JPS59151434A - Vapor growth device - Google Patents

Vapor growth device

Info

Publication number
JPS59151434A
JPS59151434A JP58025812A JP2581283A JPS59151434A JP S59151434 A JPS59151434 A JP S59151434A JP 58025812 A JP58025812 A JP 58025812A JP 2581283 A JP2581283 A JP 2581283A JP S59151434 A JPS59151434 A JP S59151434A
Authority
JP
Japan
Prior art keywords
jig
tube
processing tube
caps
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58025812A
Other languages
Japanese (ja)
Inventor
Keiji Watanabe
恵二 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Kyushu Ltd
Original Assignee
NEC Kyushu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Kyushu Ltd filed Critical NEC Kyushu Ltd
Priority to JP58025812A priority Critical patent/JPS59151434A/en
Publication of JPS59151434A publication Critical patent/JPS59151434A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4587Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially vertically

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To prevent generation of an undesirable oxide film on the surface of a substrate when a vapor-growth method is performed by a method wherein, when a plurality of semiconductor substrates are provided in upright position leaving intervals between them on the heating jig which constitutes a vapor growth device, a cap is inserted between said semiconductor substrates in grouped form, and also a cooling region is provided at the end point of insertion of a processing tube wherein a jig will be inserted. CONSTITUTION:When a plurality of semiconductor substrates are provided in upright position leaving intervals on a heating jig 1, the substrates are divided into groups of 4, 4' and 4'' and the like, and caps 3, 3' and 3'' having approximately 80% of the cross- sectional area of a processing tube 6 are inserted between said groups. Also, heating device 5 is provided on the outer circumference of the processing tube 6 ranging approximately one half of its length, and the gas coming from a gas feeding device 9 is sent into the tube 6 located on the side of the heating device 5 through the intermediary of a piping 8 and a coupling 7. Also, a cooling region 6' is provided at the extended part of the tube 6, and a jig 1 goes in or out from the side using a draw-out rod 2. Thus, when the jig goes in or out, it passes through the cooling region 6' without fail, thereby enabling to prevent the generation of useless oxide film on the substrate.

Description

【発明の詳細な説明】 本発明に、気相成長装置に関するものである〇従来の気
相成長装置は半導体基板を加熱装置内に挿入し、加熱装
置入口にキャップを施し、所望ガスを導入し、所定時間
加熱処理を行うものであるO 以下、従来からの気相成長装置をキャリヤガスと゛して
窒素ガスを用いた常圧式気相成長装置を代表させ1図面
を□参照して、詳細に説明する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vapor phase growth apparatus. In a conventional vapor phase growth apparatus, a semiconductor substrate is inserted into a heating apparatus, a cap is placed on the inlet of the heating apparatus, and a desired gas is introduced. , heat treatment is carried out for a predetermined period of time.O Hereinafter, a conventional vapor phase growth apparatus will be represented by an atmospheric pressure vapor phase growth apparatus using nitrogen gas as a carrier gas. explain.

第1図を参照すると、キャップ3を終端して有する加熱
処理治具l上に被加熱処理半導体基板4゜4′を並べ(
第1゛図(1)’)、該加熱処理治具1を引き田棒2゛
を用いて加熱゛装置5内に設置された処理管6内に挿入
し、1手7と配管8によって接続されたガス供給装置9
から所望ガスを処理管6内に導入し、所定時間加熱処理
を行うものである(第1図(b) ) o尚、キャップ
3は処理管6内に加熱処理治具1赤入ってしまった時点
で処理管内に収ってしまうことでキャップとしての役目
ヲハたすことvcなる。      ゛ しかしながら上記、従来からの常圧式気相成長装置にお
いて処理された半導体基板は、加熱装置内に配置された
処理管内に挿入される際あるいは及び取り出され際に大
気中の酸素が処理管入口近傍に存在しているため、不活
性ガスでありキャリヤガスとしての窒素ガスにて加熱処
理されているにもかかわらず、半導体基板と酸素が反応
を起し、所望としない酸化物が半導体基板表面に形成さ
れ。
Referring to FIG. 1, semiconductor substrates 4° 4' to be heated are arranged on a heat processing jig l having a cap 3 at the end (
Fig. 1 (1)'), the heat treatment jig 1 is inserted into the treatment pipe 6 installed in the heating device 5 using a pull rod 2, and connected by a hand 7 and piping 8. gas supply device 9
A desired gas is introduced into the processing tube 6 and heat treatment is performed for a predetermined period of time (Figure 1 (b)). By being accommodated in the processing tube at this point, it serves as a cap.゛However, when the semiconductor substrate processed in the above-mentioned conventional atmospheric pressure vapor phase growth apparatus is inserted into or taken out of the processing tube placed in the heating device, atmospheric oxygen is released near the entrance of the processing tube. Therefore, even though the semiconductor substrate is heat-treated with nitrogen gas, which is an inert gas and serves as a carrier gas, the semiconductor substrate and oxygen react with each other, resulting in unwanted oxides being deposited on the surface of the semiconductor substrate. formed.

半導体装置製造上好ましくない事態を招く欠点があった
This has the drawback of causing an unfavorable situation in the manufacture of semiconductor devices.

この欠点を補うために従来から用いられた手段としては
加熱装置内と室温までの間を急速に加熱あるいは冷却す
る方法、すなわち半導体基板を加゛   エfllP3
1c、t□ヤ15.□。1、型加熱温度に保持する方法
が取られていた。この従来方法によれば急速に室温又は
所望加熱温度まで半導体基板が冷却又は加熱される為、
大気中の酸素との反応時間が短くなることを利用して所
望としない酸化物形成を少なくしようとするものであり
た〇 しかし、この従来方法を採用すると急激な温度変化の為
、半導体基板に応力が加わ9.半導体基板の反り1割れ
が発生する事態が住じている。
Conventionally, the method used to compensate for this drawback is to rapidly heat or cool the space between the inside of the heating device and the room temperature, that is, to modify the semiconductor substrate.
1c, t□ya15. □. 1. A method was used to maintain the mold heating temperature. According to this conventional method, the semiconductor substrate is rapidly cooled or heated to room temperature or a desired heating temperature.
This method attempts to reduce the formation of undesired oxides by taking advantage of the shorter reaction time with oxygen in the atmosphere. However, when this conventional method is adopted, rapid temperature changes cause damage to the semiconductor substrate. 9. Stress is added. There are situations where semiconductor substrates warp and crack.

この反り9割れは半導体装置を製造する上で致命的な欠
点であり、歩留の低下9品質の低下はさけられず又、大
口径半導体基板1’(なればなる程。
This warpage is a fatal flaw in manufacturing semiconductor devices, and a decrease in yield and quality is unavoidable.

反り9割れは増幅される為半導体装置製造上、克服せね
ばならない難関でもあり7t。
Since the warpage of 90% is amplified, it is also a difficult problem to overcome in the manufacturing of semiconductor devices.

不発明の目的は、半導体基板の反り1割れ等を発生させ
ず、所望としない酸化物を半導体基板表面に形成させる
ことのない気相成長装gItt−提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a vapor phase growth system that does not cause warpage or cracking of a semiconductor substrate and does not cause undesired oxides to be formed on the surface of a semiconductor substrate.

本発明によれば、加熱処理治具全体を均一温度に加熱可
能な加熱装置と、該加熱装置外に該加熱処理治具上のキ
ャップ間距離以上の長さを有する冷却域とを有し、且つ
該加熱装置内部全領域内に設置された処理管と該加熱処
理治具を処理管内所望位置に入れ出しする引き出し棒と
、該処理管内に所望ガスを供給するガス供給装置と、該
処理管内径断面積の8割相当以上の断面積會有する多段
キャップを配置し、該キャップ間に被加熱処理半導体基
板を配置する該加熱処理治具とを備えている気相成長装
置が得られる。
According to the present invention, there is provided a heating device capable of heating the entire heat treatment jig to a uniform temperature, and a cooling area outside the heating device having a length equal to or longer than the distance between the caps on the heat treatment jig, Further, a processing tube installed in the entire interior area of the heating device, a pull-out rod for inserting and extracting the heat treatment jig into a desired position in the processing tube, a gas supply device for supplying a desired gas into the processing tube, and the processing tube. A vapor phase growth apparatus is obtained which includes multi-stage caps having a cross-sectional area equivalent to 80% or more of the inner diameter cross-sectional area and a heat treatment jig for placing a semiconductor substrate to be heated between the caps.

以下キャリヤガスとして窒素ガスを用いた常圧式気相成
長装at−代表させ図@Jを参照して本発明の冥施例を
詳細に説明する。
Embodiments of the present invention will be described in detail below with reference to FIG.

第2図を参照すると、加熱処理治具1上には3段のキャ
ップ3.3’、3“が配置されてお夕、該キャップの間
に被加熱処理半導体基板4.4’、4“が配置されてい
る(第2図(a) ) oこの状態の加熱処理治具1を
引き出し棒2を用いて加熱装置内に設置された処理管6
173に入れ出しする訳であるが。
Referring to FIG. 2, three stages of caps 3.3', 3'' are arranged on the heat treatment jig 1, and semiconductor substrates to be heated 4.4', 4'' are placed between the caps. (Fig. 2(a)) o Pull out the heat treatment jig 1 in this state and use the rod 2 to insert the treatment tube 6 installed in the heating device.
I put it in and take it out to 173.

このとき該処理管6の延長上に冷却域6′ヲ設置する七
1段目キャップ3慟よ冷却域6′の端部にかからない状
態すなわち大気中の酸素、が存在する従来からの常圧≧
気相成長装置と同等の状態であっても被加熱処理半導体
基板4tまだ冷却域6′の中に位置しているため大気中
の酸素が存在しているにもかかわらず半導体基板4“と
酸素との反応は起らず所望としない酸化物は半導体基板
表面に形成されないO なお冷却域の長さは、加熱処理治具上に配尊さ5− れたキャップ間距離より吃長く設置する必要がある。更
に該加熱処理治具を処理管に挿入していくと1段目キャ
ップ3i処理管6の中に収まりキャップとしての役目を
発揮する為、処理管61C導入されている窒素ガスを保
持することvcな9.大気中の酸素の影響は完全に遮断
される。
At this time, the 71st stage cap 3 installed in the cooling zone 6' on the extension of the processing tube 6 is not exposed to the end of the cooling zone 6', that is, the conventional normal pressure ≧ where oxygen in the atmosphere exists.
Even in the same condition as in the vapor phase growth apparatus, the semiconductor substrate 4t to be heated is still located in the cooling zone 6', so even though there is oxygen in the atmosphere, the semiconductor substrate 4'' and the oxygen No reaction occurs with the caps, and undesired oxides are not formed on the surface of the semiconductor substrate.The length of the cooling zone must be longer than the distance between the caps placed on the heat treatment jig. When the heat treatment jig is further inserted into the processing tube, the first stage cap 3i fits into the processing tube 6 and functions as a cap, retaining the nitrogen gas introduced into the processing tube 61C. 9. The influence of oxygen in the atmosphere is completely blocked.

以降は2段目キャップ3′が上記同様3“と同一の役目
を果すことvcなり、更に挿入された状態では3段目キ
ャップ3が上記同様3“と同一の役目を果すことになる
Thereafter, the second stage cap 3' plays the same role as 3'' as described above, and in the inserted state, the third stage cap 3 plays the same role as 3'' as described above.

一万、処理管6から加熱処理治具lを引き出す場合も、
挿入時と全く同一の状態が起るが挿入時と同様のキャッ
プ3.3’、3“と冷却域6′の役目により、所望とし
ない酸化物は半導体表面に形成されることにない。
10,000, also when pulling out the heat treatment jig l from the treatment tube 6,
Exactly the same situation as during insertion occurs, but due to the role of the caps 3.3', 3'' and the cooling zone 6', which are similar to those during insertion, no unwanted oxides are formed on the semiconductor surface.

なおキャップの大きさすなわち断面積は処理管の内径断
面積に依存するが該処理管内径断面積の8割以上あれば
効果を発揮することが分り、所望としない酸化物に半導
体表面に形成されることはない。
The size of the cap, that is, the cross-sectional area, depends on the inner diameter cross-sectional area of the processing tube, but it has been found that it is effective if it is 80% or more of the inner diameter cross-sectional area of the processing tube, and prevents unwanted oxides from forming on the semiconductor surface. It never happens.

6− 表Iff本発明の効果を示しており、 850’Cにお
いて処理管内に窒素ガスを導入し、半導体基板であるシ
リコン基板を挿入し30分間処理した後に測定される酸
化物である二酸化ンリコン膜の厚さをエリプソメータで
測定した結果を従来からの常圧式気相成長装置と不発明
による常圧式気相成長装置を比較対照して示したもので
ある。
6- Table Iff shows the effects of the present invention, and shows the phosphoric acid film, which is an oxide, measured after introducing nitrogen gas into the processing tube at 850'C, inserting a silicon substrate, which is a semiconductor substrate, and processing for 30 minutes. The results of measuring the thickness using an ellipsometer are shown by comparing and contrasting a conventional atmospheric pressure vapor phase growth apparatus and an uninvented atmospheric pressure vapor phase growth apparatus.

なおエリプソメータにて測定される値はバックグランド
としてlト15 Aが上乗せされているものであり使用
したシリコン基板はボロンドー10.8〜1.0 X 
10  (cm ) (Dものでsる。
Note that the values measured with the ellipsometer are those with 15 A added as a background, and the silicon substrate used is boron dot 10.8 to 1.0 X.
10 (cm) (D).

表1から分る様に本発明が所望としない酸化物を形成せ
しめないことが分る。
As can be seen from Table 1, it can be seen that the present invention does not cause the formation of undesired oxides.

以上1本発明を窒素ガスをキャリヤガスとした常圧式気
相成長装置を代表させて説明したが、加7− 熱して半導体基板に気相成長を施す装置で、所望としな
い酸化膜が存在してはいけない装置、すなわちシランガ
スを主要として使用し、多結晶シリコン膜を形成する多
結晶シリコン形成気相成長装置、7ランガスとアンモニ
アガスを主要として使用し、窒化物を形成する窒化物形
成気相成長装置。
The present invention has been described above using a typical atmospheric pressure vapor phase growth apparatus using nitrogen gas as a carrier gas. Equipment that must not be used, namely, polycrystalline silicon formation vapor phase growth equipment that mainly uses silane gas to form polycrystalline silicon films, and nitride formation vapor phase growth equipment that mainly uses 7 run gas and ammonia gas to form nitrides. growth equipment.

MoCl3などを主要ガスとして使用し、モリブデン膜
を形成するモリブデン形成気相成長装置、 W(2aな
どを主要ガスとして使用【−1タングステン膜を形成す
るタングステン形成気相成長装置Iなどに広く用途を広
げることができるものである0又、加熱処理治具1上の
キャップの段数を3段に限定して説明したが処理管6の
長さ及び加熱装置の温度均一領域を長くすることによっ
てキャップさえ多く配置することができれば3段以上の
キャップを有する気相成長装置をつくることが可能であ
る。
It is widely used in molybdenum formation vapor phase epitaxy equipment that uses MoCl3 etc. as the main gas to form molybdenum films, and tungsten formation vapor phase growth equipment I that uses W(2a etc. as the main gas) to form tungsten films. In addition, although the number of stages of caps on the heat treatment jig 1 was limited to three stages, by increasing the length of the processing tube 6 and the temperature uniform area of the heating device, even the caps can be expanded. If a large number of caps can be arranged, it is possible to create a vapor phase growth apparatus having three or more stages of caps.

更に本発明に減圧式気相成長装置vcも適用できること
に明らかである。
Furthermore, it is obvious that a reduced pressure type vapor phase growth apparatus VC can also be applied to the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

8− 第1図は従来の常圧式気相成長装置を示す概略図と断面
模型図であり、第2図μ本発明の一実施例を示す概略図
と断面模型図である。 尚1図において、1μ加熱処理治具、2に引き出し棒、
3.3’、3“なキャップ 4 、41 、41/は半
導体基板、5は加熱装置、 6rX処理管、6′ハ冷却
域、7は継手、8は配管、9はガス供給装置である。 9− 2/図 1′
8- FIG. 1 is a schematic diagram and a cross-sectional model diagram showing a conventional atmospheric pressure vapor phase growth apparatus, and FIG. 2 is a schematic diagram and a cross-sectional model diagram showing an embodiment of the present invention. In Figure 1, a 1μ heat treatment jig, 2 a pull-out rod,
3.3', 3" caps 4, 41, 41/ are semiconductor substrates, 5 is a heating device, 6rX processing tube, 6' is a cooling area, 7 is a joint, 8 is a pipe, and 9 is a gas supply device. 9-2/Figure 1'

Claims (1)

【特許請求の範囲】 加熱処理治具全体を均一温度に加熱可能な加熱装置と、
該加熱装置外に該加熱処理治具上のキャップ間距離以上
の長さを有する冷却域とを有し。 且つ該加熱装置内部全領域内に設置された処理管と、該
加熱処理治具を処理管内所望位BVC入れ出しする引き
出し棒と、該処理管内に所望ガスを供給するガス供給装
置と、該処理管内径断面積の8割相当以上の断面積を有
する多段キャップを配置し該キャップ間に被加熱処理半
導体基板全配置する該加熱処理治具とを備えていること
t−特徴とする気相成長装置。
[Claims] A heating device capable of heating the entire heat treatment jig to a uniform temperature;
A cooling area having a length longer than the distance between the caps on the heat treatment jig is provided outside the heating device. Further, a processing tube installed in the entire interior area of the heating device, a pull-out rod for inserting and removing the heat treatment jig into and out of the processing tube at a desired position in the BVC, a gas supply device for supplying a desired gas into the processing tube, and the processing Vapor phase growth characterized by comprising: a heat treatment jig for arranging multistage caps having a cross-sectional area equivalent to 80% or more of the cross-sectional area of the inner diameter of the tube, and for arranging all the semiconductor substrates to be heated between the caps; Device.
JP58025812A 1983-02-18 1983-02-18 Vapor growth device Pending JPS59151434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58025812A JPS59151434A (en) 1983-02-18 1983-02-18 Vapor growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58025812A JPS59151434A (en) 1983-02-18 1983-02-18 Vapor growth device

Publications (1)

Publication Number Publication Date
JPS59151434A true JPS59151434A (en) 1984-08-29

Family

ID=12176276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58025812A Pending JPS59151434A (en) 1983-02-18 1983-02-18 Vapor growth device

Country Status (1)

Country Link
JP (1) JPS59151434A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2604297A1 (en) * 1986-09-19 1988-03-25 Pauleau Yves Reactor for depositing doped silicon
EP0432781A2 (en) * 1989-12-14 1991-06-19 Kabushiki Kaisha Toshiba Method and device for manufacturing a diffusion type semiconductor element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2604297A1 (en) * 1986-09-19 1988-03-25 Pauleau Yves Reactor for depositing doped silicon
EP0432781A2 (en) * 1989-12-14 1991-06-19 Kabushiki Kaisha Toshiba Method and device for manufacturing a diffusion type semiconductor element

Similar Documents

Publication Publication Date Title
Bloem et al. Slip in silicon epitaxy
US4598665A (en) Silicon carbide process tube for semiconductor wafers
JPS59151434A (en) Vapor growth device
US5759426A (en) Heat treatment jig for semiconductor wafers and a method for treating a surface of the same
JP3312553B2 (en) Method for producing silicon single crystal and silicon single crystal thin film
US5245158A (en) Semiconductor device manufacturing apparatus
US4436509A (en) Controlled environment for diffusion furnace
US4256052A (en) Temperature gradient means in reactor tube of vapor deposition apparatus
JP2773150B2 (en) Semiconductor device manufacturing equipment
JPH02151035A (en) Buried-in diffusion process in bipolar ic manufacture
KR200177582Y1 (en) Cooling apparatus of load lock chamber
US4370158A (en) Heat-treating method for semiconductor components
JPS5840824A (en) Heat treatment device for semiconductor wafer
JP3634088B2 (en) Heat treatment method for SOS substrate
JPH0361336B2 (en)
JP2693465B2 (en) Semiconductor wafer processing equipment
JP2662318B2 (en) Method of diffusing impurities into semiconductor substrate
JPH04134816A (en) Semiconductor manufacturing equipment
JPS62249413A (en) Silicon epitaxial growth under reduced pressure
JP2766100B2 (en) Method for removing unreacted gas in reduced pressure vapor phase growth apparatus
JPS63128623A (en) Heat treatment control substrate and its application
JPH01283921A (en) Annealing method of gaas wafer
JPH03108322A (en) Vapor growth equipment
JPH06151325A (en) Split-type furnace
JPS6031260Y2 (en) semiconductor manufacturing equipment