JPS59135428A - Formation of insulating film - Google Patents

Formation of insulating film

Info

Publication number
JPS59135428A
JPS59135428A JP58009664A JP966483A JPS59135428A JP S59135428 A JPS59135428 A JP S59135428A JP 58009664 A JP58009664 A JP 58009664A JP 966483 A JP966483 A JP 966483A JP S59135428 A JPS59135428 A JP S59135428A
Authority
JP
Japan
Prior art keywords
liquid crystal
smectic liquid
forming
substrate
smectic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58009664A
Other languages
Japanese (ja)
Inventor
Tsutomu Uemoto
勉 上本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58009664A priority Critical patent/JPS59135428A/en
Publication of JPS59135428A publication Critical patent/JPS59135428A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form easily a thin insulating film at a uniform thickness by forming a thin film of a smectic liquid crystal on a substrate and crosslinking the same. CONSTITUTION:This method is constituted of a stage for forming a smectic liquid crystal 3 in a smectic state on a substrate 1 in such a way that the surface thereof is made parallel with each layer of the liquid crystal 3, a stage for exerting the force in the direction intersecting orthogonally with the inter-layer arrangement direction on the liquid crystal 3 and forming the thin film of the liquid crystal 3 on the substrate 1 by utilizing the ease of the slip between the respective layers and a stage for crosslinking the liquid crystal 3 formed into the thin film. An orienting material layer 2 is preferably provided preliminarily on the substrate and the liquid crystal is coated in the liquid state thereon and is slowly cooled in the stage for forming the liquid crystal 3. The liquid crystal may be formed after the orienting material is mixed with the liquid crystal. The upper layer side of the liquid crystal is stripped by, for example, the centrifugal force of a spinner, and the extremely thin layer is formed to a uniform thickness in the stage for forming the thin film. The liquid crystal is then crosslinked and the secure insulating film is obtd.

Description

【発明の詳細な説明】 〔発明の技シ)j分野J 本発明は、スメクチック液晶を把祿膜として用いた知@
膜;1φ1歿方法に関する。
[Detailed Description of the Invention] [Techniques of the Invention] Field J The present invention is directed to the use of smectic liquid crystal as a gripping membrane.
Membrane; related to 1φ1 method.

〔発1」11の技f町的背;椅とその間1b1点J半導
体素子の(呆1慢膜や撮像紫子の色フィルタとして使用
される絶縁膜は、一般に有機物薄W4から形成されてい
る。この種の有(是物薄膜を形成するには、従来スピン
ナやスプレー等を用いて基板上に有機物を塗布する方法
、或いは一部の物質では基板上に有機物を蒸着する方法
が採用されている。
[Episode 1] 11 Techniques F Town Back; Chair and between 1 b 1 point Conventionally, to form this kind of thin film, a method of applying an organic substance onto a substrate using a spinner or a sprayer, or, for some materials, a method of vapor-depositing an organic substance onto a substrate has been adopted. There is.

しかしながら、スピンナやスプレー等を用いた有機物の
塗布では、その膜厚を薄くしにくく、さらに膜厚がばら
つく等の問題がある。また、有機物の蒸着はコスト的に
高く、しかも膜形成速度も遅く実用的でない。このよう
に従来、薄くて均一性の良い有機物4膜を木板上に形成
するこそは極めて困難であった。
However, when applying an organic material using a spinner, a sprayer, or the like, there are problems such as difficulty in reducing the film thickness, and furthermore, the film thickness varies. In addition, vapor deposition of organic substances is expensive, and the film formation rate is slow, making it impractical. As described above, it has been extremely difficult to form a thin and highly uniform four-layer organic film on a wooden board.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、有機物からなる薄い絶縁膜を所望の基
板上に容易に形成することができ、かつその膜厚の均一
化をはかり寿る絶糧jj〆形成方法を提供することにあ
る。
An object of the present invention is to provide a method for forming a thin insulating film made of an organic material on a desired substrate with ease and uniformity of film thickness.

〔発明の)1;免9〕 本発明の骨子は、有機物絶縁膜としてスメクチック液晶
を用い、スメクチック液晶の層間が〆肯り縞いことを利
用して薄くて均一性の良い絶縁1]果を形成することに
ある。
[Invention) 1; Exemption 9] The gist of the present invention is to use smectic liquid crystal as an organic insulating film, and to utilize the fact that the interlayers of smectic liquid crystal are striped to achieve thin and uniform insulation. It is about forming.

すなわち本発明は、基板上に有機物からなる絶縁膜を形
成する方法Vこおいて、裁板上にスメクチック液晶を該
液晶の各層が基板表面々平行となるよう形成したのち、
上記、スメクチック液晶にその層間配ダ]]方向と直焚
する方向の力を加え各・・1間の滑りを利用して基板上
のヌメクチソク放晶を薄膜化し、次いでこの、嬶j拠化
されたスメクチック液晶を架橋せしめるようにしだ方法
である。
That is, the present invention provides a method V for forming an insulating film made of an organic substance on a substrate, in which a smectic liquid crystal is formed on a cutting board so that each layer of the liquid crystal is parallel to the surface of the substrate, and then,
A force is applied to the above-mentioned smectic liquid crystal in the interlayer alignment direction and in the direction of direct firing, and the slippage between the layers is used to thin the smectic liquid crystal on the substrate, and then this This method crosslinks the smectic liquid crystal.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、スメクチック液晶の層間滑りを利用し
た薄j模化工惺により、該液晶の、憤厚ケ陽めで薄くす
ることができる。しかも、スメクチック液晶に加える力
の大きさにより、該液晶の残符膜厚を良好に制御するこ
とができる。
According to the present invention, the liquid crystal can be made thinner and thicker by a thinner layer modeling technique that utilizes the interlayer slippage of the smectic liquid crystal. Moreover, the residual film thickness of the liquid crystal can be well controlled by adjusting the magnitude of the force applied to the smectic liquid crystal.

このため、半導体菓子の保袈膜や礒1家素子の急フィル
タとして便用される有機物絶縁膜を、断電の裁板上に薄
く形成することができ、かつ形1茂11)L虎、の均−
性及び制御性の向上をはかり優る。
Therefore, an organic insulating film, which is conveniently used as a protection film for semiconductor confectionery or as a filter for a heat filter element, can be formed thinly on a cutting board that is electrically disconnected. average of
Improves performance and controllability.

寸だ、スメクチックlり晶の誘1名が高いことから、工
C内に犬答貴のコンデンサを作成するのに有効である。
However, since the smectic crystal's resistance is high, it is effective for creating a capacitor of dog answer in engineering C.

〔発明の実施例〕[Embodiments of the invention]

第1図(a)〜(d)は本発明の一実施例を説明するだ
めの工程断面図である。壕ず、第1図(a) K示す如
く、石英基板1を5〔チ〕のセチルトリメチル・アンモ
ニウム・ブロマイド(配向剤)のアルコール溶液に浸し
たのち乾燥して、基板1上に配向剤層2を形成した。次
いで、第1図(b)に示す如く配向剤層2上に、スメク
チック液晶としてコレステリル・ミリステート液晶3を
温度90 (’C)で塗布した。このとき、上記液晶3
は液体状態であった。続いて、上記液晶3を75 (’
C)まで徐冷すると、液晶3は第1図(C)に示す如く
層構造を持ったスメクチック状態となった。なお、徐冷
に際しては液体一固体の境界で2(’C/h)と極めて
緩やかに徐冷した。凍だ、スメクチック状態とは、分子
がその長軸方向を一方向にしかつその短軸方向に相互に
接触して板状の層をなし、かつこの層が幾重にも積層さ
れた状態を云う。そして、本実施例では上記各層が基板
10表面と平行となった。
FIGS. 1(a) to 1(d) are process cross-sectional views for explaining one embodiment of the present invention. As shown in FIG. 1(a) K, the quartz substrate 1 was immersed in an alcohol solution of 5 [h] cetyltrimethyl ammonium bromide (alignment agent) and then dried to form an alignment agent layer on the substrate 1. 2 was formed. Next, as shown in FIG. 1(b), cholesteryl myristate liquid crystal 3 as a smectic liquid crystal was coated on the alignment agent layer 2 at a temperature of 90 ('C). At this time, the liquid crystal 3
was in a liquid state. Next, the above liquid crystal 3 is heated to 75 ('
When slowly cooled to C), the liquid crystal 3 became a smectic state with a layered structure as shown in FIG. 1(C). Incidentally, during the slow cooling, the slow cooling was carried out very slowly to 2 ('C/h) at the boundary between liquid and solid. The frozen, smectic state refers to a state in which molecules have their long axes oriented in one direction and are in contact with each other in their short axes to form plate-like layers, and these layers are laminated in many layers. In this embodiment, each of the layers described above is parallel to the surface of the substrate 10.

次に、第2図に示す如きスピンナを用い、前記第1図(
C)に示す試料を75 (’C)に保持し、スピンナの
遠心力により前記液晶3に横方向の力を加えた。その結
果、液晶3はその層間が滑り易いため、第1図(、i)
に示す如くその上層側が剥離されて極めて薄いものとな
った。そして、液晶3の残存膜厚はスピンナの回転速度
を可変することによシ、単一液晶層厚の整数倍(100
〜5000″A)に制御することができた。なお、第2
図中11は液晶3の温度を75 (℃、Jに保持するた
めの赤外ランプ、12は試料が載置される回転板12を
回転駆動するモータを示しでいる。
Next, using a spinner as shown in FIG. 2, the spinner shown in FIG.
The sample shown in C) was held at 75 ('C), and a lateral force was applied to the liquid crystal 3 by the centrifugal force of a spinner. As a result, the liquid crystal 3 is slippery between its layers, as shown in Figure 1(,i).
As shown in the figure, the upper layer was peeled off and became extremely thin. The remaining film thickness of the liquid crystal 3 can be adjusted by varying the rotational speed of the spinner by an integral multiple (100) of the single liquid crystal layer thickness.
~5000″A).
In the figure, reference numeral 11 indicates an infrared lamp for maintaining the temperature of the liquid crystal 3 at 75° C., J, and reference numeral 12 indicates a motor that rotates the rotary plate 12 on which the sample is placed.

次に、第3図に示す如きグロズマ装眞を用い、前記第1
図(d)に示す試料を75〔℃〕に保持しCF4圧力0
.1 (torr、)のプラズマ中[20分程度放置し
た。その結果、液晶3はその分子間が架橋され強固な構
造となった。かくして形成されたコレステリル・ミリス
テート液晶3からなる絶縁膜は、その膜厚が薄く均一な
ものであった。なお、第3図中14は反応室、I5はプ
ラズマ生成室、16はマイクロ波入射口、17はCF、
ガス流入「J、18は排気1」、19は試料を加熱する
ためのヒータを示している。
Next, using a Grozma mount as shown in FIG.
The sample shown in figure (d) was held at 75 [℃] and the CF4 pressure was 0.
.. 1 (torr) of plasma [left for about 20 minutes]. As a result, the molecules of the liquid crystal 3 were crosslinked, resulting in a strong structure. The thus formed insulating film made of cholesteryl myristate liquid crystal 3 was thin and uniform in thickness. In addition, in FIG. 3, 14 is a reaction chamber, I5 is a plasma generation chamber, 16 is a microwave incidence port, 17 is a CF,
Gas inflow "J", 18 indicates exhaust 1, and 19 indicates a heater for heating the sample.

このように本実施例方法によれば、石英基板l上にコレ
ステリル・ミリステート液晶からなる有機物絶縁、膜を
容易に形成することができる。
As described above, according to the method of this embodiment, an organic insulating film made of cholesteryl myristate liquid crystal can be easily formed on a quartz substrate l.

しかも、スメクチック状態の液晶3の層間滑りを利用し
て液晶3を薄膜化しているので、上記絶縁膜の膜厚を極
めて薄くすることができ、かつ膜厚の均一化をはかるこ
とができる。壕だ、前記スピンナの回転速度により液晶
3の残存膜厚が規定されるので、この速度を選択するこ
とにより絶縁膜の膜厚を巨好に制御することができる。
Furthermore, since the liquid crystal 3 is thinned by utilizing the interlayer slippage of the liquid crystal 3 in a smectic state, the thickness of the insulating film can be made extremely thin, and the thickness can be made uniform. Since the remaining film thickness of the liquid crystal 3 is determined by the rotational speed of the spinner, the thickness of the insulating film can be greatly controlled by selecting this speed.

なお、本発明は上述した実施例に限定されるものではな
い。例えば、前記コレステリル・ミリステート液晶の代
りには、スメクチック状態となる液晶であれば用いるこ
とができる。また、前記配向剤は必ずしも必要なもので
はなく、要はスメクチック液晶の各層が基板と平行にな
るよう液晶の分子を垂直配向させればよい。例えば、ス
メクチック成品を尾仮に塗布する前工程として一1液晶
に配向制御剤を混入するようにしでもよい。さらに、ス
メクチック液晶を薄膜化する工程は前記スピンナを利用
する方法に限らず、液晶にその層間配列方向と直交する
方向から力が加えられる方法であればよい。また、前記
架橋の方法としてはプラズマ以外に紫外線やX線等の電
磁波、電子ビームやイオンビーム等の高エネルギ粒子を
照射するようにしてもよい。
Note that the present invention is not limited to the embodiments described above. For example, instead of the cholesteryl myristate liquid crystal, any liquid crystal that is in a smectic state can be used. Further, the above-mentioned alignment agent is not necessarily necessary, and it is sufficient to vertically align the molecules of the liquid crystal so that each layer of the smectic liquid crystal is parallel to the substrate. For example, an alignment control agent may be mixed into the liquid crystal as a step before applying the smectic product to the liquid crystal. Further, the process of thinning the smectic liquid crystal is not limited to the method using the spinner, but any method may be used as long as a force is applied to the liquid crystal from a direction perpendicular to the interlayer alignment direction. In addition to plasma, the crosslinking method may include irradiation with electromagnetic waves such as ultraviolet rays and X-rays, and high-energy particles such as electron beams and ion beams.

その他、本発明の要旨を逸脱しない範囲で、種々髪形し
て実施することができる。
In addition, various hairstyles can be implemented without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明の一実施例を説明するだ
めの工種断面図、第2図は上記実施例に使用したスピン
ナを示す概略構成図、第3図は上記実施例に使用したプ
ラズマ装置を示す概略構成図である。 1・・・石英基板(基板)、2・・・配向剤層、3・・
・コレステリル・ミリステート液晶(スメクチック液晶
夜晶)。 出願人代理人弁理土鈴江武彦 矛1図 矛2図 矛3図
Figures 1 (a) to (d) are cross-sectional views for explaining one embodiment of the present invention, Figure 2 is a schematic configuration diagram showing the spinner used in the above embodiment, and Figure 3 is the embodiment described above. 1 is a schematic configuration diagram showing a plasma device used in the present invention. 1... Quartz substrate (substrate), 2... Aligning agent layer, 3...
・Cholesteryl myristate liquid crystal (smectic liquid crystal night crystal). Applicant's attorney, Takehiko Suzue, 1 illustration, 2 illustrations, 3 illustrations

Claims (4)

【特許請求の範囲】[Claims] (1)0子がその長軸方向を一方向にしかつその短軸方
向に相好に接触して板状の層をなし、かつこの層が幾重
にも債鳴された状態となるスメクチック液晶を、基板上
に1咳哉阪表面と上記各1偵とが平行となるよう形成す
る工(呈と、上記スメクチック液晶にその・Δ間配列方
向と16父する方向の力を加え各1偵間の滑りを利用し
、て上記基板上のスメクチック液晶を薄j薩化する工程
と、上記薄膜化されたスメクチック液晶ケ架橋せしめる
工程とを具11iff Lブこことを!特徴とする絶縁
膜形成方法。
(1) A smectic liquid crystal in which the long axis direction is in one direction and the short axis direction is in mutual contact to form a plate-like layer, and this layer is bonded in many layers. Forming the smectic liquid crystal on the substrate so that the surface of the smectic liquid crystal and each of the above 1 lines are parallel, and applying a force to the smectic liquid crystal in the direction parallel to the alignment direction between Δ and 16 points, A method for forming an insulating film, comprising a step of thinning the smectic liquid crystal on the substrate by utilizing slippage, and a step of crosslinking the thinned smectic liquid crystal.
(2)前記スメクチック液晶を形成する工程は、前i上
柄板上に1記向削を塗布したのち、スメクチック液晶を
液体状態で塗布し、次いでこのスメクチック液晶を徐冷
することである?)子許請求の1)(u間第1瑣記載の
絶縁膜形成方法。
(2) The step of forming the smectic liquid crystal is to apply the smectic liquid crystal in a liquid state after applying the smectic liquid crystal on the upper handle plate, and then slowly cooling the smectic liquid crystal. ) The method for forming an insulating film as described in 1) (d) of the sub-claim.
(3)前記スメクチック液晶を形成する工程は、スメク
チック液晶に配向制御則を混入したのち、この液晶を液
体状態で前記基板上に塗布し、次いでこのスメクチック
液晶を徐冷すること°  である特許請求の範囲第1項
記載の絶縁膜形成方法。
(3) The step of forming the smectic liquid crystal is to mix an orientation control law into the smectic liquid crystal, apply this liquid crystal in a liquid state onto the substrate, and then slowly cool the smectic liquid crystal. The insulating film forming method according to item 1.
(4)前記スメクチック液晶を薄膜化する工程は、スピ
ンナの遠心力によりスメクチック液晶の上層卸jを剥離
することである特許請求の姫間第1項記戦の絶縁膜形成
方法。
(4) The method for forming an insulating film according to claim 1, wherein the step of thinning the smectic liquid crystal is to peel off the upper layer of the smectic liquid crystal by the centrifugal force of a spinner.
JP58009664A 1983-01-24 1983-01-24 Formation of insulating film Pending JPS59135428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58009664A JPS59135428A (en) 1983-01-24 1983-01-24 Formation of insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58009664A JPS59135428A (en) 1983-01-24 1983-01-24 Formation of insulating film

Publications (1)

Publication Number Publication Date
JPS59135428A true JPS59135428A (en) 1984-08-03

Family

ID=11726478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58009664A Pending JPS59135428A (en) 1983-01-24 1983-01-24 Formation of insulating film

Country Status (1)

Country Link
JP (1) JPS59135428A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888219A (en) * 1989-06-30 1989-12-19 Barnes Daniel F Temperature sensitive artificial flower
US7044600B2 (en) 2004-01-14 2006-05-16 Ppg Industries Ohio, Inc. Polarizing devices and methods of making the same
US7632540B2 (en) 2003-07-01 2009-12-15 Transitions Optical, Inc. Alignment facilities for optical dyes
US9096014B2 (en) 2003-07-01 2015-08-04 Transitions Optical, Inc. Oriented polymeric sheets exhibiting dichroism and articles containing the same
US9309455B2 (en) 2003-07-01 2016-04-12 Transitions Optical, Inc. Indeno-fused ring compounds
US10000472B2 (en) 2003-07-01 2018-06-19 Transitions Optical, Inc. Photochromic compounds
US10866455B2 (en) 2017-10-19 2020-12-15 Ppg Industries Ohio, Inc. Display devices including photochromic-dichroic compounds and dichroic compounds

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888219A (en) * 1989-06-30 1989-12-19 Barnes Daniel F Temperature sensitive artificial flower
US9309455B2 (en) 2003-07-01 2016-04-12 Transitions Optical, Inc. Indeno-fused ring compounds
US9096014B2 (en) 2003-07-01 2015-08-04 Transitions Optical, Inc. Oriented polymeric sheets exhibiting dichroism and articles containing the same
US10619018B2 (en) 2003-07-01 2020-04-14 Transitions Optical, Inc. Oriented polymeric sheets exhibiting dichroism and articles containing the same
US7632540B2 (en) 2003-07-01 2009-12-15 Transitions Optical, Inc. Alignment facilities for optical dyes
US10000472B2 (en) 2003-07-01 2018-06-19 Transitions Optical, Inc. Photochromic compounds
US8926091B2 (en) 2003-07-01 2015-01-06 Transitions Optical, Inc. Optical elements with alignment facilities for optical dyes
US10532997B2 (en) 2003-07-01 2020-01-14 Transitions Optical, Inc. Photochromic compounds
US10532998B2 (en) 2003-07-01 2020-01-14 Transitions Optical, Inc. Photochromic compounds
US8003005B2 (en) 2003-07-01 2011-08-23 Transitions Optical, Inc. Alignment facilities for optical dyes
US10007038B2 (en) 2003-07-01 2018-06-26 Transitions Optical, Inc. Optical elements with alignment facilities for optical dyes
US10005763B2 (en) 2003-07-01 2018-06-26 Transitions Optical, Inc. Photochromic compounds
US10501446B2 (en) 2003-07-01 2019-12-10 Transitions Optical, Inc. Photochromic compounds
US7044600B2 (en) 2004-01-14 2006-05-16 Ppg Industries Ohio, Inc. Polarizing devices and methods of making the same
US7097304B2 (en) 2004-01-14 2006-08-29 Transitions Optical Inc. Polarizing devices and methods of making the same
US7097303B2 (en) 2004-01-14 2006-08-29 Ppg Industries Ohio, Inc. Polarizing devices and methods of making the same
US10866455B2 (en) 2017-10-19 2020-12-15 Ppg Industries Ohio, Inc. Display devices including photochromic-dichroic compounds and dichroic compounds

Similar Documents

Publication Publication Date Title
JPS59135428A (en) Formation of insulating film
JPH05311399A (en) Method for forming organic pyroelectric and piezoelectric body
JP3286002B2 (en) Thin film forming equipment
TW466574B (en) Method of producing inorganic compound solid and method for making a semiconductor device using such solid
JP6097940B2 (en) Electrocaloric material
JP2002299337A (en) Semiconductor device manufacturing method and semiconductor device
JP3339005B2 (en) Method and apparatus for manufacturing organic pyroelectric body
JPS59114829A (en) Formation of silicon nitride film
JPS5853836A (en) Method of increasing adhesion for organic resin material
JPS6324628A (en) Manufacture of semiconductor device and equipment therefor
JP6030418B2 (en) Method for forming PZT film
SU1521259A1 (en) Method of producing target for nuclear physics research
JP2819170B2 (en) Method for forming polymer film in which semiconductor ultrafine particles are dispersed
JPH01152265A (en) High-directivity vapor deposition apparatus
JPS6320302B2 (en)
JPS6476606A (en) Dielectric material
JPH06216116A (en) Insulation film formation method by silicone resin
JPH03196526A (en) Manufacture of semiconductor device
JPH08111458A (en) Semiconductor device and fabrication thereof
JPH03184216A (en) Formation of transparent conductive film
JP3299769B2 (en) Superconductor manufacturing method
JPH0470818A (en) Highly dielectric film, formation thereof and liquid crystal display panel using the same
JPS58150424A (en) Treatment for coating surface of fine particle
JPH0764107A (en) Production of nonlinear element substrate
JPS607962A (en) Curing method of resin