JPS59165484A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS59165484A
JPS59165484A JP3986783A JP3986783A JPS59165484A JP S59165484 A JPS59165484 A JP S59165484A JP 3986783 A JP3986783 A JP 3986783A JP 3986783 A JP3986783 A JP 3986783A JP S59165484 A JPS59165484 A JP S59165484A
Authority
JP
Japan
Prior art keywords
layer
point
composition
active layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3986783A
Other languages
Japanese (ja)
Inventor
Kentarou Onabe
尾鍋 研太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP3986783A priority Critical patent/JPS59165484A/en
Publication of JPS59165484A publication Critical patent/JPS59165484A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3235Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • H01S5/3215Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities graded composition cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3211Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities
    • H01S5/3218Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures characterised by special cladding layers, e.g. details on band-discontinuities specially strained cladding layers, other than for strain compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3235Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers
    • H01S5/32391Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers based on In(Ga)(As)P

Abstract

PURPOSE:To enable a low temperature growth and to facilitate the control of a composition by respectively composing a substrate, the first clad layer, an active layer, and the second clad layer of InP, In1-XGaXP, In1-ZGaZAs and In1-X'GaX'P, and varying the composition ratio (x) of the first clad layer to substantially match the grating constants. CONSTITUTION:An n type or p type active layer 8 is formed of a 3-element mixed crystal In0.38Ga0.62As represented at a point B. The point B is equal in its band gap energy to the composition of a point A, but grating constant alphao is different, and alphao=5.80Angstrom . The point B does not belong to a mixed unstable region even at low temperature such as 500 deg.C. A 3-element mixed In0.84Ga0.16P represented at a point C having the same grating constant as the point B is used as a P type clad layer 9 grown next to the layer 8. A layer continuously varied in composition between InP and In0.84Ga0.16P (the point C) is used as the n type clad layer 7 adjacent to an InP substrate 1, and the gratings are substantially matched between the boundary to the substrate 1 and the boundary to the layer 8. The formation of such composition varying layer can be readily performed by a vapor phase growth method.

Description

【発明の詳細な説明】 本発明は半導体レーザの構造に関するものである。[Detailed description of the invention] The present invention relates to the structure of a semiconductor laser.

波長1.0〜1.6丸帯の半導体レーザの材料としては
、InPに格子整合するI n 1−x Gax P 
1−y Asy(,0<X、 7<1 )が用いられて
いる。この場合基本的彦ダブルへテロ接合構造を得るた
めに、例えは第1図(a)に示した模造が採用されてい
る。すなわち、n型InP基板1上にn型InPバッフ
ァークラッド層2、nまたはP型In1−XGaxPl
−yAsy(0<x、y<1)活性層6、P型InPク
ラッド層4を順次成長させ、両性面にP−(fi11電
極5およびn側電極6を形成した構造である。■n1−
XGaXP1−yAsy4元混晶組成と、バンド・ギャ
ップ・エネルギーEg、格子定数α0.光学的誘電率ε
との関係は第2図に示したようになっている。第2図に
おいて、αo = 5.87^と印された一点鎖線はI
nPに格子整合する組成を表わし、破線はそわそわ、印
さ力た値のバンド・ギャップ・エネルギーを有する組成
を表わし、また点線はそれぞれ印さねた値の光学的誘電
率を有する組成を表わす。活性層0/クンド・ギャップ
・エネルギーを例えば0.9eVとした場合、In 1
−x GaxP i−y Asyの組成は第2図中のA
点に相当している。このとき層厚に沿った方向での格子
定数ao、バンド・ギャップ・エネルギ=Egおよび光
学的誘電率εの分布は第1図(b)〜(d)にしたクラ
ブのようになっており、クラッド層2ち・よひ4−1性
M3に比へ大きいノ(ンド・ギャップ゛・エネルギーと
小さい光学的誘電、率を有する結果、乙ト入−机子およ
び光の活性層3への有効な閉じ込め力く百l倉目であり
、ダブルへテロ接合構造の半導体レーザと1−2で動作
可能な構造になっている。17カ・し2上iL;の従来
構造は、以下に述べるようなあ・よそ3和目の欠点を有
する。
As a material for a semiconductor laser with a wavelength of 1.0 to 1.6 round band, I n 1-x Gax P which is lattice matched to InP is used.
1-y Asy(,0<X, 7<1) is used. In this case, in order to obtain the basic double heterojunction structure, the imitation shown in FIG. 1(a) is employed, for example. That is, on an n-type InP substrate 1, an n-type InP buffer cladding layer 2, an n-type or P-type In1-XGaxPl
-yAsy (0<x, y<1) This is a structure in which an active layer 6 and a P-type InP cladding layer 4 are grown in sequence, and a P-(fi11 electrode 5 and an n-side electrode 6 are formed on the amphoteric surface.■n1-
XGaXP1-yAsy quaternary mixed crystal composition, band gap energy Eg, lattice constant α0. optical permittivity ε
The relationship between the two is shown in Figure 2. In Figure 2, the dashed line marked αo = 5.87^ is I
The dashed lines represent compositions that are lattice matched to nP, the dashed lines represent compositions with band gap energies of the values marked, and the dotted lines represent compositions with optical dielectric constants of the respective values marked. For example, when the active layer 0/kund gap energy is 0.9 eV, In 1
-x GaxP i-y The composition of Asy is A in Figure 2.
corresponds to a point. At this time, the distribution of the lattice constant ao, band gap energy = Eg, and optical permittivity ε in the direction along the layer thickness resembles the club shown in Fig. 1 (b) to (d). As a result of the cladding layer 2 having a larger band gap energy and smaller optical dielectric constant compared to the 4-1 property M3, it is possible to effectively transfer light into the active layer 3. The confinement force is 100 liters, and it has a structure that can be operated in conjunction with a semiconductor laser with a double heterojunction structure.・Has a disadvantage of the third sum.

第1の欠点は、In1 、GaXPl−yAsy4元混
晶(1、例えば発明者による論文シャツくニーズ・ジャ
ーシール・オブ・アプライドフィジックス第21巻79
7頁(1982年刊)に示されているように、また第2
図中の実線による曲線によって示したように、500〜
700℃の温度域において広い混合不安定域を有し、そ
の範囲は例えば600℃においてInPに格子整合し、
かつバンド・ギャップ・エネルギーEgが0.8〜1.
OeVとなる組成域を包含していることによる。この混
合不安定域の存在のために、600℃以下で液相成長法
または気相成長法により結晶成長を行なうと、混合不安
定域内の組成に相自するIn1−XGaXPl yA8
y 4元混晶は均一な単結晶の状態でエピタキシャル成
長できない。従ってInP基板上にEg二08〜1.O
eVの活性層を有するダブルへテロ接合構造半導体レー
ザを作成するに際しては、従来600℃以上具体的には
650℃付近の高温が不可欠であった。第2の欠点は、
活性層が4元混晶であることにより所望組成の成長条件
把握の手順が複雑になり、壕だ成長時の組成制御にも格
段の注意がを求さねるということである。さらに第6の
欠点としてレーザ動作上の欠点が挙けられる。すなわち
、活性層が例えばEg = 0.9 eVの場合、In
Pクラッド層とのバンド・ギャップ・エネルギー差がo
、4seVLかなく、高温動作時の注入電子閉じ込めの
効果が不十分となり光出力特性飽和現象を引き起こすと
いう不都合が存在していた。
The first drawback is that In1, GaXPl-yAsy quaternary mixed crystal (1,
7 (published in 1982), and the second
As shown by the solid line curve in the figure, 500~
It has a wide mixing instability range in the temperature range of 700°C, and this range is lattice matched to InP at 600°C, for example.
and the band gap energy Eg is 0.8 to 1.
This is due to the fact that it includes a composition range that is OeV. Due to the existence of this mixed unstable region, when crystal growth is performed by liquid phase growth or vapor phase growth at temperatures below 600°C, In1-XGaXPlyA8 whose composition is compatible with the mixed unstable region is formed.
y A quaternary mixed crystal cannot be epitaxially grown in a uniform single crystal state. Therefore, Eg208~1. O
When producing a double heterojunction structure semiconductor laser having an eV active layer, a high temperature of 600° C. or higher, specifically around 650° C., has conventionally been essential. The second drawback is
Since the active layer is a quaternary mixed crystal, the procedure for ascertaining the growth conditions for the desired composition becomes complicated, and special care must be taken in controlling the composition during trench growth. Furthermore, a sixth drawback is a drawback in terms of laser operation. That is, if the active layer is, for example, Eg = 0.9 eV, In
The band gap energy difference with the P cladding layer is o
, 4seVL, and the effect of confining the injected electrons during high-temperature operation is insufficient, causing a phenomenon of optical output characteristic saturation.

本発明の目的は、以上述べたような従来構造の6項目に
のぼる欠点を一挙に除去し7、InPを基板として用い
、活性層のバンド・ギャップ・エネルギーが0.8〜1
.3eVであるダブルへテロ接合半導体レーザにおいて
、600℃以下の低温における成長か可能で、4元混晶
組成制御上の困難がかく、かつ半導体レーザの良好な高
温動作が実現できる構造を提供することにある。すなわ
ち、本発明は、基板、第1のクラッド層、活性層および
第2のクラッド凧をそれぞn InP、 In1−xG
axP (0<x<1 )、In1−7Gaz As(
0< z < 1 )および■n1−XIGaXIP(
0<X′<1)I/(:より栴成l−5、かつ第1のク
ラッド層の組成比x’z−基板と活性層との間で連続的
に像化させて基板との界面および活性層との界面のそね
そ)1において格子定数をt′9ぼ整合させた構造を用
いることを剃徴とするものである。
The purpose of the present invention is to eliminate all six drawbacks of the conventional structure as described above7, and to use InP as a substrate so that the band gap energy of the active layer is 0.8 to 1.
.. To provide a structure in a double heterojunction semiconductor laser having a voltage of 3 eV that allows growth at a low temperature of 600° C. or lower, eliminates difficulties in controlling the quaternary mixed crystal composition, and realizes good high-temperature operation of the semiconductor laser. It is in. That is, in the present invention, the substrate, the first cladding layer, the active layer, and the second cladding are made of nInP, In1-xG, respectively.
axP (0<x<1), In1-7Gaz As(
0<z<1) and ■n1-XIGaXIP(
0 < The key point is to use a structure in which the lattice constants are matched by t'9 at the interface with the active layer (1).

以下本発明について、実施例を参照1−ながら詳細に説
明する。本実施例における半導体レーザの構造を第6図
(a)に示した。本実施例でldEg=o、9eVなる
活性層を用いている。第6図におけるnまたはP型活性
層8は、第2図中のB点で表わされる6元混晶In。3
8Gao、6□Asより成る。B点はA点の組成とバン
ド・ギャップ・エネルギーは等しいが格子定数α0は異
なり、αo=5.8CIAである。緋2図より明らかな
ようにB点は500℃はどの低温においても混合不安定
域に属さない。活性ノー8に次いで成長させるP型クラ
ッド層9としては゛第2図中において、B点と同一の格
子定数を有する0点で表わされる6元混晶In。、、 
Ga616Pを用いている。
The present invention will be described in detail below with reference to Examples. The structure of the semiconductor laser in this example is shown in FIG. 6(a). In this embodiment, an active layer with ldEg=o and 9 eV is used. The n- or p-type active layer 8 in FIG. 6 is made of six-element mixed crystal In represented by point B in FIG. 3
It consists of 8 Gao and 6□As. Point B has the same composition and band gap energy as point A, but a different lattice constant α0, αo=5.8CIA. As is clear from Figure 2, point B does not belong to the unstable mixing region at any low temperature of 500°C. The P-type cladding layer 9 to be grown next to the active layer 8 is a 6-element mixed crystal In represented by point 0 having the same lattice constant as point B in FIG. ,,
Ga616P is used.

InP基板1に隣接するn型クラッド層7としてに、I
nPとIn。8. Gao、6P (0点)との間で組
成を連続的に変化させた層を用い、基板1との界面およ
び活性層8との界面においてほぼ格子整合している。
As the n-type cladding layer 7 adjacent to the InP substrate 1, I
nP and In. 8. A layer in which the composition is continuously changed between Gao and 6P (point 0) is used, and the interface with the substrate 1 and the interface with the active layer 8 are substantially lattice matched.

このような組成変化層の作成は気相成長法により容易に
達せられる。また本実施例の構造では4元混晶は一切用
いられておらず、高々6元混晶を用いているだけである
ので、結晶成長条件の把握手順が大幅に簡略化され、さ
らに成長時の精密組成制御が比較的容易に達せられると
いう利点がある。
Formation of such a compositionally variable layer can be easily achieved by a vapor phase growth method. In addition, the structure of this example does not use any quaternary mixed crystals, and only uses six-element mixed crystals at most, so the procedure for determining the crystal growth conditions is greatly simplified, and the The advantage is that precise compositional control is relatively easy to achieve.

本実施例の構造において層厚に泊った方向での格子定数
aO、バンド・キャップ・エネルギーEg、および光学
的誘電率εの分布は第3図(b)〜(d)に示しまたグ
ラフのようになっており、ダブルへテロ接合構造半導体
レーザの動作に必要な注入電子および光の活性層8への
閉じ込めが行なえる格かになっている。しかもクラッド
層7および9と活性層8とのバンド・ギャップ・エネル
ギー差が第1図に示した従来例よりもo1eV1eV大
しており、才だ光学的誘電率差も増大しているので、上
記の閉じ込め効果はより顕著であり、高温動作時の注入
電子の活性層からのもれが大幅に軽減され光出力飽和の
少ない良好なレーザ特性が実現できる。
In the structure of this example, the distribution of the lattice constant aO, band cap energy Eg, and optical permittivity ε in the direction of the layer thickness is shown in FIGS. This makes it possible to confine injected electrons and light in the active layer 8, which are necessary for the operation of a double heterojunction structure semiconductor laser. Moreover, the band gap energy difference between the cladding layers 7 and 9 and the active layer 8 is 1eV1eV larger than that of the conventional example shown in FIG. The effect is more remarkable, and the leakage of injected electrons from the active layer during high-temperature operation is significantly reduced, making it possible to realize good laser characteristics with less optical output saturation.

以上の実施例では活性層のバンド・ギャップ・エネルギ
ーEgを0.9eVとした場合について述べたが、Eg
 = 0.8〜1.3 eVの任意の帯域においても、
活性層組成およびクラッド層組成を上記の場合と同様に
1−て決定すれば全く同様の効果が実現できることは明
らかである。
In the above embodiment, the case where the band gap energy Eg of the active layer was 0.9 eV was described, but Eg
= In any band from 0.8 to 1.3 eV,
It is clear that exactly the same effect can be achieved if the active layer composition and cladding layer composition are determined in the same way as in the above case.

以上説明したように、活性層のバンド・ギャップ・エネ
ルギーを0.8〜1.3 eVとするダブルへテロ接合
半導体レーザにおいて、基板、第1のクラッド層、活性
層、および第2のクラッド層をそす1ぞり、、 InP
、In 1−x GaXP、工n1.−zGazAsお
よび■n1−X1Gax’Pにより構成し7、第1のク
ラッド層の組成比Xを基板と活性層との間で連続的に変
化させて基板との界面および活性層との界面のそれぞね
において格子定数をほぼ整合させた構造を用いることに
より、本発明によれば600℃以下の低温成長が可能で
組成制御が容易でありかつ高温動作の良好な半導体レー
ザを実現できる効果を有するものである。
As explained above, in a double heterojunction semiconductor laser in which the band gap energy of the active layer is 0.8 to 1.3 eV, the substrate, the first cladding layer, the active layer, and the second cladding layer are 1 sled,, InP
, In 1-x GaXP, Eng n1. -zGazAs and ■n1-X1Gax'P7, and by continuously changing the composition ratio X of the first cladding layer between the substrate and the active layer, the interface with the substrate and the active layer is By using a structure in which the lattice constants are almost matched in the zone, the present invention has the effect of realizing a semiconductor laser that can be grown at a low temperature of 600° C. or less, can easily control the composition, and has good high-temperature operation. It is something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は従来のダブルへテロ接合半導体レーザの
構造を示す図、(b)は格子定数、(c)はバンド・ギ
ャップ・エネルギー、(d) id光学的誘電率の分布
図、第2図はIn1 、GaxPl−yAsy4元混晶
における組成と格子定数、バンド・ギャップ・エネルギ
ー、および光学的誘電率との関係および混合不安定域の
範囲を示す図、第5図(a)は本発明の実施例における
ダブルへテロ接合半導体レーザの構造を示す図(b)は
格子定数、(c)はバンド・ギャップ・エネルギー、(
d)は光学的誘電率の分布図である。 図において、1・・・n型InP基板、5・・P側電極
、6 == n細筒;極、7・・・n型In1−xGa
xPクラッド層、8 ・= nまたはP型I n 1−
 z ’−xa z As活性層、9− p型” 1−
x ’GaXtPクラッド層。 特許出願人 日本市、気株式会社
Figure 1 (a) shows the structure of a conventional double heterojunction semiconductor laser, (b) shows the lattice constant, (c) shows the band gap energy, and (d) shows the distribution of the id optical permittivity. Figure 2 is a diagram showing the relationship between the composition, lattice constant, band gap energy, and optical permittivity in In1, GaxPl-yAsy quaternary mixed crystals, and the range of the mixing unstable region. Figure 5 (a) is Diagram (b) showing the structure of a double heterojunction semiconductor laser in an embodiment of the present invention shows the lattice constant, (c) the band gap energy, (
d) is a distribution diagram of optical permittivity. In the figure, 1... n-type InP substrate, 5... P-side electrode, 6 == n thin tube; pole, 7... n-type In1-xGa
xP cladding layer, 8 ・= n or P type I n 1−
z'-xa z As active layer, 9- p-type" 1-
x'GaXtP cladding layer. Patent applicant Nippon City, Ki Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] +11  第1導電型を有する半導体より成る単結晶基
板上に第1導電型を有する半導体より成る第1のクラッ
ド層、第1もし2くは第2の導電型を有する半導体より
成る活性層、および第2導電型を惰する半導体より成る
第2のクラッド層をIIF+次形成し7、かつ前記第1
および第2のクラッド層が前記活性J@に比較(−て大
きいバンドギギツフ・エネルギーと小さい光学的誘電率
とを有するダブルへテロ接合構造半導体レーザにおいて
、前記基オル、第1のクラッド層、活性層および第2の
クラッド層をそわそわ、InP、 In1−XGaxP
 ((]<x< 1 ) 、 In1−2Gaz As
 (0< z < 1 ) +およびI n 1−x 
1Gax ’ P (0<x’<1 )により構成し7
、かつ前記第1のクラッドJ曽の組成比を前記基板と活
性層との間で連続的に変化させて基板との界面および活
性層との界面のそわそわにおいで格子定数をほぼ整合さ
せたことを特徴とする半導体レーザ。
+11 A first cladding layer made of a semiconductor having a first conductivity type on a single crystal substrate made of a semiconductor having a first conductivity type, an active layer made of a semiconductor having a first or second conductivity type, and forming a second cladding layer made of a semiconductor having a second conductivity type;
and a second cladding layer has a large bandgif energy and a small optical dielectric constant compared to the active J@, in a double heterojunction semiconductor laser, the base layer, the first cladding layer, the active layer and fidget the second cladding layer, InP, In1-XGaxP
((]<x<1), In1-2Gaz As
(0 < z < 1) + and I n 1-x
1Gax' P (0<x'<1)7
, and the composition ratio of the first cladding J is continuously changed between the substrate and the active layer to substantially match the lattice constants at the interface with the substrate and the interface with the active layer. A semiconductor laser featuring:
JP3986783A 1983-03-10 1983-03-10 Semiconductor laser Pending JPS59165484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3986783A JPS59165484A (en) 1983-03-10 1983-03-10 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3986783A JPS59165484A (en) 1983-03-10 1983-03-10 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS59165484A true JPS59165484A (en) 1984-09-18

Family

ID=12564918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3986783A Pending JPS59165484A (en) 1983-03-10 1983-03-10 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS59165484A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0616400A2 (en) * 1993-03-18 1994-09-21 Fujitsu Limited Semiconductor laser
JPH06280323A (en) * 1993-03-30 1994-10-04 Natl House Ind Co Ltd External wall

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0616400A2 (en) * 1993-03-18 1994-09-21 Fujitsu Limited Semiconductor laser
EP0616400A3 (en) * 1993-03-18 1995-01-11 Fujitsu Ltd Semiconductor laser.
JPH06280323A (en) * 1993-03-30 1994-10-04 Natl House Ind Co Ltd External wall

Similar Documents

Publication Publication Date Title
JPH0750448A (en) Semiconductor laser and manufacture thereof
JPS6254988A (en) Semiconductor laser
JPS59129486A (en) Semiconductor laser device and manufacture thereof
Su et al. Elimination of bimodal size in InAs/GaAs quantum dots for preparation of 1.3-μm quantum dot lasers
JPS59165484A (en) Semiconductor laser
JPS62283685A (en) Manufacture of semiconductor laser
JPH021386B2 (en)
JPH05259585A (en) Semiconductor mixed crystal quantum-well apparatus and manufacture therefor
JPS6288318A (en) Semiconductor device
KR100240641B1 (en) Semiconductor laser
JPS62245691A (en) Manufacure of semiconductor laser
JPS58164284A (en) Manufacture of buried type semiconductor laser
JPH11186652A (en) Manufacture of semiconductor laser and semiconductor laser
JPS61220392A (en) Semiconductor light-emitting element
JPH0587157B2 (en)
JPH0632335B2 (en) Method for manufacturing semiconductor laser
JPS60189983A (en) Semiconductor light emitting element
JPH05121822A (en) Manufacture of semiconductor laser device
JPS61242088A (en) Semiconductor laser device
JPS62149187A (en) Semiconductor laser element
JPH07154031A (en) Semiconductor laser
JPS63220588A (en) Semiconductor laser
JPS601883A (en) Semiconductor laser device and manufacture thereof
JPS62291985A (en) Semiconductor laser
JPH03145780A (en) Semiconductor laser