JPS5917827A - Charger for battery - Google Patents

Charger for battery

Info

Publication number
JPS5917827A
JPS5917827A JP12716182A JP12716182A JPS5917827A JP S5917827 A JPS5917827 A JP S5917827A JP 12716182 A JP12716182 A JP 12716182A JP 12716182 A JP12716182 A JP 12716182A JP S5917827 A JPS5917827 A JP S5917827A
Authority
JP
Japan
Prior art keywords
battery
voltage
circuit
charging
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12716182A
Other languages
Japanese (ja)
Inventor
藤中 秀一
昌男 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP12716182A priority Critical patent/JPS5917827A/en
Publication of JPS5917827A publication Critical patent/JPS5917827A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)技術分野 本発明は被充電電池の所定充電状態を検出して電池の充
電を制御する検出制御回路を備えた電池の充電装置に関
する。この種装置は、被充電電池を太き々充電電流にて
急迄充電することができるので、広く賞月されている。
DETAILED DESCRIPTION OF THE INVENTION (A) Technical Field The present invention relates to a battery charging device that includes a detection control circuit that detects a predetermined state of charge of a battery to be charged and controls charging of the battery. This type of device is widely praised because it can rapidly charge a battery to be charged with a large charging current.

(ロ)背景技術 被充電電池の中には、何らかの理由によシ内部短絡状態
にある電池があり、かかる短絡電池を充電すると、充電
回路に短絡大電流が流れるため、充電装置が焼損する虞
れがある。このため前記検出制御回路内に、被充電電池
の内部短絡状態を検知して電池の充電を停止せしめる検
知回路を設けることが望ましい。
(B) Background Art Among the batteries to be charged, some are internally short-circuited for some reason, and when such a short-circuited battery is charged, a short-circuited large current flows through the charging circuit, which may cause the charging device to burn out. There is. For this reason, it is desirable to provide a detection circuit in the detection control circuit that detects an internal short-circuit state of the battery to be charged and stops charging the battery.

一方被充電電池の中には、過放電状態にある電池(以下
過放電電池と云う)がある。ここに過放電状態とは、電
池の残存電気量を負荷に完全放電し、負荷時の電池電圧
が零ポルトである状態を云う。被充電電池かニッケル・
カドミウム電池の場合、陽極はニッケル酸化物、陰極は
カドミウム化合物より成シ、電解液として苛性カリを用
いた構成罠なっている。その放電時の反応は陽極ではN
 100H−1−H2O−1−e  −+N i ((
Jll) 2+OHで表わされ、過放電状態が短時間で
あれば、との化学反応は陽極表面だけで進杓し、陽極の
深部にはNi0O]11が残っておシ、このNi00H
が次の充電時の核となシ、速やかに充電化学反応が生ず
る。
On the other hand, some of the batteries to be charged are in an overdischarged state (hereinafter referred to as overdischarged batteries). Here, the overdischarge state refers to a state in which the remaining electricity of the battery is completely discharged to the load and the battery voltage at the time of load is zero. Charged battery or nickel
In the case of a cadmium battery, the anode is made of nickel oxide, the cathode is made of a cadmium compound, and the electrolyte is made of caustic potassium. The reaction during discharge is N at the anode.
100H-1-H2O-1-e −+N i ((
If the overdischarge state is short, the chemical reaction with 2 + OH will proceed only on the anode surface, and Ni0O]11 will remain in the deep part of the anode, and this Ni00H
becomes the nucleus for the next charging, and a charging chemical reaction occurs immediately.

ところが過放電状態が長期になると、Ni00HからN
1(OH)zへの変化が深部まで及び、充電時の核とな
るべきNi00Hが少なくなり、電池は不活性化する。
However, when the overdischarge condition becomes long, the Ni00H to N
The change to 1(OH)z goes deep, and the amount of Ni00H that should form the core during charging decreases, making the battery inactive.

また強制的に放電させた場合、たとえば残存電気量の異
なる2個の電池を直列接続して放電すると、一方の残存
電気量の少ない電池は残存電気量が零になった後、他方
の電池の放電電流にて逆方向に充電される。前記一方の
電池は、残存電気量が零になった後、水の冗気分解によ
りガス発生を生じ、N i OOHからN1(0,Ei
)2への反応は陽極深部に進まない。このため逆充電状
態の電池(以下逆充電電池と云う)は不活性化とはなら
ない。
In addition, in the case of forced discharge, for example, when two batteries with different residual amounts of electricity are connected in series and discharged, one battery with a small remaining amount of electricity becomes zero, and then the other battery's remaining amount of electricity becomes zero. It is charged in the opposite direction with the discharge current. In one of the batteries, after the remaining amount of electricity becomes zero, gas is generated due to redundant decomposition of water, and N1(0,Ei
) The reaction to 2 does not proceed deep into the anode. Therefore, a battery in a reverse charging state (hereinafter referred to as a reverse charging battery) is not inactivated.

上述した過放電電池及び逆充電電池も、正常な電池と同
様に無負荷状態にすると電圧を回復するが、過放電電池
は正常な電池電圧以下の電圧であり、逆充電電池は負電
圧である。これらの過放電電池及び逆充電電池に充電電
流を供給すれば、電圧を回復し正常に戻る、っ したがって電池の内部短絡状態を検知する検知回路を、
充電開始後直ちに作動させると、過放電電池あるいは逆
充電電池の充電開始時の電圧が低いので、これらの電池
をも短絡電池と同様に充電できなくなる。
The above-mentioned over-discharged batteries and reverse-charged batteries recover their voltage when placed under no load, just like normal batteries, but over-discharged batteries have a voltage below the normal battery voltage, and reverse-charged batteries have a negative voltage. . If charging current is supplied to these over-discharged batteries and reverse-charged batteries, the voltage will recover and return to normal.Therefore, a detection circuit that detects the internal short-circuit state of the battery will be installed.
If the operation is started immediately after charging starts, the voltage of over-discharged batteries or reverse-charged batteries at the start of charging is low, so these batteries cannot be charged in the same way as short-circuited batteries.

従来装置は、電池の内部短絡状態の検知手段として、電
池電圧を検出してその検出電圧を遅延させ、遅延検出電
圧が基準電圧より大きいか否かを比較器たとえば演算増
巾器にて比較するものである。ところがこの従来装置に
おいては、電池の内部短絡検知として電池電圧を検出し
て、積分回路等よりなる遅延回路にてその検出電圧を遅
延させるため、電池の所定充電状態として電池電圧を検
出させる場合には、この電池直圧検出に13iJ述の遅
延回路の影響を受けるため、満充電状態の電池を誤って
充電する場合にも、遅延時間後にしか所定充電状態を検
出できないという不都合が生ずる。
Conventional devices detect battery voltage, delay the detected voltage, and compare whether or not the delayed detection voltage is greater than a reference voltage using a comparator, such as an operational amplifier, as a means of detecting an internal short-circuit state of a battery. It is something. However, in this conventional device, the battery voltage is detected to detect an internal short circuit in the battery, and the detected voltage is delayed using a delay circuit such as an integrating circuit. Since this battery direct pressure detection is affected by the delay circuit described in 13iJ, even if a fully charged battery is mistakenly charged, a predetermined state of charge can only be detected after a delay time, which is an inconvenience.

まだ比較器の構成も複雑になシ、コスト高になる。The structure of the comparator is still complicated and the cost is high.

(ハ)発明の開示 本発明はかかる点に鑑み発明されたものにして、電池の
内部短絡状態を、充電電流の大小によシ検知し、この検
知手段の出力を遅延回路にて遅延せしめたものである。
(C) Disclosure of the Invention The present invention was invented in view of the above points, and the internal short-circuit state of the battery is detected by the magnitude of the charging current, and the output of this detection means is delayed by a delay circuit. It is something.

即ち本発明は、被充電電池の所定充電状態を検出する検
出回路及び該回路の検出出力に基いて電池の充電を制御
する制御回路を備えた装置であって、電池の充電路に充
電電流の過電流状態を検知する検知手段を設け、該手段
の出力端と制御回路との間に遅延回路を設けてなるもの
である。
That is, the present invention provides a device that includes a detection circuit that detects a predetermined state of charge of a battery to be charged and a control circuit that controls charging of the battery based on the detection output of the circuit, the device including a charging current in a charging path of the battery. A detection means for detecting an overcurrent condition is provided, and a delay circuit is provided between an output terminal of the means and a control circuit.

従って従来装置の如く、電池の内部短絡状態の検出とし
て、電池電圧を検出するものではなく、この電池電圧の
検出に関連する遅延回路を設ける必要がないため、電池
の所定充電状態の検出として電池電圧を検出する場合に
も、この電池電圧と前記遅延回路との関係がなくなり、
安定した電池電圧の検出を行うことができる。まだ過放
電電池及び逆充電電池は前記遅延回路の遅延時間中に正
常な状態に復帰するため、正常に充電され、内部短絡電
池に対しては、遅延時間経過後も短絡電流が流れるため
、Ir1J記検知手段の出力にて制御回路が作動して充
電を制御する。このため過大な短絡電流が流れ続けるこ
とがなく、充電装置の損傷を防止することができる。
Therefore, unlike conventional devices, the battery voltage is not detected to detect an internal short-circuit state of the battery, and there is no need to provide a delay circuit related to the detection of battery voltage. When detecting voltage, there is no relationship between this battery voltage and the delay circuit.
Stable battery voltage detection can be performed. Over-discharged batteries and reverse-charged batteries return to their normal states during the delay time of the delay circuit, so they are normally charged, and for internally short-circuited batteries, a short-circuit current flows even after the delay time has elapsed, so Ir1J A control circuit is activated by the output of the detection means to control charging. Therefore, an excessive short-circuit current does not continue to flow, and damage to the charging device can be prevented.

に)実施例 本発明の一実施例を、本発明による装置の電懺回路図で
ある第1図に基いて説明する。この図面において、(P
I)(P2)は直流電源端子にして、ヒユーズ(F)及
び減流抵抗(Rt)(R2)を介して正負フィン(I、
+ )(L2 )に夫々導かれる。該両ラインはリレー
スイッチ(R8)を介して一対の充電端子(P3 )(
P4 )に接続される。正ライン(Lりからダ・fオー
ド(Dl)を介して電圧(■0)が取り出され、該電圧
は後述の各種回路に印加される。正負フィy(Ll)(
L2)には、リレーコイル(Ity)及び第1トランジ
スタ(Ql)からなる制御回路(1)が接続され、第1
トランジスタ(Ql >と正ライン(Ll)との間には
、放電抵抗(几3)を有するコンデンサ(CI)を介し
−でスタートスイッチ(SS)が介挿される。該スイッ
チは自動復帰式押釦スイッチからなシ、その閉成時コン
デンサ(C1)が充電される迄の間、第1トヲンジスタ
CQ1)Kハヘース電流が流れ、該トランジスタが導M
L、リレーコイル(RY)の励磁により、リレースイッ
チ(R8)が閉成して、被充電電池(B)が充電される
。その充電電流が負ライン(L2)に流れることによシ
、減流抵抗(R2)の両端電圧で第2トランジスタ(C
2)が導通し、充電表示灯(LE)が点灯して充電中を
表示する。また減流抵抗(R2)の両端電圧で第6トラ
ンジスタ(C3)が導通し、そのコレクタ電圧が低下す
る。このため第1トランジスタ(Ql)のベース・エミ
ッタ間にコレクタ・エミッタが接続される第4トランジ
スタ(C4)のベース電圧が低下して、該第4トランジ
スタが遮断する。
B) Embodiment An embodiment of the present invention will be described with reference to FIG. 1, which is a circuit diagram of an electric lamp of an apparatus according to the present invention. In this drawing, (P
I) (P2) is a DC power supply terminal, and the positive and negative fins (I,
+ ) (L2) respectively. Both lines are connected to a pair of charging terminals (P3) via a relay switch (R8).
P4). A voltage (■0) is taken out from the positive line (L) via the diode (Dl), and this voltage is applied to various circuits described later.
A control circuit (1) consisting of a relay coil (Ity) and a first transistor (Ql) is connected to L2).
A start switch (SS) is inserted between the transistor (Ql > and the positive line (Ll) via a capacitor (CI) having a discharge resistance (几3). The switch is an automatic reset type push button switch. However, until the capacitor (C1) is charged when the capacitor (C1) is closed, a current flows through the first transistor CQ1) and the transistor becomes conductive.
L, the relay switch (R8) is closed by the excitation of the relay coil (RY), and the battery to be charged (B) is charged. As the charging current flows to the negative line (L2), the voltage across the current reducing resistor (R2) causes the second transistor (C
2) becomes conductive and the charging indicator light (LE) lights up to indicate that charging is in progress. Further, the sixth transistor (C3) becomes conductive due to the voltage across the current reducing resistor (R2), and its collector voltage decreases. Therefore, the base voltage of the fourth transistor (C4) whose collector and emitter are connected between the base and emitter of the first transistor (Ql) decreases, and the fourth transistor is cut off.

(2)は被充電電池(B)の所定充電状態を検出する検
出回路にして、記憶回路(3)、第1第2比較回路(C
01)(CO2)及び分圧回路(4)を含む。
(2) is a detection circuit that detects a predetermined state of charge of the battery to be charged (B), and includes a memory circuit (3), a first and second comparison circuit (C
01) (CO2) and a voltage dividing circuit (4).

記憶回路(3)は、電池(B)の充電電圧特性のピーク
点電圧に対応した電圧を記憶するものであり、電気化学
的電位記憶素子(M)により構成される。
The storage circuit (3) stores a voltage corresponding to the peak point voltage of the charging voltage characteristic of the battery (B), and is constituted by an electrochemical potential storage element (M).

該素子には電圧(■0)が印加される第1分圧回路(5
)の電圧(Vl)が第1アナログスイツチ(ASl)及
び抵抗(R4)を介して印加される。第1アナログスイ
ツチ(ASI)は第1比較回路(C01)のハイレベル
出力にょシ閉成され、このハイレベル出力は電池電圧の
ai分圧(■2)が記憶回路(3)の記憶電圧(■3)
よシ大きいとき与えられる。この第1分圧(v2)は一
対の充電端子(Pa ) (P4 )間に1投けられる
分圧回路(4)から得られ、該分圧回路は抵抗(R5)
〜(R9)、ポテンシオメータ(PM)及び第1定電圧
素子(Zl)により構成される。。
The element is connected to a first voltage dividing circuit (5) to which a voltage (■0) is applied.
) is applied via the first analog switch (ASl) and the resistor (R4). The first analog switch (ASI) is closed to the high level output of the first comparator circuit (C01), and this high level output indicates that the ai partial pressure (■2) of the battery voltage is the storage voltage (2) of the storage circuit (3). ■3)
It is given when it is big. This first partial voltage (v2) is obtained from a voltage dividing circuit (4) that is connected between a pair of charging terminals (Pa) (P4), and the voltage dividing circuit is connected to a resistor (R5).
~ (R9), a potentiometer (PM), and a first constant voltage element (Zl). .

分圧回路(4)から得られる第2分圧(■4)は、第1
分圧(■2)よυ高電圧であり、この第2分圧は記憶回
路(3)の記憶電圧(■3)と第2比較回路(CO2)
で比較され、その比較出力(■6)は、第1)ランジス
タ(Ql)のベースに印加すれる。第2比較回路(00
2)は電池(B)の所定充電状態を実質的に検出するも
のである。
The second partial voltage (■4) obtained from the voltage dividing circuit (4) is
The voltage is υ higher than the partial voltage (■2), and this second partial voltage is the storage voltage (■3) of the storage circuit (3) and the second comparison circuit (CO2).
The comparison output (6) is applied to the base of the first transistor (Ql). Second comparison circuit (00
2) essentially detects the predetermined state of charge of the battery (B).

(6)は過電流検知手段にして、iE負ライン(Ll)
(L2)間に抵抗(凡10)及び第5トランジスタ(C
5)の直列回路を介挿すると共に正フィン(Ll)と負
の直流電源端子(P2)との間に抵抗(Rh)と第2定
電圧素子(z2)の直列回路を介挿し、該素子の基準電
圧を抵抗(几12)を介して第5トランジスタ(C5)
のベースに接続して構成される。即ちこの検知手段(6
)は、負ライン(L2)に流れる充電電流が過電流であ
るとき、減流抵抗(R2)の両端電圧が第2定電圧素子
(z2)の基準電圧よシ大きいとき、第5トランジスタ
(C5)が遮断し、そのコレクタ電圧がハイレベルとな
る。このハイレベル出力は抵抗(R13)及びコンデン
サ(C2)よシなる遅延回路(7)を介シて第4トラン
ジスタ(C4)のベースに印加第4トランジスタ(C4
)が導通して第1トランジスタ(Ql)が遮断し、リレ
ーコイ7v(RY)の無励磁によシリレースイッチ(R
8)が開成して、充電電流が流れなくなる。
(6) is the overcurrent detection means, iE negative line (Ll)
(L2) and a resistor (approximately 10) between the fifth transistor (C
5) is inserted, and a series circuit of a resistor (Rh) and a second constant voltage element (z2) is inserted between the positive fin (Ll) and the negative DC power supply terminal (P2), and the element The reference voltage of
It is connected to the base of the That is, this detection means (6
), when the charging current flowing to the negative line (L2) is an overcurrent and the voltage across the current reducing resistor (R2) is higher than the reference voltage of the second constant voltage element (z2), the fifth transistor (C5 ) is cut off, and its collector voltage becomes high level. This high level output is applied to the base of the fourth transistor (C4) via a delay circuit (7) consisting of a resistor (R13) and a capacitor (C2).
) becomes conductive, the first transistor (Ql) is cut off, and the relay switch (R
8) is opened and charging current no longer flows.

以上の構成において、正常な電池(B)を充電端子(P
a)(P4)間に接続し、スタートスイッチ(S8)を
一時的に閉成すると、第1トランジスタ(Ql)が導通
することにょシ、リレースイッチ(R8)が閉成し、充
WW流が流れる。該充電電流による減流抵抗(R2)の
両端電圧によって、第3トランジスタ(C3)が導通し
、第2アナログスイツチ(AS2)が開成する。この結
果記憶回路(3)の放電回路が開成する。また記憶回路
(3)の記憶電圧(V3)より第2分圧(■4)が大き
いため、第2比較回路(002)の出力がハイレベルで
あシ、第1トランジスタ(Ql)を導通状態に保持する
。かくして電池(B)は急速充電され、その充電電圧特
性は第2図中(V8)で示され、ピーク点(b)を有し
その後低下する。この′低下領域において電池(B)の
充M、量特性(Q)が満充電となる。
In the above configuration, a normal battery (B) is connected to a charging terminal (P
a) (P4) and temporarily closes the start switch (S8), the first transistor (Ql) becomes conductive, the relay switch (R8) closes, and the charging WW flow starts. flows. The voltage across the current reducing resistor (R2) due to the charging current turns on the third transistor (C3) and opens the second analog switch (AS2). As a result, the discharge circuit of the memory circuit (3) is opened. In addition, since the second partial voltage (■4) is larger than the storage voltage (V3) of the storage circuit (3), the output of the second comparison circuit (002) is at a high level, and the first transistor (Ql) is in a conductive state. to hold. The battery (B) is thus rapidly charged, and its charging voltage characteristic is shown by (V8) in FIG. 2, which has a peak point (b) and then decreases. In this 'decreasing region, the charge M and quantity characteristics (Q) of the battery (B) become fully charged.

電池電圧が特性(v、1 )に従って」二昇するとき、
分圧回路(4)の第1分圧(■2)が記憶電圧(V3)
よシ高くなることになシ、第1比較回路(c。
When the battery voltage increases according to the characteristic (v, 1),
The first divided voltage (■2) of the voltage dividing circuit (4) is the storage voltage (V3)
The first comparison circuit (c.

1)の出力(■6)がハイレベルとなシ、第1アナログ
スイッチ(ASI)が実質的に閉状態となシ、記憶電圧
(■3)は第1分圧(V2)に追随し、該第1分圧に等
しくなることによシ、第1アナログスイツチ(As 1
)が開状態となる。かくして記憶電圧(■3)は充電電
圧特性(V″61.)のピーク点(b)の時点(tl)
まで第1分圧(■2)に追随するが、時点(tl)後は
電池電圧がピーク点電圧より低下するので、第1比較回
路(C0l)の出力がローレベ)vKなるため、第1ア
ナログスイツチ(ASI)は開状態に保持される。時点
(tl)後、電池電圧の低下に比例して第2分圧(■4
)が低下し、ピーク点(b)の電池電圧に対応した記憶
電圧(V3)に等しくなる時点(t2)において、第2
比較回路(CO2)の出力(■5)がローレベルに切換
わシ、第1トランジスタ(Ql)の遮断によシ、リレー
スイッチ(R8)が開成して電池の充電が終了する。こ
の場合に時点(tl)と(t2)の期間は、分圧回路(
4)の第1分圧(■2)と第2分圧(■4)の差電圧(
■4−V2)により定まる。
When the output (■6) of 1) is at a high level, the first analog switch (ASI) is substantially closed, and the storage voltage (■3) follows the first partial voltage (V2), By equalizing the first partial pressure, the first analog switch (As 1
) becomes open. Thus, the memory voltage (■3) is at the time (tl) of the peak point (b) of the charging voltage characteristic (V''61.)
However, after time (tl), the battery voltage drops below the peak point voltage, so the output of the first comparator circuit (C0l) becomes low level (vK), so the first analog The switch (ASI) is held open. After time (tl), the second partial pressure (■4
) decreases and becomes equal to the storage voltage (V3) corresponding to the battery voltage at the peak point (b) (t2), the second
The output (5) of the comparator circuit (CO2) is switched to low level, the first transistor (Ql) is cut off, the relay switch (R8) is opened, and battery charging is completed. In this case, the period between time (tl) and (t2) is the voltage dividing circuit (
4) The difference voltage between the first partial pressure (■2) and the second partial pressure (■4) (
■Determined by 4-V2).

而して、内部短絡電池が充電端子(P3)(P4)間に
接続されるときには、減流抵抗(R2)に過大な充電電
流が流れるため、第5トランジスタ(C5)が遮断し、
そのコレクタ電圧が上昇する。この状態は遅延回路(7
)の遅延時間も継続するため、その遅延時間後に第4ト
ランジスタ(C4)が導通することによシ、第1トラン
ジスタ(Ql)が遮断して、充電を停止する。
Therefore, when the internally shorted battery is connected between the charging terminals (P3) and (P4), an excessive charging current flows through the current reducing resistor (R2), so the fifth transistor (C5) shuts off.
Its collector voltage increases. This state is the delay circuit (7
) continues, so after the delay time, the fourth transistor (C4) becomes conductive and the first transistor (Ql) is cut off, stopping charging.

これに対し、過放電電池あるいは逆充電電池を充電する
ときには、充電開始時に過大な充電電流が流れるが、遅
延回路(7)の遅延時間内に正常な充電電流に復帰する
ため、第4トワンジスタ(C4が導通するに至らず、正
常な電池と同様に充電することができる。
On the other hand, when charging an over-discharged battery or a reverse-charged battery, an excessive charging current flows at the start of charging, but returns to normal charging current within the delay time of the delay circuit (7). C4 does not become conductive and can be charged like a normal battery.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による装置の一実施例を示す電気回路図
、第2図は充電特性図である。 (B)・・・・・・被充電電池、(2)・・・・・・検
出回路、(1)・・・・・・制御回路、(L2)・・・
・・・充電路(負ライン)、(6)・・・・・・検知手
段、(7)・・・・・・遅延回路。
FIG. 1 is an electric circuit diagram showing an embodiment of the device according to the present invention, and FIG. 2 is a charging characteristic diagram. (B)...Battery to be charged, (2)...Detection circuit, (1)...Control circuit, (L2)...
... Charging path (negative line), (6) ... Detection means, (7) ... Delay circuit.

Claims (1)

【特許請求の範囲】[Claims] (1)被充電電池の所定充電状態を検出する検出回路及
び該回路の検出出力に基いて電池の充電を制御する制御
回路を備えた装置であって、電池の充電路に充電電流の
過電流状態を検知する検知手段を設け、該手段の出力端
と制御回路との間に遅延回路を設けてなる電池の充電装
置。
(1) A device equipped with a detection circuit that detects a predetermined state of charge of a battery to be charged and a control circuit that controls charging of the battery based on the detection output of the circuit, the device including an overcurrent of charging current in the battery charging path. A battery charging device comprising: a detection means for detecting a state; and a delay circuit between an output terminal of the means and a control circuit.
JP12716182A 1982-07-20 1982-07-20 Charger for battery Pending JPS5917827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12716182A JPS5917827A (en) 1982-07-20 1982-07-20 Charger for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12716182A JPS5917827A (en) 1982-07-20 1982-07-20 Charger for battery

Publications (1)

Publication Number Publication Date
JPS5917827A true JPS5917827A (en) 1984-01-30

Family

ID=14953146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12716182A Pending JPS5917827A (en) 1982-07-20 1982-07-20 Charger for battery

Country Status (1)

Country Link
JP (1) JPS5917827A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386024A (en) * 1989-08-29 1991-04-11 Nippon Densan Corp Battery charger
JP2016101082A (en) * 2014-11-18 2016-05-30 正仁 櫨田 Charger circuit for secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720130A (en) * 1980-07-11 1982-02-02 Yaesu Keikougiyou Kk Battery charger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720130A (en) * 1980-07-11 1982-02-02 Yaesu Keikougiyou Kk Battery charger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0386024A (en) * 1989-08-29 1991-04-11 Nippon Densan Corp Battery charger
JP2016101082A (en) * 2014-11-18 2016-05-30 正仁 櫨田 Charger circuit for secondary battery

Similar Documents

Publication Publication Date Title
TW416161B (en) Battery charge indicator
JPS6162325A (en) Charger
JPH10510975A (en) Apparatus and method for providing a starting voltage to a rechargeable battery system
CN108832686B (en) Charging circuit and charging circuit detection method
JP3219524B2 (en) Overdischarge protection circuit for secondary battery
JP2019522866A (en) Battery pack for starting
CN109038754B (en) Battery pack balancing system and method for applying battery pack balancing system
CN100416973C (en) Adjustable large power lithium ion vehicle emergency starting power
CN103457314A (en) Control chip for charging and boosting discharging of switch-type single lithium battery
CN111478402A (en) Vehicle-mounted terminal T-BOX standby battery charging method and system
CN203326662U (en) Storage battery discharge undervoltage identification circuit
JPS5917827A (en) Charger for battery
CN112968485B (en) UPS lithium battery float charge control circuit, lithium battery system and UPS lithium battery charge control method
CN111566892B (en) Apparatus and method for preventing overcharge of secondary battery
CN105048606A (en) Battery discharge protection circuit and rechargeable battery pack with discharge protection function
SU843035A1 (en) Device for limiting storage battery power supply discharge
CN210074761U (en) Lithium ion battery circuit
CN219436645U (en) Lithium battery integrated protection board
JP2003052133A (en) Overdischarge protecting circuit for battery
JPH06311670A (en) Storage-battery charging device using solar battery as power supply
CN115632449A (en) Device and method for detecting quick charging state of battery
JPH1014123A (en) Charging circuit of secondary battery
CN114156956A (en) Battery cell protection circuit, battery and terminal equipment
JPH09285018A (en) Battery pack
JPH09215209A (en) Power unit using secondary battery pack