JPS59162922A - Method for recovering waste heat of adsorbing apparatus - Google Patents

Method for recovering waste heat of adsorbing apparatus

Info

Publication number
JPS59162922A
JPS59162922A JP58038686A JP3868683A JPS59162922A JP S59162922 A JPS59162922 A JP S59162922A JP 58038686 A JP58038686 A JP 58038686A JP 3868683 A JP3868683 A JP 3868683A JP S59162922 A JPS59162922 A JP S59162922A
Authority
JP
Japan
Prior art keywords
heat
steam
desorption
heat exchanger
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58038686A
Other languages
Japanese (ja)
Other versions
JPH0330408B2 (en
Inventor
Yoshio Imamura
今村 嘉男
Yoichi Mizuno
陽一 水野
Teruo Kobata
木幡 輝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP58038686A priority Critical patent/JPS59162922A/en
Publication of JPS59162922A publication Critical patent/JPS59162922A/en
Publication of JPH0330408B2 publication Critical patent/JPH0330408B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To attain to conserve energy by re-utilizing waste heat in good efficiency, by recovering the waste heat of steam generated during the desorption of an absorbing apparatus by the heat pumps of heat exchangers separately packed with different kinds of hydrogen occluding alloys. CONSTITUTION:Air containing an org. solvent is introduced into an adsorbing tower 4 packed with an adsorbing material such as activated carbon from an arranged 7 to adsorb the org. solvent while exhausting air from an arranged pipe 8 and, thereafter, steam is introduced into said tower 4 to desorb the adsorbed substance and, after the generated steam is passed through heat exchangers 9, 10 to recover the waste heat of steam, said steam is cooled and condensed in a condenser 5 to be stored in a receiver 6 from which the org. solvent is recovered according to necessity. The above mentioned heat exchangers 9, 10 are separately packed with different hydrogen occluding alloys and hydrogen is at first moved to the side of the heat exchanger 10 from the heat exchanger 9 by the waste heat of steam and subjected to heat recovery by the hot water of a gas-liquid separator 11 while steam is utilized in the desorption of the adsorbing tower 4. Subsequently, the steam after desorption is flowed through the heat exchanger 10 and hydrogen is returned to the heat exchanger 9 while cooled by the cooling water W.

Description

【発明の詳細な説明】 本発明は吸着装置の排熱回収方法に関するものであり、
その目的とするところは、脱着時に発生する排熱を回収
し再利用することにより省エネルギーを図るものである
。すなわち、本発明は吸着と脱着を交互に繰返す水蒸気
脱着式吸着装置において、脱着時に発生する水蒸気排熱
を、異なる種蒸気を発生させて脱着に使用するものであ
る。
[Detailed description of the invention] The present invention relates to a method for recovering exhaust heat from an adsorption device,
The purpose is to save energy by collecting and reusing the waste heat generated during desorption. That is, the present invention is a steam desorption type adsorption device that alternately repeats adsorption and desorption, and uses steam exhaust heat generated during desorption to generate different seed vapors for desorption.

従来−水蒸気脱着式吸着装置においては翫吸着が終ると
吸着材に水蒸気を通し、吸着物質を脱着し、脱着後の排
蒸気を凝縮している。第1図はその工程を示すものであ
る。第1図において、吸着材は吸着槽4に充填されてお
り、吸着物質を含むガスが配管7を通じて吸着槽4に供
給され、吸着がおこなわれ一配管8により槽外に排出さ
れる。
In the conventional steam desorption type adsorption apparatus, after the rod adsorption is completed, water vapor is passed through the adsorbent to desorb the adsorbed substance, and the exhaust vapor after desorption is condensed. FIG. 1 shows the process. In FIG. 1, an adsorption tank 4 is filled with an adsorbent, and gas containing the adsorbent is supplied to the adsorption tank 4 through a pipe 7, where adsorption is performed and then discharged to the outside of the tank through a pipe 8.

吸着が破過状態に近ずくと供給ガスを停止し1配管lよ
りスチームを供給し一吸着物質を脱着する。
When adsorption approaches a breakthrough state, the supply gas is stopped and steam is supplied from one pipe 1 to desorb one adsorbed substance.

配管2より排出される水蒸気は凝縮器5により凝縮し、
受器6にためられる。この凝縮水の中には吸着物質が含
まれているので必要に応じて分離し、吸着物質を回収す
ることができる。
The water vapor discharged from the pipe 2 is condensed by the condenser 5,
It is stored in the receiver 6. Since this condensed water contains adsorbed substances, it can be separated and recovered if necessary.

この工程では主として水蒸気の顕熱が使われ、スチーム
の持っているエネルギーの大半を占める潜熱は捨てられ
ており、供給されたエネルギーのうち脱着に利用されて
いるのは5〜15%にすぎない。
In this process, the sensible heat of the steam is mainly used, and the latent heat, which accounts for most of the energy of the steam, is discarded, and only 5 to 15% of the supplied energy is used for desorption. .

この為1脱着後の水蒸気潜熱を利用して減圧下で水蒸気
を発生させ、圧縮して高圧水蒸気を得る蒸気圧縮法が起
案されている(特開昭5’7−78921号公報)、第
2図は蒸気圧縮式1程を示す。第2図において、脱着時
に排出される蒸気をボイラー5に供給し、蒸気を発生さ
せこれを圧縮機3にて圧縮昇圧し、脱着用蒸気として使
用する。
For this reason, a vapor compression method has been proposed in which water vapor is generated under reduced pressure using the latent heat of water vapor after desorption and compressed to obtain high-pressure water vapor (Japanese Unexamined Patent Publication No. 5'7-78921), No. 2 The figure shows the vapor compression type 1. In FIG. 2, steam discharged during desorption is supplied to a boiler 5 to generate steam, which is compressed and pressurized by a compressor 3 and used as steam for desorption.

本来S吸着装置は、吸着と脱着を交互に繰り返すために
脱着時に排出さ−れる水蒸気が経時的に変化し、かつ間
欠的に発生する。一方蒸気圧縮機は連続運転に適したも
のであるのでこれを吸着装置に適用して排熱回収をする
場合−圧縮機に供給される蒸気量が変化し、負荷変動が
生じてエネルギー変換効率の低下や耐久性低下等の不都
合が生じる。従来使用されているフロン圧縮式ヒートポ
ンプ1吸収式ヒートポンプも同様に間欠運転には不適当
である。また〜蓄熱機構がないので水蒸気の必要時期と
排熱発生時期のタイミングが合わない等の欠点があった
Originally, S adsorption devices alternately repeat adsorption and desorption, so the water vapor discharged during desorption changes over time and is generated intermittently. On the other hand, since a vapor compressor is suitable for continuous operation, when applying it to an adsorption device to recover waste heat, the amount of steam supplied to the compressor changes, causing load fluctuations and reducing energy conversion efficiency. Inconveniences such as deterioration and durability may occur. Conventionally used fluorocarbon compression heat pumps and 1-absorption heat pumps are similarly unsuitable for intermittent operation. Furthermore, since there is no heat storage mechanism, there are drawbacks such as the timing when steam is required and the timing when waste heat is generated do not match.

本発明者らはかかる現状を鑑みN上記の欠点を克服すべ
く鋭意検討した結果本発明を完成するに到った。
In view of the current situation, the inventors of the present invention have conducted intensive studies to overcome the above-mentioned drawbacks, and as a result have completed the present invention.

すなわち1本発明では脱着時に発生する水蒸気排熱を金
属水素化物を用いるヒートポンプを用いて熱回収し−さ
らに水蒸気を発生させ該水蒸気を脱着に供する方法であ
って、以下に詳しく説明する。
That is, one aspect of the present invention is a method in which waste heat from steam generated during desorption is recovered using a heat pump using a metal hydride, and further steam is generated and the steam is used for desorption, which will be described in detail below.

金属水素化物を用いるヒートポンプは、解離圧の異なる
少なくとも2種類の合金(以下MH,、MH2と記す)
を充填した熱交換器(各々xSyとする)を具備するも
のであり・これらの作動原理を第3図、及び第4図に示
す。第3図は脱着後の排蒸気を用いて、より高い温度の
熱源を得るものである(以下第2種ヒートポンプと云う
)。すなわち、第1工程としてXに脱着後の排蒸気(温
度Ts)を流すと−MH□より水素が解離する(図のA
点)。
A heat pump using metal hydrides uses at least two types of alloys (hereinafter referred to as MH, MH2) with different dissociation pressures.
The system is equipped with a heat exchanger (each xSy) filled with FIG. 3 shows a system that uses the exhaust steam after desorption to obtain a heat source with a higher temperature (hereinafter referred to as a second type heat pump). That is, in the first step, when exhaust steam after desorption (temperature Ts) is passed through X, hydrogen is dissociated from -MH□ (A in the figure).
point).

この水素をYのMH2に吸蔵させると(図のB点)、よ
り高い温度の熱源(温度TR)が得られるので熱交換部
に熱水を流し熱回収する。MH工に吸蔵されていた水素
のX−Yへの移動が終ると、第2工程としてSXを冷却
水にて冷却しく図のD点〜濡度T L ) SYに脱着
後の排スチームを流す(図の0点)。MH2に吸蔵され
ていた水素はY−Xに移動し1もとの状態にもどるので
、この2つの工程を繰り返すことにより脱着後の排スチ
ームの熱量をより高い温度TRで回収することができる
。一方第4図は脱着後の排スチームの他に他の熱源を用
いる方法である(以下第1種ヒートポンプを云う)。
When this hydrogen is stored in MH2 of Y (point B in the figure), a heat source with a higher temperature (temperature TR) is obtained, so hot water is poured into the heat exchange section to recover the heat. When the hydrogen stored in the MH has finished moving to X-Y, the second step is to cool the SX with cooling water (from point D in the figure to the wetness T L ) and let the exhaust steam after desorption flow through the SY. (0 points in the figure). Since the hydrogen occluded in MH2 moves to Y-X and returns to its original state, by repeating these two steps, the heat of the desorbed exhaust steam can be recovered at a higher temperature TR. On the other hand, FIG. 4 shows a method using another heat source in addition to the exhaust steam after desorption (hereinafter referred to as a first type heat pump).

すなわち、第1工程としてYに高温熱源(温度T(至)
を供給するとMH,に吸蔵されていた水素が解離する(
図のA点)。この水素をXのMH,に吸蔵させルトT8
より高い温度の熱源TRが得られるので熱交換部に熱水
を流し、熱回収する。MH,に吸蔵されていた水素のY
−Xへの移動が終ると、第2工程としてXに脱着後の排
蒸気を流し、MH□に吸蔵していた水素をx−y移動さ
せる。このときYではTRが得られるので同様に熱回収
する。これでもとの状態にもどるので−この2つの工程
を繰返すことにより、脱着後の排蒸気の熱量を、より高
い温度TRで回収することができる。
That is, in the first step, Y is provided with a high-temperature heat source (temperature T (to)
When MH is supplied, the hydrogen stored in MH dissociates (
point A in the figure). This hydrogen is absorbed into the MH of
Since a heat source TR with a higher temperature can be obtained, hot water is passed through the heat exchange section to recover heat. Y of hydrogen occluded in MH,
When the movement to -X is completed, as a second step, the exhaust vapor after desorption is passed through X, and the hydrogen stored in MH□ is transferred xy. At this time, since TR is obtained in Y, heat is recovered in the same way. This returns the state to its original state. By repeating these two steps, the heat of the desorbed exhaust steam can be recovered at a higher temperature TR.

ここでヒートポンプに用いる合金は1説着水蒸気の温度
から見て、温度80℃〜130℃において解離圧1〜3
0 kglomGを示すものが好ましくたとえばLaN
1B系の合金(合金の一部を他の金属で置換したもの、
又は合金に他の金属を添加したものを含む、以下同じ)
、1FeNi系の合金、MmNi系の合金Ti0o系の
合金等が挙げられる。例えばLaN1B糸の合金として
LaNi4.7 Alo−m、LaNi4 、g Al
6.1、LAN14.5 Al1.51 TiFeNi
系の合金としてTiFe64Nio−□sV6.66 
%  TiFe2.8Nio4 、 TiFe04 N
i4.2 NbO,olI ; MmNi  系の合金
としてMmNi4. fiAIO−6s MmNiO6
2,5s MmNi4.5A16.B 5MmNi1−
s、Mno、a ;Ti0o系の合金としてTICjo
o 4 Fe6.5、T1Co6.511’In06 
% Ti0O(1,6I’eO,+IzrO−01i等
であり、MH1%MH,はこれらの中から適宜選択使用
できる。例えば熱回収温度(TR)を110℃にする様
な組合せとしてはMH,としてLaNi、 、 MH2
としてはLaNi44A4−sが、他の例としてはMH
□としてLaN14.9A10−x、MH2としてLa
Ni4.a Alo−4が挙げられる。
Here, the alloy used in the heat pump has a dissociation pressure of 1 to 3 at a temperature of 80°C to 130°C, based on the temperature of the water vapor that has arrived.
Those exhibiting 0 kglomG are preferable, for example, LaN
1B alloys (alloys in which part of the alloy is replaced with other metals,
(or alloys containing other metals added; the same shall apply hereinafter)
, 1FeNi-based alloys, MmNi-based alloys, TiOo-based alloys, and the like. For example, LaNi4.7 Alo-m, LaNi4, g Al
6.1, LAN14.5 Al1.51 TiFeNi
TiFe64Nio-□sV6.66 as a system alloy
% TiFe2.8Nio4, TiFe04N
i4.2 NbO,olI; MmNi4.2 as a MmNi-based alloy. fiAIO-6s MmNiO6
2,5s MmNi4.5A16. B 5MmNi1-
s, Mno, a; TICjo as a Ti0o alloy
o 4 Fe6.5, T1Co6.511'In06
%Ti0O (1,6I'eO, +IzrO-01i, etc.), and MH1%MH can be selected and used as appropriate from these.For example, as a combination to make the heat recovery temperature (TR) 110℃, MH, LaNi, , MH2
For example, LaNi44A4-s, other examples include MH
LaN14.9A10-x as □, La as MH2
Ni4. a Alo-4 is mentioned.

熱交換器は上記合金が水素を吸蔵し、(又は解離し)発
生(又は吸収)する熱を回収(又は供給)できる様に合
金中に伝熱管を挿入したちの−又は合金を伝熱管内に充
填し、その外部で熱交換させる様にしたものが好ましい
A heat exchanger is a device in which a heat exchanger tube is inserted into the alloy so that the heat generated (or absorbed) by the alloy absorbing (or dissociating) hydrogen can be recovered (or supplied). It is preferable to fill the tank with heat exchanger outside the tank.

第5図は第2種ヒートポンプを組み込んだ本発明の水蒸
気脱着式吸着装置の一例を示す。図において、脱藩後の
排蒸気は吸着装置4より配管2を通して排出される。9
〜10はそれぞれMH□、MH2を充填した熱交換器で
ある。11は気液分離器であり、脱着用スチームの一部
は11を経由し〜配管工により4へ供給される。第1工
程として9の熱交換部に排蒸気が入ると、MH,に吸着
されていた水素はMH2に移動し、高温の熱を発生する
ので111の熱水を10の熱交換部に通し1熱回収する
FIG. 5 shows an example of a water vapor desorption type adsorption device of the present invention incorporating a second type heat pump. In the figure, the exhaust steam after dehydration is discharged from an adsorption device 4 through a pipe 2. 9
-10 are heat exchangers filled with MH□ and MH2, respectively. 11 is a gas-liquid separator, and part of the steam for desorption is supplied to 4 through 11 by a plumber. As the first step, when the exhaust steam enters the heat exchange section 9, the hydrogen adsorbed in MH moves to MH2 and generates high temperature heat, so the hot water 111 is passed through the heat exchange section 10. Recover heat.

水嵩の移動が終ると、第2工程としてlOの熱交換部に
脱着後の水蒸気を流し1水累をMH,に戻す。この時M
H,の温度が脱着後の水蒸気温度より低い温度(TL)
になる様に冷却水で9を冷却するこの2つの工程をくり
返す事により、脱着後の排スチームの熱をより高温にし
て11に回収蓄積することかできるのでこれを脱着用ス
チームとし°(使うことができる。又追加用のスチーム
は圧力コントロールパルプにて、圧力が一定になる様に
11に加えると良い、又11に供給する水は熱交換器9
.10の脱着スチームの凝縮水により一子熱する事がで
きる。
After the transfer of the water volume is completed, as a second step, the desorbed water vapor is passed through the 1O heat exchange section to return the 1 water volume to the MH. At this time M
The temperature of H, is lower than the water vapor temperature after desorption (TL)
By repeating these two steps of cooling 9 with cooling water so that the heat of the exhaust steam after desorption is raised to a higher temperature and collected and stored in 11, this can be used as steam for desorption. Additional steam can be added to 11 using a pressure control pulp to keep the pressure constant, and water supplied to 11 can be added to heat exchanger 9.
.. The condensed water of 10 desorption steams can generate one-child heat.

第6図は第1拙ヒートポンプを組み込んだ本発明の水蒸
気脱着式吸着装置の一例を示す。9,10はそれぞれM
Hl、 MH2を充填した熱交換器であり、第一工程と
して10の熱交換部に回収温度(TR)より高い温度の
熱源(図ではスチーム熱源が示しである)を供給すると
MH,に吸蔵されていた水素はMH,に移動し・高温の
熱を発生するので11の熱水を9の熱交換部に通し、熱
回収する。水素の移動が終ると、第2工程として9の熱
交換部に脱着後の水蒸気を流し、水素をMH2に戻す、
この時10に高温の熱゛を発生するので11の熱水を1
0の熱交換部に通し、熱回収する。
FIG. 6 shows an example of the water vapor desorption type adsorption device of the present invention incorporating the first heat pump. 9 and 10 are each M
This is a heat exchanger filled with Hl and MH2, and when a heat source (a steam heat source is shown in the figure) with a temperature higher than the recovery temperature (TR) is supplied to the 10 heat exchange sections in the first step, MH2 is occluded. The hydrogen that was in the tank moves to the MH and generates high-temperature heat, so the hot water in step 11 is passed through the heat exchange section in step 9 to recover the heat. After the hydrogen transfer is completed, the second step is to flow the desorbed water vapor into the heat exchange section 9 and return the hydrogen to MH2.
At this time, high temperature heat is generated in 10, so add 11 hot water to 1
0 heat exchange section to recover heat.

上記の説明によって明らかなごとく、熱交換器はMHI
を充填したものと−MH,を充填したものが一組あれば
作動するが一2組の熱交換器を用いることができる。こ
の場合、第3図、又は第4図において−A点からB点へ
の移動、及び0点からD点への移動が同時におこなわれ
る。
As is clear from the above description, the heat exchanger is an MHI
Two sets of heat exchangers can be used, one set filled with -MH and one set filled with -MH. In this case, in FIG. 3 or 4, movement from point -A to point B and movement from point 0 to point D are performed simultaneously.

本発明のスチーム脱着式吸着装置は活性炭による空気中
の有機溶剤の回収に特に効果的である。
The steam desorption adsorption device of the present invention is particularly effective in recovering organic solvents from the air using activated carbon.

なお、上記の本発明の水蒸気脱着式吸着装置において通
常TRは100〜150℃、TBは95−400℃、T
L20−5o℃、’rH1go℃以上である。
In addition, in the steam desorption type adsorption apparatus of the present invention described above, normally TR is 100 to 150°C, TB is 95 to 400°C, and T
L20-5oC, 'rH1goC or higher.

実施例 プラスチック処理工程において、トルエン濃度I IS
OOppnの空気150+//mnを25 kgの繊維
状活性ツ 炭マ窒トにより吸着分離した。吸着装置はa塔切換式で
あり、10分間隔で吸着と脱着をおこなったO MHl
としてLaN1Il 30 kg、MH2としてLl!
LNi4−7A10.3130 kgを直径22.2長
さ1mの銅チューブに入れ中心部に直径10鵡のフィル
ターを入れて伝熱管とした。さらにこれを束ねて外套に
挿入して熱交換器とした。熱交換器は2組構成し、第2
種ヒートポンプとして作動させた。脱着スチーム熱源(
Ts)は95℃であったのに対し、T1121℃の萬温
脱着用スチームが取得された。運転に要した水蒸気量は
36 #/hrs電力使用景は0.75にWであった。
Example In the plastic treatment process, toluene concentration I IS
150+//mn of OOppn air was adsorbed and separated using 25 kg of fibrous activated carbonite. The adsorption device is an A-tower switching type, and adsorption and desorption are performed at 10 minute intervals.
As LaN1Il 30 kg, MH2 as Ll!
10.3130 kg of LNi4-7A was placed in a copper tube with a diameter of 22.2 and a length of 1 m, and a filter with a diameter of 10 mm was placed in the center to form a heat exchanger tube. This was then bundled and inserted into a mantle to form a heat exchanger. The heat exchanger consists of two sets, the second
It was operated as a seed heat pump. Desorption steam heat source (
Ts) was 95°C, whereas a steam temperature of T1121°C was obtained for desorption. The amount of water vapor required for operation was 36 #/hr, and the power consumption was 0.75 W.

比較例 L 実施例でのべた吸着装置において、金属水素化物の替り
に蒸気圧縮機を用い1図2に示す方法にて熱回収を行っ
た。使用蒸気量は45 ky/hr電力使用値は4.6
Kwであった。
Comparative Example L In the adsorption apparatus described in the example, a vapor compressor was used instead of the metal hydride, and heat was recovered by the method shown in FIG. 1. The amount of steam used is 45 ky/hr, and the value of electricity used is 4.6.
It was Kw.

比較例 2 実施例1でのべた吸着装置においてN熱回収装置をつけ
ずに運転を行なったところ蒸気消費量は60幻/11r
となった。
Comparative Example 2 When the adsorption device described in Example 1 was operated without an N heat recovery device, the steam consumption was 60 phantom/11r.
It became.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は熱回収をしない例、第2図は蒸気圧縮法によっ
て熱回収する例、第3図及び第4図はそれぞれ金属水素
化物の第2種ヒートポンプ及び第1種ヒートポンプの作
動原理を示す。第5図及び第6図は金属水素化物を用い
た第2柚ヒートポンプ及び第1種ヒートポンプにより熱
回収する例を示す。 1−−−−−−一配管 2、−−一−−−−−配管 3−−一−−−−−蒸気圧縮機 4−−−−−−−一吸着槽 5−一−−−−−−熱交換器 6−−−−−−−一貯槽 7、−−−−−−−一配管 8−−−−−−−一配管 9、−−−一−−−−金属水緊化物熱交換器10−一−
−−−−金属水緊化物熱交換器11−−−−−−一気流
分離器 12−−−−−−−コントロールバルブ特許出願人  
東洋紡績株式会社  11− t9 du7
Figure 1 shows an example without heat recovery, Figure 2 shows an example in which heat is recovered by vapor compression, and Figures 3 and 4 show the operating principles of a metal hydride type 2 heat pump and type 1 heat pump, respectively. . FIGS. 5 and 6 show examples of heat recovery using a second type heat pump and a first type heat pump using metal hydrides. 1--------1 piping 2, ---1--piping 3--1--vapor compressor 4-------1 adsorption tank 5-1-- ---Heat exchanger 6-----1 storage tank 7, ----1 piping 8--1 piping 9, ----1--Metal water stabilizer Heat exchanger 10-1-
----- Metal water condensate heat exchanger 11 -------- Single flow separator 12 ----- Control valve Patent applicant
Toyobo Co., Ltd. 11-t9 du7

Claims (2)

【特許請求の範囲】[Claims] (1)吸着と脱着を交互に繰返す水蒸気脱着式吸着装置
において、脱着時に発生する水蒸気排熱を、異なる種類
の水素吸蔵用合金を各々別個に充填した熱交換器を具備
するヒートポンプを用いて熱回収する事を特徴とする吸
着装置の排熱回収方法。
(1) In a steam desorption adsorption device that alternately repeats adsorption and desorption, the steam waste heat generated during desorption is converted into heat using a heat pump equipped with a heat exchanger filled with different types of hydrogen storage alloys. A method for recovering waste heat from an adsorption device, which is characterized by recovering heat from an adsorption device.
(2)得られた回収熱で水蒸気を発生させ、該水蒸気を
脱着に使用する特許請求の範囲第(1)項記載の排熱回
収方法。
(2) The exhaust heat recovery method according to claim (1), wherein steam is generated using the recovered heat and the steam is used for desorption.
JP58038686A 1983-03-08 1983-03-08 Method for recovering waste heat of adsorbing apparatus Granted JPS59162922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58038686A JPS59162922A (en) 1983-03-08 1983-03-08 Method for recovering waste heat of adsorbing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58038686A JPS59162922A (en) 1983-03-08 1983-03-08 Method for recovering waste heat of adsorbing apparatus

Publications (2)

Publication Number Publication Date
JPS59162922A true JPS59162922A (en) 1984-09-13
JPH0330408B2 JPH0330408B2 (en) 1991-04-30

Family

ID=12532172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58038686A Granted JPS59162922A (en) 1983-03-08 1983-03-08 Method for recovering waste heat of adsorbing apparatus

Country Status (1)

Country Link
JP (1) JPS59162922A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1508360A2 (en) * 2003-08-18 2005-02-23 Donau Carbon GmbH & Co. KG Process and apparatus for the production of cold water
JP2009072671A (en) * 2007-09-19 2009-04-09 Tsukishima Kankyo Engineering Ltd Gas treatment method
US8148570B2 (en) * 2005-11-15 2012-04-03 Wacker Chemie Ag Process for preparing vinyl acetate with utilization of the heat of reaction
CN112013564A (en) * 2019-09-04 2020-12-01 青岛华世洁环保科技有限公司 Comprehensive utilization system and method for adsorption recovery waste heat

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1508360A2 (en) * 2003-08-18 2005-02-23 Donau Carbon GmbH & Co. KG Process and apparatus for the production of cold water
EP1508360A3 (en) * 2003-08-18 2005-04-13 Donau Carbon GmbH & Co. KG Process and apparatus for the production of cold water
US8148570B2 (en) * 2005-11-15 2012-04-03 Wacker Chemie Ag Process for preparing vinyl acetate with utilization of the heat of reaction
JP2009072671A (en) * 2007-09-19 2009-04-09 Tsukishima Kankyo Engineering Ltd Gas treatment method
CN112013564A (en) * 2019-09-04 2020-12-01 青岛华世洁环保科技有限公司 Comprehensive utilization system and method for adsorption recovery waste heat

Also Published As

Publication number Publication date
JPH0330408B2 (en) 1991-04-30

Similar Documents

Publication Publication Date Title
CA2073025C (en) Continuous constant pressure staging of solid-vapor compound reactors
US8715394B2 (en) Autothermal cycle for CO2 capture
US4704267A (en) Production of hydrogen from ammonia
CN105032113A (en) Process for capturing carbon dioxide in flue gas based on wet reclamation technology
CN114558414A (en) Method for decarbonizing concentrated carbon dioxide emission source based on wet-process regeneration carbon dioxide capture material
US20140005460A1 (en) Heat recovery from sorbent-based co2 capture
JPS59162922A (en) Method for recovering waste heat of adsorbing apparatus
CN104984628A (en) Organic waste gas adsorption recovery process
JP2003001061A (en) Method of concentrating carbon dioxide in combustion gas
CN204768144U (en) Adsorption recovery device of organic waste gas
CN112211801B (en) Efficient air compression device and method based on gas adsorption and desorption effects
JP2000084303A (en) Organic solvent recovery device
JPH07178308A (en) Gas separating and recovering device
CN221032784U (en) Adsorption type carbon dioxide energy storage device
AU637804B2 (en) Discrete constant pressure staging of solid-vapor compound reactors
CN219128774U (en) Trapping system for realizing energy recovery by heating and cooling step by using heat storage device
WO2023145721A1 (en) Co2 recovery method and co2 recovery device
CN216457861U (en) Aniline VOCs recycle device
CN115388616B (en) Mars surface carbon dioxide continuous capturing system adopting pressurizing liquefaction and method thereof
JP2997939B2 (en) Recovery and utilization of evaporative gas in low-temperature storage tank
US20220042452A1 (en) Hybrid power generation systems and methods
CN116951803A (en) CO 2 Heat pump driven direct air carbon capture system with recirculation purging and method thereof
JPH0351647B2 (en)
CN117328964A (en) Adsorption type carbon dioxide energy storage system and operation method thereof
CN104984629A (en) Organic waste gas adsorption recovery device