0737796B2 (en) Rotary compressor
US4516920A (en) Variable capacity vane compressor capable of controlling back pressure acting upon vanes
JPS6149189A (en) Variable displacement type rotary compressor
JPS5879689A (en) Variable displacement type compressor
JPH0456158B2 (en)
JPH02248681A (en) Lubricating oil supplying device for vane type compressor
JPH0128231B2 (en)
JPS5815672Y2 (en) Bengata Atsushiyukuki
JPH0528396Y2 (en)
JP4421359B2 (en) Gas compressor
JPS60145476A (en) Oil feeding apparatus for rotary vane type compressor
JP2990877B2 (en) Swash plate compressor
JPH0210318Y2 (en)
JPH09273479A (en) Oil pump device for swash plate type compressor
JPS59168290A (en) Screw compressor
JPS6160272B2 (en)
JPS597595Y2 (en) Rotary compressor for vehicles
JPH0745877B2 (en) Vane back pressure application device for sliding vane compressor