JPS5912742B2 - Ion plating couch - Google Patents

Ion plating couch

Info

Publication number
JPS5912742B2
JPS5912742B2 JP15668975A JP15668975A JPS5912742B2 JP S5912742 B2 JPS5912742 B2 JP S5912742B2 JP 15668975 A JP15668975 A JP 15668975A JP 15668975 A JP15668975 A JP 15668975A JP S5912742 B2 JPS5912742 B2 JP S5912742B2
Authority
JP
Japan
Prior art keywords
cathode
high frequency
ion plating
electrode
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15668975A
Other languages
Japanese (ja)
Other versions
JPS5278778A (en
Inventor
武雄 岡崎
洋一 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP15668975A priority Critical patent/JPS5912742B2/en
Publication of JPS5278778A publication Critical patent/JPS5278778A/en
Publication of JPS5912742B2 publication Critical patent/JPS5912742B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明はイオンブレーティング装置、特に高周波励起方
式イオンブレーティング装置の改良に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ion blating device, particularly to an improvement in a high frequency excitation type ion blating device.

従来の高周波励起方式イオンブレーティング装置は蒸発
源近傍に配置された高周波コイル電極により導入ガスの
高周波放電を発生させ、蒸発分子をイオン化し、別に備
えた基板支持部の負電位により加速し基板上に被膜を形
成する装置である。
Conventional high-frequency excitation type ion blating equipment uses a high-frequency coil electrode placed near the evaporation source to generate high-frequency discharge of the introduced gas, ionizes the evaporated molecules, accelerates them with the negative potential of a separately provided substrate support, and ionizes them onto the substrate. This is a device that forms a coating on.

この方式は、操作ガス雰囲気を10−4〜10−3To
rrの低圧とすることが可能であり、イオンブレーティ
ングの他の方式である直流2極式の操作範囲10−2T
orr域に比較しガスの影響が少なく、したがつて不純
物の少ない膜質のよい層が得られる。蒸発粒子のイオン
化ガス粒子によるスパッタリングに起因する膜の損傷及
び過度の温度上昇を防止でき、同時にまた、高周波励起
放電特有の高いイオン化効率のため、反応性イオンプレ
ーテイシダが可能である等の数々の特徴を有する。しか
しながら、ガス圧を一定とした場合、プラズマ密度を上
昇せしめイオン化効率を高めることによつて反応性をよ
くしたい場合、高周波電力を増大すると高周波電圧の上
昇するのを防ぐことができない。その結果、高周波コイ
ル電界のイオン化領域への影響、例えばイオンのトラッ
プ作用が強くなり、加速陰極電位を更に高める必要が生
じたり、蒸発源として、電子ビーム蒸発源を使用した場
合、電j5子ビームが高周波コイルの影響を強く受ける
等の問題を残していた。
In this method, the operating gas atmosphere is 10-4 to 10-3To.
The operating range of the DC bipolar type, which is another method of ion brating, is 10-2T.
Compared to the ORR region, there is less influence of gas, and therefore a layer with good film quality and less impurities can be obtained. It is possible to prevent film damage and excessive temperature rise caused by sputtering of ionized gas particles of evaporated particles, and at the same time, due to the high ionization efficiency peculiar to high-frequency excited discharge, reactive ion plateation is possible. It has the characteristics of However, when the gas pressure is kept constant, if it is desired to improve the reactivity by increasing the plasma density and increasing the ionization efficiency, increasing the radio frequency power will not prevent the radio frequency voltage from increasing. As a result, the influence of the high-frequency coil electric field on the ionization region, for example, the ion trapping effect becomes stronger, making it necessary to further increase the accelerating cathode potential, and when using an electron beam evaporation source as an evaporation source, the electric j5 electron beam However, there remained problems such as being strongly affected by the high frequency coil.

本発明は高周波励起イオンブレーティング装置の高周波
コイルと加速陰極の間に、正の電位を有した直流電圧、
又は商用周波数(50〜60Hz)20の交流電圧を供
給することのできる電極を挿入することにより、高周波
電力の増大をせずに、当初の目的であるイオン化効率の
向上が計れることを見いぞしたことに基づくものである
The present invention provides a direct current voltage with a positive potential between the high frequency coil and the accelerating cathode of a high frequency excited ion blating device.
Alternatively, by inserting an electrode that can supply an AC voltage of 20 cm at a commercial frequency (50 to 60 Hz), we hope to be able to improve the ionization efficiency, which was the original objective, without increasing the high frequency power. It is based on what you have done.

次に本発明を図面を参照し説明する。Next, the present invention will be explained with reference to the drawings.

第1図は25本発明に基づく高周波励起方式イオンブレ
ーティング装置を示す図である。ベルジヤ5内には蒸発
源(ボート又は電子ビーム)1、加速陰極(基板取付部
)2、高周波コイル電極(RFコイル)3、中間電極4
、ガス導入口6があり、加速陰極には30基板の取付け
ができ、又直流高圧電源□より負電位を供給される。一
方高周波コイル電極3、中間電極4にはそれぞれ高周波
電圧、正の直流又は交流電圧が印加される。
FIG. 1 is a diagram showing a high frequency excitation type ion blating device based on the present invention. Inside the bell gear 5 are an evaporation source (boat or electron beam) 1, an accelerating cathode (substrate mounting part) 2, a high frequency coil electrode (RF coil) 3, and an intermediate electrode 4.
, a gas inlet 6 is provided, 30 substrates can be attached to the acceleration cathode, and a negative potential is supplied from a DC high voltage power supply □. On the other hand, a high frequency voltage, a positive DC voltage, or an AC voltage is applied to the high frequency coil electrode 3 and the intermediate electrode 4, respectively.

イオンブレーティングを行うにあたり、予35めガス雰
囲気を排気系10により10−5Torr域迄排気す、
や。ガス種としては、例えばアルゴンガスを10−4〜
10−3T0rT迄導入し、高周波電力を所定の値迄供
給し、アルゴンガスの放電を行なう。
Before performing ion blating, the gas atmosphere is first evacuated to the 10-5 Torr range using the exhaust system 10.
or. As the gas type, for example, argon gas is used at 10-4~
10-3T0rT is introduced, high frequency power is supplied up to a predetermined value, and argon gas is discharged.

続いて蒸発源より任意の金属をゆつくり蒸発させると金
属粒子はアルゴンガスのブラズマ中のイオン化ガス粒子
、電子等の衝突及び高周波コイル電極部に於いて、一部
イオン化され蒸発粒子特有のイオン発光を呈しながら、
負電位を印加した陰極基板上に積層する。蒸発のはじま
る前に、中間電極に正の直流電圧又は、交流電圧の40
〜200Vを供給することにより、前記した高周波コイ
ル電極近傍に於けるイオン化粒子のトラツプを防ぐこと
ができ、より効率のよいイオンプレーテイング、反応性
イオンプレーテイングが行なえるものである。
Next, when any metal is slowly evaporated from the evaporation source, the metal particles are partially ionized by collisions with ionized gas particles in the argon gas plasma, electrons, etc., and at the high-frequency coil electrode part, resulting in ion emission unique to the evaporated particles. While presenting
Laminated on a cathode substrate to which a negative potential is applied. Before evaporation begins, a positive DC voltage or an AC voltage of 40°C is applied to the intermediate electrode.
By supplying .about.200 V, trapping of ionized particles in the vicinity of the above-described high frequency coil electrode can be prevented, and more efficient ion plating and reactive ion plating can be performed.

この中間部電極を配置することにより、従来200Wの
高周波電力を供給する必要があつた所、100Wの電力
の供給で十分となり、しかも電力の低下に伴う電圧の低
下により、イオン化粒子のトラツプは、比較的少なくな
り、その分だけ、コイル上に到達するイオン化粒子の量
を増大させることが可能となる。
By arranging this intermediate electrode, it is now sufficient to supply 100 W of high-frequency power, whereas conventionally it was necessary to supply 200 W of high-frequency power, and since the voltage decreases as the power decreases, the trapping of ionized particles is reduced. The amount of ionized particles reaching the coil can be increased by that amount.

第2図は、高周波電力100W加速陰極電位一300の
時の中間電極電位と陰極電流密度との関係を示す図であ
り、第3図は、加速陰極電位300V1中間部電圧0V
の時の高周波電力と陰極電流密度の関係を示す図である
FIG. 2 is a diagram showing the relationship between the intermediate electrode potential and cathode current density when the high frequency power is 100 W and the accelerated cathode potential is -300 V. FIG.
It is a figure showing the relationship between high frequency power and cathode current density at the time of.

これにより、中間電極電位及び高周波電力の増大に伴な
い陰極に流入するイオン化粒子の密度の上昇を示す様子
がわかるこれらの関係から、陰極電流密度を上昇させる
ためには、イオントラツプの少ない中間電極の挿入がよ
り好ましいことが理解できる。
This shows that the density of ionized particles flowing into the cathode increases as the intermediate electrode potential and radio frequency power increase. From these relationships, in order to increase the cathode current density, it is necessary to use an intermediate electrode with fewer ion traps. It can be seen that insertion is more preferred.

以上述べた通り、本方式の採用により、通常の単体金属
のイオンプレーテイングだけでなく、反応性イオンプレ
ーテイング、例えば金属の酸化物、炭化物、窒化物、硼
化物の合成が特に基板加熱をせずとも効率的に行なうこ
とが可能となる。
As mentioned above, by adopting this method, it is possible to perform not only ordinary ion plating of single metals, but also reactive ion plating, such as the synthesis of metal oxides, carbides, nitrides, and borides, which especially requires less heating of the substrate. It is possible to do this efficiently.

実施例 1 ボートより25cmに配置した加速陰極(基板支持部)
へ研磨後、通常の前処理を施した2×2.5×0.1.
CWLのステンレス板(SUS27)を取付け、真空室
内を10−5T0rr域迄排気し、アルゴンガスを導入
し、ガス雰囲気を5×10−4T0n−に調整した。
Example 1 Accelerating cathode (substrate support part) placed 25 cm from the boat
After polishing, a 2×2.5×0.1.
A CWL stainless steel plate (SUS27) was attached, the vacuum chamber was evacuated to a 10-5T0rr range, argon gas was introduced, and the gas atmosphere was adjusted to 5×10-4T0n-.

高周波電力100W1中間部電圧50V加速陰極電位−
500を各々供給しアルゴンガスを放電させて5分間ア
ルゴン雰囲気でホンパートを施し、タングステンボート
より銀を徐々に蒸発させた。銀粒子はイオン化し、銀特
有の青色のイオン発光を生じ、陰極基板上に銀被膜を生
じた。
High frequency power 100W 1 intermediate voltage 50V acceleration cathode potential -
500 was supplied to each sample, argon gas was discharged, and a hompart was applied in an argon atmosphere for 5 minutes to gradually evaporate the silver from the tungsten boat. The silver particles were ionized to produce blue ionic emission characteristic of silver, and a silver film was formed on the cathode substrate.

この被膜は外観的にピンホールのない折り曲げに対して
も密着の優れたものであつた。
This coating had excellent adhesion even when bent, with no pinholes in appearance.

実施例 2 蒸発源より25?上に配置した加速陰極(基板取付部)
へ、研磨後通常の前処理を施した2X2.5×0.1t
?のステンレス板(SUS27)を取付け、真空室内を
10−5T0rr域迄排気し、窒素ガスを導入し、ガス
雰囲気を1×10−3T0rrに調整した。
Example 2 25? from the evaporation source? Accelerating cathode placed above (board mounting part)
To, 2X2.5×0.1t with normal pre-treatment after polishing
? A stainless steel plate (SUS27) was attached, the inside of the vacuum chamber was evacuated to the 10-5 T0rr range, nitrogen gas was introduced, and the gas atmosphere was adjusted to 1 x 10-3 T0rr.

高周波電力100W1中間部電圧100、加速陰極電圧
−500を供給し、窒素ガスを放電させて5分間ホンパ
ートを施した後、電子ビーム蒸発源より純度99.98
%のチタン材を蒸発させるとプラズマ中で励起された窒
素とチタンが反応し基板上へ窒化チタン被膜が形成され
る。
After supplying high frequency power of 100W, intermediate voltage of 100W, and accelerating cathode voltage of -500, discharging nitrogen gas and performing hompart for 5 minutes, the purity was 99.98 from an electron beam evaporation source.
When % of the titanium material is evaporated, nitrogen excited in the plasma reacts with titanium to form a titanium nitride film on the substrate.

約2ミクロンの窒化チタン被膜は摩耗試験の結果Hvl
5OO以上の硬度に相当する耐摩耗性を示した。以上例
示した以外にも、他の金属、例えば金、ニツケル,パラ
ジウム,タンタル,ジルコニウム,マグネシウム,マン
ガン,シリコン,カドミウム.,アルミニウム,インジ
ウム,錫,亜鉛等多くの金属のイオンプレーテイング及
び上記金属の酸化物、窒化物、硼化物及びこれらの複合
物の形成等のイオンプレーテイング、ガラスに代表され
るセラミツクスのイオンプレーテイング等が容易に行な
える。
Approximately 2 microns of titanium nitride coating has a wear test result of Hvl.
It exhibited wear resistance equivalent to a hardness of 5OO or more. In addition to the above examples, other metals such as gold, nickel, palladium, tantalum, zirconium, magnesium, manganese, silicon, and cadmium may also be used. , ion plating of many metals such as aluminum, indium, tin, zinc, etc., ion plating of the above metals to form oxides, nitrides, borides, and their composites, and ion plating of ceramics such as glass. Teing etc. can be done easily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に基づく高周波励起方式イオンプレーテ
イング装置を示す図、第2図は高周波電力100W1加
速陰極電位−300Vの時の中間電極電位と陰極電流密
度との関係を示す図、第3図は加速陰極電位−300V
1中間電極電位0Vの時の高周波電力と陰極電流密度と
の関係を示す図である。 1・・・・・・蒸発源(ボート又は電子ビーム)、2・
・・・・・加速陰極(基板取付部)、3・・・・・・高
周波コイル電極(RFコイノ(ハ)、4・・・・・・中
間電極、5・・・・・・ベルジャ、6・・・・・・ガス
導入口、7・・・・・・直流高圧電源、10・・・・・
・排気系。
FIG. 1 is a diagram showing a high-frequency excitation type ion plating apparatus based on the present invention, FIG. 2 is a diagram showing the relationship between intermediate electrode potential and cathode current density when the high-frequency power is 100 W and the accelerated cathode potential is -300 V. The figure shows accelerated cathode potential -300V
1 is a diagram showing the relationship between high frequency power and cathode current density when the intermediate electrode potential is 0V. 1... Evaporation source (boat or electron beam), 2.
... Acceleration cathode (board mounting part), 3 ... High frequency coil electrode (RF Koino (c), 4 ... Intermediate electrode, 5 ... Bell jar, 6 ...Gas inlet, 7...DC high voltage power supply, 10...
・Exhaust system.

Claims (1)

【特許請求の範囲】[Claims] 1 真空室排気系よりなる真空装置に少なくとも、一種
以上の特定ガスの導入部、蒸発材を蒸発させることので
きる蒸発源、加速陰極、ガス放電を生じさせるための高
周波コイル電極、並びに高周波電極と加速陰極との中間
に正の直流又は交流を印加することのできる中間電極と
を備えたことを特徴とするイオンプレーティング装置。
1. A vacuum device consisting of a vacuum chamber exhaust system is equipped with at least an inlet for one or more specific gases, an evaporation source capable of evaporating the evaporation material, an accelerating cathode, a high frequency coil electrode for generating gas discharge, and a high frequency electrode. An ion plating apparatus characterized by comprising an intermediate electrode that can apply positive direct current or alternating current between the accelerating cathode and the accelerating cathode.
JP15668975A 1975-12-26 1975-12-26 Ion plating couch Expired JPS5912742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15668975A JPS5912742B2 (en) 1975-12-26 1975-12-26 Ion plating couch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15668975A JPS5912742B2 (en) 1975-12-26 1975-12-26 Ion plating couch

Publications (2)

Publication Number Publication Date
JPS5278778A JPS5278778A (en) 1977-07-02
JPS5912742B2 true JPS5912742B2 (en) 1984-03-26

Family

ID=15633166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15668975A Expired JPS5912742B2 (en) 1975-12-26 1975-12-26 Ion plating couch

Country Status (1)

Country Link
JP (1) JPS5912742B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042099Y2 (en) * 1984-07-31 1992-01-24

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167765A (en) * 1984-09-11 1986-04-07 Canon Inc Ion plating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042099Y2 (en) * 1984-07-31 1992-01-24

Also Published As

Publication number Publication date
JPS5278778A (en) 1977-07-02

Similar Documents

Publication Publication Date Title
JPS63210099A (en) Preparation of diamond film
RU2009105668A (en) METHOD FOR DEPOSITION OF ELECTRIC INSULATING LAYERS
JPH07224379A (en) Sputtering method and device therefor
JP2834797B2 (en) Thin film forming equipment
US6083356A (en) Method and device for pre-treatment of substrates
JPS5912742B2 (en) Ion plating couch
JP3364692B2 (en) Film forming method and apparatus for electromagnetic wave shielding
JPS60251269A (en) Method and apparatus for ionic plating
GB1115055A (en) Film deposition in an evacuated chamber
JPS5922787B2 (en) Deposited film creation method
JPS63458A (en) Vacuum arc vapor deposition device
JPH06136508A (en) Method for forming highly saturated magnetized iron nitride film and structure having the film
JP2893992B2 (en) Method and apparatus for synthesizing hard carbon film
JPH06279982A (en) Method for ionically nitriding aluminum material and device therefor
JP2001140061A (en) Deposition assist vapor deposition system and thin film deposition method
JPS63238266A (en) Sputtering device
JP2567843B2 (en) Hybrid ion plating method and apparatus
JP2984746B2 (en) Ion beam sputtering equipment
JP3515966B2 (en) Method for manufacturing magneto-optical recording element
JP3041185B2 (en) Plasma CVD equipment
JPS6353262A (en) Apparatus for forming thin film
JPS58171568A (en) Sputtering device
JP3081259B2 (en) Thin film forming equipment
JP3389639B2 (en) Control method of internal stress of film
JPS63241162A (en) High frequency ion plating device