JPS59151437A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS59151437A
JPS59151437A JP58024613A JP2461383A JPS59151437A JP S59151437 A JPS59151437 A JP S59151437A JP 58024613 A JP58024613 A JP 58024613A JP 2461383 A JP2461383 A JP 2461383A JP S59151437 A JPS59151437 A JP S59151437A
Authority
JP
Japan
Prior art keywords
copper
carbon fiber
fiber composite
composite material
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58024613A
Other languages
Japanese (ja)
Inventor
Akio Chiba
秋雄 千葉
Keiichi Kuniya
国谷 啓一
Hideo Arakawa
英夫 荒川
Takashi Namekawa
孝 滑川
Seiki Shimizu
清水 誠喜
Kunio Miyazaki
邦夫 宮崎
Kenji Akeyama
明山 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58024613A priority Critical patent/JPS59151437A/en
Publication of JPS59151437A publication Critical patent/JPS59151437A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Abstract

PURPOSE:To manufacture a semiconductor device with its characteristics improved without using W and Mo by a method wherein at least one of electrode and heat dissipating plate is made of copper-carbon fiber compound material and when they are pressure-welded into any other members, they are pressurized at 5-100kg/cm<2> by hard brazing material with melting point exceeding that of solder containing an element eutectically reacting to copper. CONSTITUTION:When an electrode 6 is fixed to an Si semiconductor element 4 through the intermediary of a solder 5, this electrode 6 is made of copper-carbon fiber compound material 6. At this time, the arranged fiber is buried like a net or vortex to provide the thermal expansion coefficient of carbon fiber with isotropy and the thermal expansion of Cu is restricted making use of the low thermal expansion of the carbon fiber while the high thermal conduction of Cu is utilized. Next when this surface is coated with a radiating plate 9 made of Cu or Cu alloy, the radiating plate 9 is instantaneously pressure-welded at 5- 100kg/cm<2> using a hard brazing material 7 made of eutectic brazing material containing an element eutectically reacting to Cu.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は半導体装置及びその製造方法に係り、特に少な
くとも一個のpn接合を有する半導体装置及びその製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor device and a method for manufacturing the same, and particularly to a semiconductor device having at least one pn junction and a method for manufacturing the same.

〔従来技術〕[Prior art]

半導体を搭載する電極は、半導体素子であるSiの熱膨
張係数が3.5 X 10−’/l:’と小さく、また
、電流を通した場合、Siから発生する熱を放出させる
ため高熱伝導性の材料が使用される。
The electrode on which the semiconductor is mounted has a low thermal expansion coefficient of 3.5 x 10-'/l:', which is the semiconductor element, and also has high thermal conductivity because it releases the heat generated from the Si when current is passed through it. materials are used.

これらの要求を満たす材料として、従来からMOやWが
用いられてきた。しかしMOやWの材料は、価格高騰の
傾向にあシ、また軍事物資であるための材料の入手が困
難であるのが現状である。
MO and W have conventionally been used as materials that meet these requirements. However, the prices of materials for MO and W tend to soar, and since they are military supplies, it is currently difficult to obtain them.

そのためMOやWに代る材料を用いた半導体装置が要望
されていた。
Therefore, there has been a demand for a semiconductor device using a material alternative to MO or W.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、WやMOに代る材料を用い、しかも装
置の特性をも向上さ□せることができる半導体装置及び
その製造方法を提供することにある。
An object of the present invention is to provide a semiconductor device and a method for manufacturing the same, which can use a material instead of W or MO and also improve the characteristics of the device.

〔発明の概要〕[Summary of the invention]

本発明者らは高熱伝□熱材料としてCuあるいはCu合
金中に炭素繊維を埋込んだ銅−炭素繊維一合材を開発し
、この銅−炭素繊維複合材が半導体装置に用いられてい
たMOやWに代シうる点を見い、し、あら、銅−炭素繊
維複合材。−性をようことなく、硬ろう付けする方法を
見い出した結果本発明に到達したものである。
The present inventors have developed a copper-carbon fiber composite material in which carbon fibers are embedded in Cu or Cu alloy as a high heat conductive material, and this copper-carbon fiber composite material has been used in MO I found an advantage over ``W'' and ``Oh,'' copper-carbon fiber composite material. - The present invention was achieved as a result of discovering a method for hard brazing without compromising properties.

すなわち本発明は電極及び/又は放熱板の少なくとも一
方が銅−炭素繊維複合材で形成され、銅−炭素繊維複合
材で形成された電極及び/又は放熱板と他の部材とは硬
ろう材で圧接されていること’Ik%徴とする半導体装
置であり、このような半導体を製造するに際し、銅−炭
素繊維複合材で形成された電極及び/又は放熱板とこれ
らの部材とを圧接すべき他の部材との間に硬ろう材を介
在さ1 せて加熱加圧し、加圧状態のままで前記炭素繊
維複合材中の炭素繊維の弾性による復元性がマトリ□ 
ックスに拘束される温度まで冷却するようにしたもので
ある。
That is, in the present invention, at least one of the electrode and/or the heat sink is formed of a copper-carbon fiber composite material, and the electrode and/or the heat sink formed of the copper-carbon fiber composite material and other members are made of a hard brazing material. It is a semiconductor device that is characterized by pressure contact, and when manufacturing such a semiconductor, it is necessary to pressure contact electrodes and/or heat sinks made of copper-carbon fiber composite material with these members. A hard brazing material is interposed between the carbon fiber composite material 1 and the material is heated and pressurized, and the restoring property due to the elasticity of the carbon fibers in the carbon fiber composite material is maintained in the pressurized state.
It is designed to cool down to a temperature that is restricted by the box.

以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

銅−炭素繊維複合材料は、炭素繊維量によシ熱膨張係数
、熱伝導率の調整可能である。また、これらの特性は炭
素繊維の配列によシ異ってくるが熱膨張係数の等方性を
もたせるため、繊維の配列″金網状あるいはうず巻状に
埋込み、炭素繊維の低熱膨張を利用してCuO熱膨張を
拘束するとともにCuの高熱伝導を利用することができ
る。
The coefficient of thermal expansion and thermal conductivity of the copper-carbon fiber composite material can be adjusted depending on the amount of carbon fiber. In addition, although these characteristics differ depending on the arrangement of the carbon fibers, in order to provide isotropy in the coefficient of thermal expansion, the fibers are arranged in a wire mesh or spiral shape to take advantage of the low thermal expansion of the carbon fibers. This allows the thermal expansion of CuO to be restrained and the high thermal conductivity of Cu to be utilized.

銅−炭素繊維複合材料は、高弾性の炭素繊維を強制的に
折シ曲げ網状あるいはうず巻状に配向し、高温、高加圧
力下のホットプレスで銅−炭素板を作る。このようにし
て作製した鉋−炭素繊維複合材料は第1図に示すように
A(35体積%−CLI)、B(45体体積−Cu)お
よびC(55体積%−CU)のいずれも高温に加熱する
とマトリックスであるC?は軟化し、強制的に折曲げら
れた炭素繊維が弾性エネルギーが解放して元の形に戻ろ
うという力が働き、CuとCとの反応がなく銅−炭素繊
維複合材内部に局部的に空隙が生じる原因となる。
Copper-carbon fiber composite materials are made by forcibly bending highly elastic carbon fibers and orienting them into a net or spiral shape, and then hot-pressing them at high temperature and under high pressure to form a copper-carbon plate. As shown in Fig. 1, the planer-carbon fiber composite material produced in this way has high temperatures in all of A (35 volume % - CLI), B (45 volume % - Cu) and C (55 volume % - CU). When heated to C? is softened, and the elastic energy of the forcibly bent carbon fibers is released and a force acts to return them to their original shape, causing no reaction between Cu and C, and the carbon fibers are forced to bend locally inside the copper-carbon fiber composite material. This causes voids to form.

このため体積増加した銅−炭素繊維複合材料は、熱伝導
性及び電気的特性が阻害される問題がある。
Therefore, the copper-carbon fiber composite material whose volume has increased has a problem in that its thermal conductivity and electrical properties are impaired.

銅−炭素繊維複合材料の体積増加は、C量によシ異なる
が約500C程度まで変化はなく、一般のはんだ付では
問題は生じない。しかしBAg−8のAgろう材を用い
る場合、接合温度は800〜850Cの高温となシ、銅
−炭素繊維複合材料は5ooc以上に加熱されることに
なる。
The increase in volume of the copper-carbon fiber composite material varies depending on the amount of C, but it does not change up to about 500 C, and no problem occurs in general soldering. However, when BAg-8 Ag brazing filler metal is used, the bonding temperature is as high as 800 to 850C, and the copper-carbon fiber composite material is heated to 5ooc or more.

本発明において、銅−炭素繊維複合材料’t−5ooc
以上の温度で硬ろう材けする場合、加熱加圧するもので
ある。すなわち銅−炭素繊維複合材料を5oocで短時
間加熱したときの体積膨張は、数秒での体積膨張は少な
いことがわかった。(第5図[また銅−炭素繊維複合材
料を加圧する場合、加圧力e5KF/−以上、望ましく
は5 Kti / cd 〜100Kg/cr/lとす
るのがよい。加圧力を5 Kg / ctA以上とすれ
ば加熱温度を8ooc程度としても銅−炭素繊維複合材
料の体積変化はほとんどなく、一方加圧力が10011
4/cI/I超えると、銅−炭素繊維複合材料がこれと
接合すべき他の部材中に埋りゃすくなシ、特に他の部材
がAl1O3の場合割れが生じやすくなる。
In the present invention, copper-carbon fiber composite material 't-5oooc
When hard soldering is performed at a temperature higher than that, heat and pressure are applied. That is, it was found that the volumetric expansion when the copper-carbon fiber composite material was heated at 5 ooc for a short time was small in several seconds. (Fig. 5 [Also, when pressurizing a copper-carbon fiber composite material, the pressing force should be e5KF/- or more, preferably 5 Kti/cd to 100 Kg/cr/l.The pressing force should be 5 Kg/ctA or more. Therefore, even if the heating temperature is about 8 ooc, there is almost no change in the volume of the copper-carbon fiber composite material, and on the other hand, when the pressing force is 10011
If it exceeds 4/cI/I, the copper-carbon fiber composite material will not be easily buried in other members to be bonded to it, and cracks will easily occur especially if the other members are Al1O3.

したがって本発明において、銅−炭素繊維複合材料から
なる電極又は放熱板と、これらと接合す硬 べき他の部材との間にろう材を介在させ、硬ろう材の接
合温度に加熱すると同時に5KIi/−〜100Kf/
ct/iにすることが望ましい。この場合、加熱操作は
高周波銹導加熱、通電加熱等のように均一に、かつ瞬時
加熱できる操作が望ましい。更に本発明において、電極
及び放熱板の両方を必ずしも銅−炭素繊維複合材料で形
成する必要はなく、電極及び放熱板のいずれか一方をM
OやWとして他方を銅−炭素繊維複合材料で形成しても
よい。
Therefore, in the present invention, a brazing material is interposed between an electrode or a heat sink made of a copper-carbon fiber composite material and another member to be bonded to the material, and the brazing material is heated to the bonding temperature of the brazing material at the same time as 5KIi/ -~100Kf/
It is desirable to set it to ct/i. In this case, the heating operation is preferably an operation that allows uniform and instantaneous heating, such as high-frequency induction heating or electrical heating. Furthermore, in the present invention, both the electrode and the heat sink do not necessarily need to be formed of a copper-carbon fiber composite material, and either the electrode or the heat sink may be made of M
O or W may be used, and the other may be formed of a copper-carbon fiber composite material.

また破ろうとしては、銀ろう、リン銅ろうその1   
   他の共晶ろう材を用いることができるが、特にC
uと共晶反応を生成する元素を含む共晶ろう材が好適で
ある。共晶ろう材の場合、ろう付するための保持時間は
ほとんど無く、瞬−に接合できる。また加熱加圧時、加
熱状態で圧力を解放すると、銅−炭素繊維複合材料中の
炭素繊維の弾性復元性が回復されるので、半導体装置の
製造処理時において、銅−炭素繊維複合材料とこれと圧
接すべき他の部材との間に硬ろう材を介在させ、加圧状
態のままで前記銅−炭素繊維複合材料中の炭素繊維の弾
性復元性がマ) IJラックス拘束される温度まで冷却
する必要がある。ただし銅−炭素繊維複合材料中の炭素
繊維の弾性復元性は、その複合材料中の銅の軟化状態が
なくなれば実質的に消失するので、短時間で消失するこ
とになる。
If you are trying to break it again, silver wax, phosphorous copper candle 1
Other eutectic fillers can be used, especially C
A eutectic brazing material containing an element that forms a eutectic reaction with u is suitable. In the case of eutectic brazing filler metal, there is almost no holding time for brazing, and bonding can be achieved instantly. Furthermore, when the pressure is released in the heated state during heating and pressurization, the elastic resilience of the carbon fibers in the copper-carbon fiber composite material is restored. A hard brazing material is interposed between the material and the other member to be pressed, and the elastic restorability of the carbon fibers in the copper-carbon fiber composite material is cooled to a temperature at which the IJ lux is restrained while the material remains in a pressurized state. There is a need to. However, the elastic restorability of the carbon fibers in the copper-carbon fiber composite material substantially disappears once the softened state of the copper in the composite material disappears, so it disappears in a short period of time.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明の半導体装置の一実施例を示し、図中、
4はSiからなる半導体素子、6は銅−炭素繊維複合材
、9はCuあるいはCu合金からなる放熱板である。第
2図において、半導体素子4と銅−炭素繊維複合材6と
ははんだ5によシ接合されている。はんだ5による接合
温度は250〜450Cであるので通常のはんだ付けで
も銅−炭素繊維複合材の特性の問題は生じない。第2図
に′  おいて銅−炭素繊維複合材料6と放熱板9とは
硬ろう材7(本実施例ではBAg−8)によシ圧接され
る。
FIG. 2 shows an embodiment of the semiconductor device of the present invention, and in the figure,
4 is a semiconductor element made of Si, 6 is a copper-carbon fiber composite material, and 9 is a heat sink made of Cu or Cu alloy. In FIG. 2, the semiconductor element 4 and the copper-carbon fiber composite material 6 are bonded together by solder 5. As shown in FIG. Since the joining temperature using the solder 5 is 250 to 450C, no problem with the properties of the copper-carbon fiber composite material occurs even with normal soldering. In FIG. 2', the copper-carbon fiber composite material 6 and the heat sink 9 are pressed together by a hard brazing material 7 (BAg-8 in this embodiment).

第3図は本発明の半導体装置の他の例を示し、第2図に
示す半導体装置と異なる点は絶縁板8とCu−C繊維複
合材の放熱板9及び6Cu−C繊維複合材が硬ろう材7
によ)圧接されていることであシ、他の構成は第2図の
実施例と同じである。
FIG. 3 shows another example of the semiconductor device of the present invention, which differs from the semiconductor device shown in FIG. Brazing material 7
The other configuration is the same as the embodiment shown in FIG. 2.

次に第4図を基に上記した半導体装置の製造方法の一例
を示す。
Next, an example of a method for manufacturing the above-described semiconductor device will be described based on FIG.

銅−炭素繊維複合材料は、7ミクロンの炭素繊維に数ミ
クロンのCuのめっきを施し、3千本束とした銅−炭素
繊維束をクロス状に配向し網状(’ u −Cとした。
The copper-carbon fiber composite material was made by plating 7-micron carbon fibers with several microns of Cu, and oriented 3,000 bundles of copper-carbon fibers in a cross shape to form a net ('u-C).

網状Cu −Cは、黒鉛板にはさみ黒鉛治具を用い、1
000C,250に4/d、フォーミングガス雰囲気の
条件でホットプレスを行いCu−C&を作製した。
The reticulated Cu-C was sandwiched between graphite plates using a graphite jig.
Hot pressing was performed under the conditions of 000C, 250C, 4/d, and a forming gas atmosphere to produce Cu-C&.

CU−C板と放熱板あるいは絶縁板への接合は第4図に
示すような方法で行った。まず、黒鉛治具16および支
え板17に放熱板15、銀ろう14、Cu−C板13、
黒鉛治具16を置き、加圧治具18で5Kg/aA、1
0に9/d、20初/−130Kg/dの加圧を加え、
さらに高周波コイル20で加熱した。加熱しろう材が溶
けて加圧治具が移動したときの変位19の信号をコント
ロールボックス21で受け、高周波電源を切断する。
The CU-C board and the heat sink or insulating board were bonded by the method shown in FIG. 4. First, on the graphite jig 16 and the support plate 17, the heat sink 15, the silver solder 14, the Cu-C plate 13,
Place the graphite jig 16 and pressurize the jig 18 to 5Kg/aA, 1
Apply pressure of 9/d to 0, 20/-130Kg/d,
Further, it was heated with a high frequency coil 20. The control box 21 receives a signal of displacement 19 when the brazing filler metal melts and the pressing jig moves, and the high frequency power source is cut off.

CU−C板を短時間加熱したときの体積増加率を測定し
た結果を第5図に示す。第5図中、Aは銅−炭素繊維複
合材料として35体体積C−CU。
FIG. 5 shows the results of measuring the volume increase rate when the CU-C plate was heated for a short time. In FIG. 5, A has a body volume of 35 C-CU as a copper-carbon fiber composite material.

Bは45体積%c−cu、cは55体積%C−Cuであ
る。
B is 45% by volume c-cu, and c is 55% by volume C-Cu.

このように短時間加熱した場合、Cu−C板の体積増加
が少なく、瞬時に加熱し接合することが望ましい。
When heating for a short time in this way, there is little increase in the volume of the Cu-C plate, and it is desirable to heat and bond instantly.

さらに第5図のDから明らかなように加圧力5(9) Kf/d以上であれば、硬ろう材の接合温度(約80O
r)でも加熱時間が短いとCu −C板の体積変化はほ
とんどないことがわかる。
Furthermore, as is clear from D in Fig. 5, if the pressing force is 5 (9) Kf/d or more, the joining temperature of the hard soldering material (approximately 80 O
r), it can be seen that when the heating time is short, there is almost no change in the volume of the Cu-C plate.

また、このような方法でろう付けした場合、ろう付は時
に加圧されているため、溶湯したろう材は押し出され、
薄くなシろう材部分の熱抵抗も小さく、また、接合部の
ボイドもほとんどみられなかった。
Also, when brazing with this method, the molten brazing metal is pushed out because the brazing is sometimes pressurized.
The thermal resistance of the thin filler material was also low, and there were almost no voids in the joints.

以上の方法でトランジスタを組立てその特性を評価した
。その結果を第6図に示す。測定法は電力を15Wとし
、通電時・と停止時の温度差ヲ90Cでパワーサイクル
aoooo回まで行い、その時の電圧変化(ΔVmi)
を測定して、初期値との変化重金比較した。第6図から
明らかなように、本発明によるろう付法(図中Aで示す
)の場合、トランジスタは、パワーサイクルBoooo
回繰り返しても初期値に対して、大差はなく、従来ろう
付(図中Bで示す)で接合したMOに比べ変化率が少な
いことがわかった。また、Cu−C板を用いたときの測
定値は、MO板を用いたときの値に比(10) ペ良い値でめシ、特性は同等以上であシ、従来の規格値
(20000サイクル)をこえても問題がない。
A transistor was assembled using the above method and its characteristics were evaluated. The results are shown in FIG. The measurement method is to use a power of 15W, a temperature difference of 90C between when the power is turned on and when it is turned off, and a power cycle of up to aooooo times, and the voltage change at that time (ΔVmi)
was measured and compared with the initial value. As is clear from FIG. 6, in the case of the brazing method according to the present invention (indicated by A in the figure), the transistor is
It was found that there was no significant difference from the initial value even after repeating the test several times, and the rate of change was smaller than that of MO joined by conventional brazing (indicated by B in the figure). In addition, the measured values when using the Cu-C plate are better than the values when using the MO plate (10), and the characteristics are the same or better. ), there is no problem.

M7図は硬ろう何時、加圧力を変えて半導体装置を製造
したときの半導体装置の電圧変化を調べたものである。
Figure M7 shows the voltage change of the semiconductor device when the semiconductor device was manufactured by changing the hard solder temperature and the pressing force.

第7図から明らかなように加圧力が5 Kf/crA以
上であれば、電圧変化の差がないことがわかる。
As is clear from FIG. 7, if the pressing force is 5 Kf/crA or more, there is no difference in voltage change.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、銅−炭素繊維複合材料の
熱伝導性や電気的特性を損うことなく半導体装Rを製造
でき、また銅−炭素繊維複合材料は炭素繊維量や配列に
よって熱膨張係数などの特性の調整が容易で熱伝導率の
悪いA4Os板を薄くして接合しても反シやA12os
板の破壊がなく熱抵抗を飛躍的に改良できるので半導体
装置の性能を向上させることができる。
As described above, according to the present invention, the semiconductor device R can be manufactured without impairing the thermal conductivity or electrical properties of the copper-carbon fiber composite material, and the copper-carbon fiber composite material can be manufactured by changing the amount and arrangement of carbon fibers. It is easy to adjust properties such as thermal expansion coefficient, and even if A4Os plates with poor thermal conductivity are made thinner and joined, it will not work properly.
Since the thermal resistance can be dramatically improved without breaking the plate, the performance of the semiconductor device can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は銅−炭素繊維複合材料の加熱温度と体積増加率
との関係図、第2図は本発明の半導体装(11) 置の一例を示す断面図、第3図は本発明の半導体装置の
他の例を示す断面図、第4図は本発明の半導体装置の製
造方法を示すための説明図、第5図は第4図の製造方法
による銅−・炭素繊維複合材料の加熱時間と体積増加率
との関係図、第6図はパワーサイクルと電圧変化(ΔV
a! )との関係図、第7図は加圧力と電圧変化(ΔV
sz)との関係図である。 4・・・半導体素子、5・・・はんだ、6・・・銅−炭
素繊維複合材料、7・・・硬ろう材、訃・・絶縁板、9
・・・放熱板、13・・・CU−C板、14・・・銀ろ
う、15・・・放熱板、16・・・黒鉛治具、17・・
・支え板、1B・・・加圧治具、19・・・変位計、2
0・・・高周波コイル、(12) ・第2図 第づ図 力0 熱 *rIi′I  (SeC)ノぐワープイ7
ル数(反り 第7図 θ    5   10   15   2ty   
 、95    ”加/fカ  (与/隊す 第1頁の続き 0発 明 者 明山健二 高崎市西横手町111番地株式会 社日立製作所高崎工場内 166−
Fig. 1 is a diagram showing the relationship between heating temperature and volume increase rate of a copper-carbon fiber composite material, Fig. 2 is a sectional view showing an example of the semiconductor device (11) of the present invention, and Fig. 3 is a diagram showing the relationship between the heating temperature and the volume increase rate of a copper-carbon fiber composite material. 4 is an explanatory diagram showing the manufacturing method of the semiconductor device of the present invention, and FIG. 5 is a heating time of the copper-carbon fiber composite material by the manufacturing method of FIG. 4. Figure 6 shows the relationship between power cycle and voltage change (ΔV
a! ), Figure 7 shows the relationship between pressure force and voltage change (ΔV
sz). 4... Semiconductor element, 5... Solder, 6... Copper-carbon fiber composite material, 7... Hard brazing material, Death... Insulating board, 9
... Heat sink, 13... CU-C board, 14... Silver solder, 15... Heat sink, 16... Graphite jig, 17...
・Support plate, 1B... Pressure jig, 19... Displacement meter, 2
0...High frequency coil, (12) ・Fig.
number of curves (Fig. 7 θ 5 10 15 2ty
, 95 "Ka/fka (Y/Taisu) Continued from page 1 0 Inventor: Kenji Akeyama 111 Nishiyokote-cho, Takasaki City, Hitachi, Ltd. Takasaki Factory 166-

Claims (1)

【特許請求の範囲】 1、電極及び放熱板の少なくとも一方が銅−炭素繊維複
合材で形成され、銅−炭素繊維複合材で形成された電極
及び/又は放電板と他の部材とは硬ろう材で圧接されて
いること全特徴とする半導体装置。 2、特許請求の範囲第1項において、前記硬ろう材が銅
と共晶反応を生成する元素を含むこと及びはんだ以上の
融点をもつろう材であることf:、%微とする半導体装
置。 3、電極及び放熱板の少なくとも一方を鏑−炭素繊維複
合材で形成し、銅−炭素繊維複合材で形成された電極及
び/又は放熱板とこれらの部材と圧接すべき他の部材と
の間に硬ろう材を介在させて加熱加圧し、加圧状態のま
まで前記銅−炭素繊維複合材中の炭素繊維の弾性による
復元性がマトリックスに拘束でれる温度まで冷却するこ
とを特徴とする半導体装置の製造方法。 4、特許請求の範囲第3項において、5に9/−〜10
0Kg/crINで加圧することを特徴とする半導体装
置の製造方法。 5、特許請求の範囲第3項又は第4項において、前記硬
ろう材が銅と共晶反応を生成する元素を含むことはんだ
以上の融点もつろう材であることを特徴とする半導体装
置の製造方法。
[Claims] 1. At least one of the electrode and the heat sink is made of a copper-carbon fiber composite material, and the electrode and/or discharge plate made of the copper-carbon fiber composite material and other members are made of hard solder. A semiconductor device characterized by being pressure-welded with metal. 2. The semiconductor device according to claim 1, wherein the hard brazing material contains an element that produces a eutectic reaction with copper and has a melting point higher than that of the solder. 3. At least one of the electrode and the heat sink is made of a copper-carbon fiber composite material, and between the electrode and/or the heat sink made of the copper-carbon fiber composite material and other members to be pressed into contact with these members. A semiconductor characterized in that the copper-carbon fiber composite is heated and pressurized with a hard brazing material interposed therein, and cooled while the pressurized state is maintained to a temperature at which the resilience due to the elasticity of the carbon fibers in the copper-carbon fiber composite material is restrained by the matrix. Method of manufacturing the device. 4. In claim 3, 5 to 9/- to 10
A method for manufacturing a semiconductor device, characterized in that pressure is applied at 0 kg/crIN. 5. Manufacturing a semiconductor device according to claim 3 or 4, characterized in that the hard brazing material is a brazing material that contains an element that produces a eutectic reaction with copper and has a melting point higher than that of the solder. Method.
JP58024613A 1983-02-18 1983-02-18 Semiconductor device and manufacture thereof Pending JPS59151437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58024613A JPS59151437A (en) 1983-02-18 1983-02-18 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58024613A JPS59151437A (en) 1983-02-18 1983-02-18 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS59151437A true JPS59151437A (en) 1984-08-29

Family

ID=12142994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58024613A Pending JPS59151437A (en) 1983-02-18 1983-02-18 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS59151437A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4872047A (en) * 1986-11-07 1989-10-03 Olin Corporation Semiconductor die attach system
US4929516A (en) * 1985-03-14 1990-05-29 Olin Corporation Semiconductor die attach system
US7632712B2 (en) 2007-07-06 2009-12-15 Infineon Technologies Ag Method of fabricating a power semiconductor module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929516A (en) * 1985-03-14 1990-05-29 Olin Corporation Semiconductor die attach system
US4872047A (en) * 1986-11-07 1989-10-03 Olin Corporation Semiconductor die attach system
US7632712B2 (en) 2007-07-06 2009-12-15 Infineon Technologies Ag Method of fabricating a power semiconductor module

Similar Documents

Publication Publication Date Title
US5981085A (en) Composite substrate for heat-generating semiconductor device and semiconductor apparatus using the same
US20100108117A1 (en) Thermoelectric module package and manufacturing method therefor
US3284176A (en) Bonded metallic and metalized ceramic members and method of making
US3295089A (en) Semiconductor device
JP2009188088A (en) Thermoelectric apparatus
US3204158A (en) Semiconductor device
US3248681A (en) Contacts for semiconductor devices
JPS59151437A (en) Semiconductor device and manufacture thereof
JP4407509B2 (en) Insulated heat transfer structure and power module substrate
JPH02231751A (en) Material for lead frame
JP3972519B2 (en) Power semiconductor module
JP2006229247A (en) Circuit board and manufacturing method therefor
JPS639665B2 (en)
JP4876612B2 (en) Insulated heat transfer structure and power module substrate
JPH0420269B2 (en)
US3287794A (en) Method of soldering semiconductor discs
JPH09162448A (en) Thermoelectric element
JPS5832423A (en) Semiconductor device
JPS6315430A (en) Manufacture of semiconductor device
JP2014147966A (en) Joining material, joining method, joining structure, and semiconductor device
JPH10138052A (en) Method of coupling diamond substrate to at least one metal substrate
JP2002324880A (en) Heat sink
JPS6076179A (en) Thermoelectric converter
JPS63224242A (en) Heat transfer device
JPS5838694A (en) Solder for semiconductor die bonding