JPS59147240A - Evaporation quantity monitor - Google Patents

Evaporation quantity monitor

Info

Publication number
JPS59147240A
JPS59147240A JP2241983A JP2241983A JPS59147240A JP S59147240 A JPS59147240 A JP S59147240A JP 2241983 A JP2241983 A JP 2241983A JP 2241983 A JP2241983 A JP 2241983A JP S59147240 A JPS59147240 A JP S59147240A
Authority
JP
Japan
Prior art keywords
light
space
metal
substrate
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2241983A
Other languages
Japanese (ja)
Inventor
Minoru Osada
実 長田
Morishige Chiyokura
千代倉 守成
Seiji Yasui
政治 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi Condenser Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Condenser Co Ltd filed Critical Hitachi Condenser Co Ltd
Priority to JP2241983A priority Critical patent/JPS59147240A/en
Publication of JPS59147240A publication Critical patent/JPS59147240A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems

Abstract

PURPOSE:To make it possible to measure an evaporation quantity at an arbitrary place, in an atomic absorption type evaporation quantity monitor for controlling the thickness of the vapor deposition metal adhered to a substrate, by providing a space for passing vapor to a part of an optical fiber for connecting a light source and a light receiving part. CONSTITUTION:An evaporation source 3 is subjected to resistance heating or high frequency heatng to melt and evaporate the metal 4 received therein. The evaporated meta is deposited on a substrate 1 such as a polymer film but passes the space 8 provided between the ends of optical fibers 7a, 7b on the way of deposition. Therefore, the transmission factor of the light from a light emitting part 5 is reduced by the metal vapor and, by receiving the previous light by a light receiving part 6, the deposition speed of the vapor deposition metal at the place where the space 8 is positioned can be measured. Because the optical fibers 7a, 7b are rich in flexiblity and the space 8 can be set to an arbitrary place, the vapor deposition quantity at the arbitrary place in the width direction of the substrate can be measured.

Description

【発明の詳細な説明】 本発明は蒸発量モニタに関するものである。[Detailed description of the invention] The present invention relates to an evaporation amount monitor.

兵学蒸着方法やスパッタリングにおいて、高分子フィル
ム等の基体に付着する蒸着金属等の厚さを制御すること
は、その蒸着フィルム等の各種特性を決めるうえで′、
非常に重要な作業となっている。
In the military vapor deposition method and sputtering, controlling the thickness of the deposited metal attached to the substrate such as a polymer film is important in determining the various characteristics of the deposited film.
This is a very important work.

そのために従来は、例えば原子吸光式モニタを用いてい
るが、基体が帯状物等の場合には、基体の全幅方向に亘
る蒸発物質全体の吸光度を測定するかまたは光路の一部
に蒸発物質を流入させるような方式が用いられていた。
For this purpose, for example, an atomic absorption monitor is conventionally used, but if the substrate is a strip, the absorbance of the entire evaporated substance over the entire width of the substrate is measured, or the evaporated substance is placed in a part of the optical path. A method was used that allowed the water to flow in.

それ故、前者の場合には蒸発物質の幅方向の平均値であ
り、後者の場合には幅方向の一部の舶Cあり、いずれも
、幅方向の各部の蒸発物質の間を測定づることができな
い欠点があった。
Therefore, in the former case, it is the average value of the evaporated substance in the width direction, and in the latter case, there is a part of the vessel C in the width direction.In both cases, it is the average value of the evaporated substance in the width direction. There was a drawback that it could not be done.

また、光源から受光部までの光路を金属製の円筒等によ
り形成しているために、光路が直線的で、発光部と受光
部との位置合わIの調整が困難である欠点があった。
Furthermore, since the optical path from the light source to the light receiving section is formed by a metal cylinder or the like, the optical path is linear, which makes it difficult to adjust the alignment I between the light emitting section and the light receiving section.

本発明は、以上の欠点を改良し、基体の任意の箇所の蒸
発量を測定できかつ組み立ての容易な蒸発量モニタの提
供を[1的とするものである。
One object of the present invention is to improve the above-mentioned drawbacks and provide an evaporation amount monitor that can measure evaporation amount at any location on a substrate and is easy to assemble.

本発明は、上記の目的を達成するために、原子吸光式の
蒸発量モニタにおいて、発光部と受光部との間に光ファ
イバーを設け、該光ファイバ二を通し前記発光部からの
光を前記受光部に導くことを特徴とする蒸発量モニタを
提供するものである。
In order to achieve the above object, the present invention provides an atomic absorption type evaporation monitor in which an optical fiber is provided between a light emitting part and a light receiving part, and the light from the light emitting part is passed through the optical fiber 2 to the light receiving part. The present invention provides an evaporation amount monitor that is characterized in that it leads to

以下、本発明の実施例を図面に基づいて説明する。Embodiments of the present invention will be described below based on the drawings.

図において、1は、高分子フィルム等の帯状の基体であ
り、キレン2の表面を走b Lでいる。3は、ルツボな
との蒸発源であり、アルミャ】亜鉛、コバル1−、ニラ
クル等の金属4が収容されている。
In the figure, numeral 1 is a strip-shaped substrate such as a polymer film, and it runs along the surface of the glass 2. 3 is an evaporation source of a crucible, which contains metals 4 such as alumina, zinc, cobal, and niracle.

5はボローカソードランプ等からなる発光部である。6
は光電子増倍管等からなる受光部である。
Reference numeral 5 denotes a light emitting section consisting of a borrowed cathode lamp or the like. 6
is a light receiving section consisting of a photomultiplier tube or the like.

7a及び7bは一端が各々発光部5及び受光部6に取り
付()られた光ファイバーであり、他端が互いに、発光
部5からの光が受光部6に導かれるように、基体1の下
方の任意の位置に配置されている。
7a and 7b are optical fibers whose one ends are attached to the light emitting section 5 and the light receiving section 6, respectively, and whose other ends are attached below the base 1 so that the light from the light emitting section 5 is guided to the light receiving section 6. placed at any position.

づなわら、蒸Je源3を抵抗加熱や高周波加熱し、収容
されている金属4を治融し蒸発さける。蒸発し1=金属
は基体1に何着づるが、付着づる途中で光ファイバー7
a及び7bの端に設()られた空間8を通る。そのため
に、発光部5からの光の透過率が金属蒸気によって減少
し、この透過光を受光部6で受光づることにj:つて空
間8が位置する箇所の蒸着金属の付着速成が測定できる
。しかも、光ファイバー78及び7bは従来の金属製の
筒に比べて柔軟性に富み、任意の位置に空間8を設定て
きるので、基体1の幅方向について任意の箇所の蒸着金
属の付着速度にしたがって蒸着量を測定できる。また、
発光部5と受光部6とは、どんなにズしていても光ファ
イバー78及び7bを任意の形の光路にすることによっ
て、光を発光部5から受光部6に導くことができるので
、取りイ」(ブが容易になる。
In other words, the vaporized Je source 3 is subjected to resistance heating or high frequency heating to melt and evaporate the metal 4 contained therein. Evaporation 1 = How many metals are attached to the substrate 1, but in the middle of the attachment, the optical fiber 7
It passes through the space 8 provided at the ends of a and 7b. Therefore, the transmittance of light from the light emitting section 5 is reduced by the metal vapor, and by receiving this transmitted light at the light receiving section 6, it is possible to measure the deposition rate of the vapor deposited metal at the location where the space 8 is located. Moreover, the optical fibers 78 and 7b are more flexible than conventional metal tubes, and the space 8 can be set at any position, so that the space 8 can be set at any position in accordance with the deposition rate of the vapor-deposited metal at any position in the width direction of the base 1. Deposition amount can be measured. Also,
Even if the light emitting part 5 and the light receiving part 6 are misaligned, the light can be guided from the light emitting part 5 to the light receiving part 6 by making the optical fibers 78 and 7b into an optical path of an arbitrary shape. (It becomes easier.

以上の通り、本発明によれば、光路に光)7・イバーを
用いているので、基体の幅方向の1工意の箇所の蒸着量
を容易に測定ひき特性の良い蒸着フィルム等を製造でき
、また、製造の容易な蒸発量モニタが1与られる。
As described above, according to the present invention, since an optical fiber is used in the optical path, it is possible to easily measure the amount of vapor deposited at a single point in the width direction of the substrate, and to produce a vapor-deposited film with good characteristics. , and an easy-to-manufacture evaporation monitor.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例を用いた蒸着装置の内部の側面図を
示づ。 5・・・発光部、 6・・・受光部、 7a、7b・・・光ファイバー。 特許出願人 日立コンデンサ株式会社
The figure shows a side view of the interior of a vapor deposition apparatus using an embodiment of the present invention. 5... Light emitting section, 6... Light receiving section, 7a, 7b... Optical fiber. Patent applicant Hitachi Capacitor Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)原子吸光式の蒸発量モニタにおいて、光源と受光
部とに光ファイバーを取り(=JU、該光ファイバーを
通しC前記光源からの光を前記受光部に導くことを特徴
とする蒸発量モニタ。
(1) An atomic absorption type evaporation monitor characterized in that an optical fiber is provided between the light source and the light receiving section (=JU, and the light from the light source C is guided to the light receiving section through the optical fiber.
JP2241983A 1983-02-14 1983-02-14 Evaporation quantity monitor Pending JPS59147240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2241983A JPS59147240A (en) 1983-02-14 1983-02-14 Evaporation quantity monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2241983A JPS59147240A (en) 1983-02-14 1983-02-14 Evaporation quantity monitor

Publications (1)

Publication Number Publication Date
JPS59147240A true JPS59147240A (en) 1984-08-23

Family

ID=12082146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2241983A Pending JPS59147240A (en) 1983-02-14 1983-02-14 Evaporation quantity monitor

Country Status (1)

Country Link
JP (1) JPS59147240A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060109A (en) * 1996-03-27 2000-05-09 Nisshin Steel Co., Ltd. Atomic absorption analysis for measuring and controlling the amount of a metal vapor in vapor deposition coating line and apparatus therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3899688A (en) * 1972-11-24 1975-08-12 Jacques A Perieres Device for checking the content of hydrocarbons in a mixture of water and hydrocarbons
JPS5376088A (en) * 1976-12-17 1978-07-06 Mitsui Shipbuilding Eng Particle concentration detector
JPS551574A (en) * 1978-06-20 1980-01-08 Matsushita Electric Ind Co Ltd Fine particle detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3899688A (en) * 1972-11-24 1975-08-12 Jacques A Perieres Device for checking the content of hydrocarbons in a mixture of water and hydrocarbons
JPS5376088A (en) * 1976-12-17 1978-07-06 Mitsui Shipbuilding Eng Particle concentration detector
JPS551574A (en) * 1978-06-20 1980-01-08 Matsushita Electric Ind Co Ltd Fine particle detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6060109A (en) * 1996-03-27 2000-05-09 Nisshin Steel Co., Ltd. Atomic absorption analysis for measuring and controlling the amount of a metal vapor in vapor deposition coating line and apparatus therefor

Similar Documents

Publication Publication Date Title
US20100180818A1 (en) Dynamic Film Thickness Control System/Method and its Utilization
JPH0377873B2 (en)
EP1326097A3 (en) Process for forming a thin film and apparatus therefor
CA1268618A (en) Method for making an optical waveguide element
JPS59147240A (en) Evaporation quantity monitor
CA2098447A1 (en) Vapour-deposition material for the production of optical coatings of medium refractive index
KR20160104190A (en) Apparatus and mehtod for measuring a deposition rate
SE8205395D0 (en) METHOD AND APPARATUS FOR THE VAPOR DEPOSIT OF MATERIAL UPON A SUBSTRATE
US3541301A (en) Source for evaporation in a vacuum
JPH0130909B2 (en)
JPS5424983A (en) Weathering resistant film for reflecting heat rays
JPS5739172A (en) Apparatus for preparing thin film
SU889743A1 (en) Evaporator
JPS648521A (en) Optical recording medium
JPS6472193A (en) Backlight apparatus for liquid crystal display element
JPH0730447B2 (en) Thin film formation method
JPS5581440A (en) Electron tube with photoelectric screen and its manufacturing method
GB1084591A (en) Improvements in and relating to laser apparatus and to the manufacture thereof
JPH04183864A (en) Vacuum film forming device and production of vapor deposited film
SU605860A1 (en) Vacuum device for depositing films
JPS58164779A (en) Vapor deposition apparatus
JPS57197505A (en) Thin film lens
Gates Notes on the Evaporation of Thin Metallic Films
JPH09145609A (en) Vapor deposition speed measurement instrument for vapor deposition device
JPH07120624A (en) Light source device