JPS59136030A - Frequency converting power supply facility - Google Patents

Frequency converting power supply facility

Info

Publication number
JPS59136030A
JPS59136030A JP732783A JP732783A JPS59136030A JP S59136030 A JPS59136030 A JP S59136030A JP 732783 A JP732783 A JP 732783A JP 732783 A JP732783 A JP 732783A JP S59136030 A JPS59136030 A JP S59136030A
Authority
JP
Japan
Prior art keywords
power supply
load
phase
voltage
frequency conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP732783A
Other languages
Japanese (ja)
Inventor
良 玉井
河合 忠雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP732783A priority Critical patent/JPS59136030A/en
Publication of JPS59136030A publication Critical patent/JPS59136030A/en
Pending legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は周波数の異なる地域に置かれている電気θF設
備の周波数変換設備に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to frequency conversion equipment for electric θF equipment located in areas with different frequencies.

〔従来技術〕[Prior art]

第1図は従来技術の回路図で心る。 Figure 1 is a circuit diagram of the prior art.

める交流系(変流き電線)1から周波数の異なる交流系
(交流き電、にり5へ電力を供給する場合を示す。(例
えば、東海道新幹線は608Z地域と50Hz地域を走
行するので50H2地区に同期−同期周波数変換設備を
置き、電車線に60H2を供給している。
This shows a case in which power is supplied from an AC system (variable current feeder) 1 to an AC system (AC feeder) 5 with a different frequency. (For example, the Tokaido Shinkansen runs in the 608Z area and the 50Hz area, so the 50H2 A synchronous-synchronous frequency conversion facility is installed in the area to supply 60H2 to the overhead contact lines.

負荷6の変動に伴う電力の供給調整は、交流き電線5の
電圧をACPT7により検出し、同期発電機4の界磁巻
線9に流れる界磁電流とAVVB2よって調整し、交流
き電線5の電圧を一定にすることによって行なう。
To adjust the power supply in response to changes in the load 6, the voltage of the AC feeder line 5 is detected by the ACPT7, and the voltage of the AC feeder line 5 is adjusted by the field current flowing through the field winding 9 of the synchronous generator 4 and AVVB2. This is done by keeping the voltage constant.

第2図は交流き電線内を走行する機関車負荷を表わす図
である。
FIG. 2 is a diagram showing the load on a locomotive running on an AC feeder line.

Sは線路側、几とTは、スコツト結線より得られた二相
交流で、几−8間、T−8間の交流負荷のつり合いが、
取れていれば、スコツト結線の1次側の三相交流側も釣
りアいが取れる。
S is the line side, 几 and T are two-phase AC obtained from Scott connection, and the AC load balance between 几-8 and T-8 is as follows.
If it is, the three-phase AC side of the primary side of the Scott connection can also be adjusted.

従って、負荷である交流機関車が、通過するたひに負荷
変動が、生じることがわかる。また、その変動もピーク
をもっていることが知られている。
Therefore, it can be seen that load fluctuations occur every time the AC locomotive passes by. It is also known that the fluctuation has a peak.

第3図は負荷2の負荷変動を表わす曲線である。FIG. 3 is a curve representing the load fluctuation of load 2.

坂に負荷り、(kW)、横軸に時間t(S)k取り、定
性的に表わしている。
The load on the slope (kW) is expressed qualitatively by taking time t(S)k on the horizontal axis.

曲線11の様に周波数の低い、すなわら、変動の小さい
負荷変動に対して、回転機の応答としてフライホイール
効果3とAVR8の制御とにより十分に追従出来る。そ
れを第4図の曲線16に示す。縦軸Vは交流系5の電圧
を示す。
As shown in curve 11, load fluctuations with a low frequency, ie, small fluctuations, can be sufficiently followed by the flywheel effect 3 and the control of the AVR 8 as a response of the rotating machine. This is shown by curve 16 in FIG. The vertical axis V indicates the voltage of the AC system 5.

しかし、第3図の様な急しゅんな負荷ピークで、かつ、
それが一定時間続く場合には、フライホイール効果及び
AVRが追従出来ず、第4図の様な曲線17になる。
However, when there is a sudden load peak as shown in Figure 3, and
If this continues for a certain period of time, the flywheel effect and AVR will not be able to follow it, resulting in a curve 17 as shown in FIG.

この様な負荷変動は、回転機の軸や、軸受けに無理な力
が、加わるため、負荷変動の激しい交流電気所に設置さ
れている回転機による周波数変換設備の寿命は、一般の
定負荷供給に比して著しく寿命が、短かいことが考えら
れる。
Such load fluctuations apply unreasonable force to the shafts and bearings of rotating machines, so the lifespan of frequency conversion equipment using rotating machines installed in AC power stations with large load fluctuations is longer than that of a general constant load supply. It is thought that the lifespan is significantly shorter than that of

そのため、第5図の株に従来の回転機による周波数変換
設備2〜4及び7〜9に対して並列に順変換器32、直
流リアクトル31及び逆変換器33から成る。
Therefore, the system shown in FIG. 5 includes a forward converter 32, a DC reactor 31, and an inverse converter 33 in parallel to the frequency conversion equipment 2-4 and 7-9 using conventional rotary machines.

第5図で、50 H7,系のき電線につながれる母線1
にあられれる電圧は、第2図の様な負荷が通過するたび
に負荷変動が生じ、又、負荷が、バランスよく三相平衡
していないため、各相ごとに電圧変動が、不平衡に生じ
ることが考えられる。すなわら、三相不平衡交流系全第
5図の順変換器32につなぐことになり、好ましくない
。(直流回路の電流の脈動、転流時間のバラツキによる
トランスの直流励磁、高調波の発生等の不具合)〔発明
の目的〕 本発明の目的は回転機で構成されている周波数変換設備
と並列にサイリスタ(静止形)周波数変換設備をつなぐ
ことによシ、急激な負荷変動に対しても良好に電力融通
を図る周波数変換給電設備を提供するにある。
In Figure 5, bus 1 connected to the feeder line of the 50 H7 system
As shown in Figure 2, the voltage applied to the circuit changes each time a load passes through it, and since the load is not well-balanced in three phases, voltage fluctuations occur unbalancedly for each phase. It is possible that In other words, the entire three-phase unbalanced AC system is connected to the forward converter 32 of FIG. 5, which is not preferable. (Problems such as current pulsation in the DC circuit, DC excitation of the transformer due to variations in commutation time, and generation of harmonics) [Object of the Invention] The purpose of the present invention is to It is an object of the present invention to provide frequency conversion power supply equipment that can achieve good power flexibility even in sudden load fluctuations by connecting thyristor (static type) frequency conversion equipment.

〔発明の概要〕[Summary of the invention]

本発明は回転機による周波数変換装置とサイリスタ周波
数変換装置を並列につないだ設備において、交流側電圧
の三相不平衡に対して対応出来る様、単相型変換器を2
台並列にして運用すること全特徴とする。
The present invention uses two single-phase converters to cope with three-phase unbalance of AC side voltage in equipment in which a frequency converter using a rotating machine and a thyristor frequency converter are connected in parallel.
The main feature is that the units can be operated in parallel.

〔発明の実施例〕[Embodiments of the invention]

第5図のサイリスク変換器のサイリスタ部の構成を第6
図に示す。
The configuration of the thyristor section of the Thyrisk converter shown in Fig. 6 is shown in Fig. 6.
As shown in the figure.

相交流R相、s@、T相をスコツト結線ヲ施こしたトラ
ンス61全介して単相交流回路を二回路構成(66,6
7)L、、各回路ごとにサイリスタ変換器68.69に
設けてそれにつなぎ込み、68.69の出力を並列につ
なぎ込むことによシ、三相不平衡による影響を防ぐこと
が出来る。
A single-phase AC circuit is configured as two circuits (66, 6
7) By providing and connecting the thyristor converters 68 and 69 for each circuit and connecting the outputs of 68 and 69 in parallel, the influence of three-phase unbalance can be prevented.

第7図は、スコツト結線を施こした場合の位相関係を示
すベクトル図である。二つの単相交流電圧は互いに90
°の位相差をもっている。
FIG. 7 is a vector diagram showing the phase relationship when Scott connection is applied. Two single-phase AC voltages are 90
It has a phase difference of °.

第8図はその波形を示す図である。FIG. 8 is a diagram showing the waveform.

Edt、Edmは単相交流回路66.67(7)電圧値
である。Ed t、 Edmの電圧全会々の変換器(こ
の場8は順変換器)68.69に入力し直流電圧Edが
得られる。なお、図中2は電動機、3はフライホイール
、10は負荷曲線平均値、15は定格電圧、21〜23
は単相交流線、24.25は電車負荷、26.27はパ
ンタグラフ、34.35は交流側、62はサイリスク素
子、63はD CL。
Edt and Edm are single-phase AC circuit 66.67 (7) voltage values. The voltages Ed t and Edm are inputted to a converter (in this case 8 is a forward converter) 68 and 69 to obtain a DC voltage Ed. In the figure, 2 is the electric motor, 3 is the flywheel, 10 is the load curve average value, 15 is the rated voltage, and 21 to 23
is a single-phase AC line, 24.25 is a train load, 26.27 is a pantograph, 34.35 is an AC side, 62 is a thyrisk element, and 63 is a DCL.

64.65は直流回路、Edは変換器、68.69は並
列接続した時の出力電圧でろる。
64.65 is the DC circuit, Ed is the converter, and 68.69 is the output voltage when connected in parallel.

〔発明の効果〕〔Effect of the invention〕

本発明によれは三相交流不平衡に関係なく静止型(サイ
リスタ)変換器の運転を安定に続行出来る。すなわら、
従来の三相グレーツ結線に比べて、交流側電圧不平衡に
よるDC回路への脈動電圧の発生、高調波の発生、転流
期間のバラツキによるトランスの直流励磁、インバータ
運転時の位相余裕角不足等を防ぐことが、出来る。
According to the present invention, stable operation of a static (thyristor) converter can be continued regardless of three-phase AC unbalance. In other words,
Compared to the conventional three-phase Graetz connection, there are problems such as generation of pulsating voltage in the DC circuit due to voltage unbalance on the AC side, generation of harmonics, DC excitation of the transformer due to variations in commutation period, insufficient phase margin angle during inverter operation, etc. It is possible to prevent this.

【図面の簡単な説明】 第1図は従来の系統図、第2図は列車負荷の説明図、第
3図は負荷の変動全表わす図、第4図は負荷の変動に対
し従来方式に依る電圧変動を表わす図、第5図は本発明
の一実施例の系統図、第6図は本発明の詳細図、第7図
はスコツト結線を行なった時の各部の電圧ベクトル図、
第8図は変換器(順変換時の場@)を並列接続した時の
直流電圧波形図でるる。 61・・・変圧器、62・・・サイリスタ素子、63・
・・DCL、64.65・・・直流回路、66.67・
・・単相交流回路。 芋2閉 第3図 ■ 1騎4囚 ■
[Brief explanation of the drawings] Figure 1 is a conventional system diagram, Figure 2 is an explanatory diagram of train load, Figure 3 is a diagram showing all load fluctuations, and Figure 4 is a conventional system diagram for load fluctuations. A diagram showing voltage fluctuations, FIG. 5 is a system diagram of an embodiment of the present invention, FIG. 6 is a detailed diagram of the present invention, and FIG. 7 is a voltage vector diagram of each part when performing Scott connection.
FIG. 8 is a DC voltage waveform diagram when converters (at the time of forward conversion) are connected in parallel. 61... Transformer, 62... Thyristor element, 63...
・・DCL, 64.65 ・DC circuit, 66.67・
...Single-phase AC circuit. Imo 2 closed figure 3 ■ 1 knight 4 prisoners ■

Claims (1)

【特許請求の範囲】 1、周波数の異なる地域を通過する交流機関車の電気設
備において、回転機全通じて電力を融通している設備と
並列にサイリスクから成る周波数変換設備を設けたこと
全%徴とする周波数変換給電設備。 2、特許請求の範囲第1項の周波数変換設備において、
順変換側の変換器を単相)−変換器2台と並列運転構成
させたことを特徴とする周波数変換給電設備。
[Claims] 1. In the electrical equipment of an AC locomotive that passes through areas with different frequencies, a frequency conversion equipment made of Cyrisk is installed in parallel with the equipment that distributes power to all rotating machines. Frequency conversion power supply equipment. 2. In the frequency conversion equipment according to claim 1,
Frequency conversion power supply equipment characterized in that a converter on the forward conversion side is configured to operate in parallel with two single-phase converters.
JP732783A 1983-01-21 1983-01-21 Frequency converting power supply facility Pending JPS59136030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP732783A JPS59136030A (en) 1983-01-21 1983-01-21 Frequency converting power supply facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP732783A JPS59136030A (en) 1983-01-21 1983-01-21 Frequency converting power supply facility

Publications (1)

Publication Number Publication Date
JPS59136030A true JPS59136030A (en) 1984-08-04

Family

ID=11662862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP732783A Pending JPS59136030A (en) 1983-01-21 1983-01-21 Frequency converting power supply facility

Country Status (1)

Country Link
JP (1) JPS59136030A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208892A (en) * 2007-02-26 2008-09-11 Nippon Sekkei Kogyo:Kk Rotation support structure for shaft for supporting article carrying roller
JP2009036320A (en) * 2007-08-02 2009-02-19 Nsk Ltd Bearing unit and method for fixing rolling bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208892A (en) * 2007-02-26 2008-09-11 Nippon Sekkei Kogyo:Kk Rotation support structure for shaft for supporting article carrying roller
JP2009036320A (en) * 2007-08-02 2009-02-19 Nsk Ltd Bearing unit and method for fixing rolling bearing

Similar Documents

Publication Publication Date Title
JP2954333B2 (en) AC motor variable speed system
AJR et al. Novel 20 MW downhill conveyor system using three-level converters
Rodríguez et al. Technical evaluation and practical experience of high-power grinding mill drives in mining applications
Leonhard Adjustable-speech AC drives
US20140152012A1 (en) Systems and methods for utilizing an active compensator to augment a diode rectifier
EP0251068A2 (en) AC motor drive apparatus
Rodríguez et al. Modeling and analysis of common-mode voltages generated in medium voltage PWM-CSI drives
Wu et al. Voltage stress on induction motors in medium-voltage (2300-6900-V) PWM GTO CSI drives
CN102792577B (en) Power conversion device
KR900012414A (en) VSCF Starter / Generator System and Its Operation Method
US3836837A (en) Phase converter
US4760321A (en) AC motor drive apparatus
JPS59136030A (en) Frequency converting power supply facility
Soares et al. Dual converter for connection of a doubly-fed induction generator to a DC-microgrid
Smith et al. Voltage stability assessment of isolated power systems with power electronic converters
JPS6117231B2 (en)
JPH0564551B2 (en)
Tadakuma et al. Current response simulation in six-phase and twelve-phase cycloconverters
SU780111A1 (en) Transformer-type phase number converter with rotating magnetic field
JPH0527344B2 (en)
Nikolaev et al. Sustainability of High-Power Frequency Converters with Active Rectifiers Connected in Parallel with “EAF-SVC” Complex
JPS6280134A (en) Transformation equipment for d.c. electric railroad
US2796573A (en) Single-phase alternating current fed driving arrangement for electric traction purposes
US1927406A (en) High-voltage direct-current con
JP2766584B2 (en) AC electric vehicle control device