JPS59127291A - Magnetic bubble memory element - Google Patents

Magnetic bubble memory element

Info

Publication number
JPS59127291A
JPS59127291A JP58001863A JP186383A JPS59127291A JP S59127291 A JPS59127291 A JP S59127291A JP 58001863 A JP58001863 A JP 58001863A JP 186383 A JP186383 A JP 186383A JP S59127291 A JPS59127291 A JP S59127291A
Authority
JP
Japan
Prior art keywords
pattern
layer
transfer
bubble
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58001863A
Other languages
Japanese (ja)
Inventor
Yoshimasa Kato
芳正 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58001863A priority Critical patent/JPS59127291A/en
Publication of JPS59127291A publication Critical patent/JPS59127291A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0808Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation
    • G11C19/0816Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation using a rotating or alternating coplanar magnetic field

Abstract

PURPOSE:To correct a weak-point part in a transfer pattern and to improve transfer characteristics by positioning at least part of one thin film at least part of where a bubble domain passes through an interpattern gap of the other thin film. CONSTITUTION:A transfer pattern 8 as the 1st layer is formed of ''Permalloy '' simultaneously with a detector pattern and its film thickness is, for example, 500Angstrom . In a figure, 9 is transfer a pattern as the 2nd layer and formed of ''Permalloy'' with, for example, a 3,500Angstrom thickness; and insulating layers 5, 6, and 7 are formed of silicon oxide to, for example, 2,000, 3,000, and 6,000Angstrom and a nonmagnetic conductor thin film pattern 4 consists of 100Angstrom tantalum and 3,000Angstrom gold. In this case, when a bubble domain passes through a 2nd layer interpattern gap, the attacting magnetic field of the 1st layer pattern is formed the 2nd layer interpattern gap parts 44'-45' in addition to a bubble domain attracting magnetic field produced in the 2nd layer patterns according to, for example, directions 14-11 of the rotating magnetic field, so the bubble domain moves through the gap parts relatively smoothly as shown an arrow.

Description

【発明の詳細な説明】 本発明は良好な転送特性を有する磁気バブルメモリ素子
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic bubble memory device with good transfer characteristics.

一般にバブル素子においてはガドリウムガリウムガーネ
ット基板上に形成された磁性ガーネット薄膜中に基板に
垂直なバイアス磁界全印加して作られたパズルドメイン
を前記薄膜上にパーマロイ等の軟磁性体薄膜よりなる転
送パターン全作り基板面内の回転磁界で磁化して転送さ
せる方式が広く用いられている。又、バブルメインの検
出は転送ハターン一部の伸張用パターンでバブルドメイ
ン音引き伸ばしパーマロイ等の軟磁性体よりなる検出器
パターンの磁気抵抗変化を感知して行なわれる。ここで
検出器パターンは転送パターンと同一の薄膜で形成され
る場合もあるが、より薄い薄膜で形成しておく方式が検
出効率上有利である。
Generally, in a bubble device, a puzzle domain created by applying a full bias magnetic field perpendicular to the substrate to a magnetic garnet thin film formed on a gadolinium gallium garnet substrate is transferred onto the thin film using a soft magnetic thin film such as permalloy. A widely used method is to magnetize the entire pattern using a rotating magnetic field within the plane of the substrate and transfer the pattern. Bubble main detection is carried out by sensing the change in magnetic resistance of a detector pattern made of a soft magnetic material such as bubble domain sound enlargement permalloy using a part of the transfer pattern for expansion. Although the detector pattern may be formed of the same thin film as the transfer pattern, it is advantageous in terms of detection efficiency to form the detector pattern with a thinner film.

第1図に従来から用いられているバブルメモリ素子の断
面図を示す。1は磁性ガーネット薄膜が形成されたGG
G基板であり、2が検出器パターン、3が転送パターン
である。なおバブルドメインを発生、消去9分割、遷移
等の制御のための非磁性導体薄膜パターン4及び各薄膜
間の電気的絶縁。
FIG. 1 shows a cross-sectional view of a conventionally used bubble memory element. 1 is GG on which a magnetic garnet thin film is formed.
It is a G board, 2 is a detector pattern, and 3 is a transfer pattern. A non-magnetic conductive thin film pattern 4 and electrical insulation between each thin film are used to control bubble domain generation, erasure, nine divisions, transition, etc.

保護等のための絶縁層5,6.7が形成されている。Insulating layers 5, 6.7 for protection etc. are formed.

第3図は従来から用いられている典型的な転送パターン
の1例を示す平面図である。ここで基板面内回転磁界の
方向を第4図とし、正の磁極がバブルドメインを吸引す
るものとすると11〜14中の矢印方向に順次移動して
行くのでバブルドメイン20もこの矢印方向に順次移動
して行くことになる。次に回転磁界方向14〜11では
バブルドメインは24から近くにある吸引磁界(24’
FIG. 3 is a plan view showing an example of a typical transfer pattern that has been used in the past. Here, the direction of the in-plane rotating magnetic field of the substrate is shown in FIG. 4, and assuming that the positive magnetic pole attracts the bubble domains, they move sequentially in the directions of arrows 11 to 14, so the bubble domains 20 also move sequentially in the direction of the arrows. I will be moving. Next, in the rotating magnetic field direction 14-11, the bubble domain moves from 24 to the nearby attractive magnetic field (24'
.

25間)へと飛びうつる。この様にしてバブルドメイン
は順次転送されるが一般にパターンに沿った転送では前
述の様な吸引磁界の移動に沿って比較的安定して行なわ
れるが、26の様なパターン間ギヤ、プではパズルドメ
インは吸引磁界が不連続なところを飛び移らねばならず
、消滅、他の筒所への飛び出しといった誤動作を生じや
すく動作特性を悪化させる原因となっていた。
25 minutes). In this way, the bubble domains are transferred sequentially, but in general, the transfer along the pattern is relatively stable along the movement of the attractive magnetic field as described above, but in the case of inter-pattern gears such as 26, the bubble domains are The domain has to jump between places where the attractive magnetic field is discontinuous, which tends to cause malfunctions such as disappearance or jumping out to other cylinder locations, which causes deterioration of operating characteristics.

!@5図は検出器パターン近傍のバブルドメイン伸張用
パターンの1例を示す平面図である。この場合はバブル
ドメインは31の様に伸びた状態で矢印の方向に順次転
送されるが、32のパターン間ギャップや吸引磁界が比
較的弱い33の様な中間部分では、バブルドメインの縮
みが起きやすいといった欠点があり検出特性の不安定性
全ひき起こす原因となっている。
! Figure @5 is a plan view showing an example of a bubble domain expansion pattern near the detector pattern. In this case, the bubble domains are transferred sequentially in the direction of the arrow in an elongated state as shown in 31, but in the gap between patterns 32 and in the middle part like 33 where the attractive magnetic field is relatively weak, the bubble domains shrink. This has the disadvantage of being easy to use, which causes instability in the detection characteristics.

本発明は以上の様な間m点を改善したバブルメモリ素子
を提供するものであって、従来の転送ノ(ターンにおけ
る弱点部分を補正し転送特性を改善したものである。
The present invention provides a bubble memory element that improves the distance m point as described above, and improves the transfer characteristics by correcting the weak point in the conventional transfer turn.

即ち本発明はバブルドメイン転送のための転送パターン
を有する磁気バブルメモリ素子において、前記転送パタ
ーンは2層の軟磁性薄膜パターンを含み、前記一方の薄
膜のパターン間ギャップのバブルドメインの通過すべき
部分の少なくとも1部に前記他方の少なくとも1部が位
置していることを特徴とする磁気バブルメモリ素子であ
る。ここで第1図で示した従来例のように、バブル検出
用パターンと転送パターンを別途に形成する場合には、
検出器形成時vc第1層の転送パターンを同時に形成し
ておくことが有効である。この場合第1層の膜厚は検出
効率の制約上200〜700λが妥当であり、転送専用
の第2層の膜厚は1500〜4500Aが適当で@1層
パターンが第2層パターンの弱点補正用とすることが有
効である。
That is, the present invention provides a magnetic bubble memory element having a transfer pattern for bubble domain transfer, wherein the transfer pattern includes a two-layer soft magnetic thin film pattern, and a portion of the gap between the patterns of one of the thin films through which the bubble domain should pass. The magnetic bubble memory element is characterized in that at least one part of the other is located in at least one part of the magnetic bubble memory element. Here, when forming the bubble detection pattern and the transfer pattern separately as in the conventional example shown in FIG.
It is effective to form the transfer pattern of the VC first layer at the same time as forming the detector. In this case, the film thickness of the first layer is appropriate to be 200 to 700λ due to detection efficiency constraints, and the film thickness of the second layer dedicated to transfer is appropriate to be 1500 to 4500A, @1 layer pattern corrects the weak point of the 2nd layer pattern It is effective to use

以下本発明をドメイン径2μmのバブルメモリ素子に適
用した実施例について図を用いて具体的に説明する。第
2図は本発明を適用(−だ実施例1゜2.3の断面図を
示すもので、第1層転送パターン8は検出器パターンと
同時にパーマロイで形成し、膜厚は500Aとした。9
は第2層転送パターンで350OAのパーマロイよりな
り、絶縁層5゜6.7は酸化シリコンで各々2000A
、3000A。
Hereinafter, an embodiment in which the present invention is applied to a bubble memory element with a domain diameter of 2 μm will be described in detail with reference to the drawings. FIG. 2 shows a cross-sectional view of Example 1°2.3 to which the present invention was applied. The first layer transfer pattern 8 was formed of permalloy at the same time as the detector pattern, and the film thickness was 500A. 9
is the second layer transfer pattern made of 350 OA permalloy, and the insulating layer 5°6.7 is made of silicon oxide and has a thickness of 2000 amp each.
, 3000A.

6000Aであ〕、非磁性導体薄膜パターン4はタンタ
ル100入金300OAであり、これらは従来と同一の
構成である。この場合従来と同じ製造方法でよいので容
易に本発明を実施できるものである。
6000A], and the non-magnetic conductor thin film pattern 4 is tantalum 100 deposited and 300OA, and these have the same structure as the conventional one. In this case, the present invention can be easily implemented since the same manufacturing method as the conventional one may be used.

WJ6図は本発明の第1の実施例を示す平面図であり、
第2層転送パターンは従来と同形状とし、実線で示した
。第1層転送パターンは第2層転送パターンのパターン
間ギャップを埋める様に破線の様に配置した。この場合
用2層パターン間ギャップをバブルドメインが通過する
際に例えば回転磁界方向14〜11171m応じて第2
層パターンにできるバブルドメイン吸引磁界の他に第1
層パターンの吸引磁界が第2層パターン間ギャップ部4
4’〜45′にできるので、バブルドメインは矢印のよ
うにこれらを介してギヤ、プ部全比較的スムーズにわた
ることになる。この様に本発明においてはバブルドメイ
ン吸引磁界の不連続性が緩和され、従ってパズルドメイ
ンの消滅、飛び出しといった誤動作は少なくなり従来よ
り良好な転送特性を得ることができた。
Figure WJ6 is a plan view showing the first embodiment of the present invention,
The second layer transfer pattern has the same shape as the conventional one and is shown by a solid line. The first layer transfer patterns were arranged as shown by broken lines so as to fill the gaps between the second layer transfer patterns. In this case, when the bubble domain passes through the gap between the two-layer patterns, the second
In addition to the bubble domain attraction magnetic field created by the layer pattern, the first
The attractive magnetic field of the layer pattern is applied to the gap portion 4 between the second layer patterns.
4' to 45', the bubble domain extends relatively smoothly through these parts as shown by the arrow. As described above, in the present invention, the discontinuity of the bubble domain attraction magnetic field is alleviated, and therefore malfunctions such as puzzle domains disappearing or popping out are reduced, and better transfer characteristics than in the past can be obtained.

第7図は本発明の第2の実施例を示す平面図である。不
実施例の場合も第2層パターンは従来形状と同じIc 
シ、第1層パターンを従来と似た形としたかやはv第2
層パターン間ギャップを埋める様に配置した。本実施例
の場合も実質的なパターン間ギャップを補正することに
よる転送特性の改善が確認できた。通常バブルドメイン
の転送特性をあられ丁には、基板面内回転磁界と、基板
に垂直なバイアス磁界との転送が正常に行なわれる許容
範囲の大きさで示される。バブルドメインケ各パターン
に詰め込んだ状態でのバイアス磁界許容幅は従来回転磁
界500e、 600e  Ic対してそれぞれ200
e、 250e  であったが不発明の実施例1では各
々50e程度増加し、その効果が大きいことが確認でき
た。
FIG. 7 is a plan view showing a second embodiment of the present invention. Even in the case of non-example, the second layer pattern has the same Ic shape as the conventional shape.
The first layer pattern has a similar shape to the conventional one.
It was arranged so as to fill the gap between the layer patterns. In the case of this example as well, it was confirmed that the transfer characteristics were improved by correcting the substantial gap between patterns. Normally, the transfer characteristics of a bubble domain are expressed by the size of an allowable range in which transfer between a rotating magnetic field in the plane of the substrate and a bias magnetic field perpendicular to the substrate is normally performed. The permissible bias magnetic field width when bubble domains are packed in each pattern is 200 for conventional rotating magnetic fields of 500e and 600e Ic.
e and 250e, but in the non-inventive Example 1, each increased by about 50e, and it was confirmed that the effect was large.

第8図は検出器近傍のバブルドメイン伸張用パターンに
本発明を適用した第3の実施例である。
FIG. 8 shows a third embodiment in which the present invention is applied to a pattern for expanding a bubble domain near a detector.

本実施例ではバブルドメインの転送方向のパターン間ギ
ャップ51のみではなく、パターン上下のギャップ52
Vcも破線で示した第1層パターンを配置し、パターン
全体にわたって回転磁界に応じて作られるバブルドメイ
ン吸C1磁界を強くしたものである。
In this embodiment, not only the gap 51 between patterns in the transfer direction of the bubble domain but also the gap 52 above and below the pattern
Vc also has a first layer pattern indicated by a broken line, and strengthens the bubble domain attraction C1 magnetic field created in response to the rotating magnetic field over the entire pattern.

この様なバブルドメイン伸長用パターンVct、−いて
はパターン全体にわたって回転磁界に応じて作られるバ
ブルドメイン吸引磁界は強化され、特に51.52の位
置における伸びたバブルドメインの縮みといった現象が
なくなフ従来以上の安定した検出効率を得ろことができ
た。
In this bubble domain extension pattern Vct, the bubble domain attraction magnetic field created in response to the rotating magnetic field over the entire pattern is strengthened, and the phenomenon of shrinkage of the extended bubble domain at the position 51 and 52 is eliminated, and the bubble domain is removed. We were able to obtain more stable detection efficiency than before.

以上の様に本発明の磁気バブルメモリ素子においては従
来の転送特性の欠点を補正し良好な駆動特性を得ること
ができるものであり、実施例に限らず広く特性改善のた
めに適用できるものである。
As described above, the magnetic bubble memory element of the present invention can correct the drawbacks of conventional transfer characteristics and obtain good drive characteristics, and can be applied not only to the embodiments but also to a wide range of characteristics improvement. be.

又、第1層のパターン全検出器パターンと同時に形成す
れば何ら新しい工程を要しないので容易に特性改善がで
き非常に有効である。又、実施例においてはドメイン径
2μmのバブルメモリ素子を用いたがより微細なドメイ
ン径のバブルメモリ素子においては、パターン形成上の
ftflJ 約によりノくターン間ギヤ、ブをドメイン
径に比例して小さくすることはできないので、十分な転
送特性を得ることはますます困難となってくる。この様
な場合本発明の様な構成にすることはとりわけ有効であ
る。
Furthermore, if the first layer pattern is formed at the same time as all the detector patterns, no new process is required and the characteristics can be easily improved, which is very effective. In addition, in the example, a bubble memory element with a domain diameter of 2 μm was used, but in a bubble memory element with a finer domain diameter, the gears and gaps between turns should be adjusted in proportion to the domain diameter due to ftflJ during pattern formation. Since it cannot be made smaller, it becomes increasingly difficult to obtain sufficient transfer characteristics. In such a case, the configuration of the present invention is particularly effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のバブルメモリ素子を示す断面図、第2図
は本発明の実施例におけるバブルメモリ素子全話す断面
図、第3図は従来のバブルメモリ素子の典型的転送パタ
ーン形状を示す平面図、第4図は基板面内回転磁界の方
向をボす図、第5図は従来のバブルメモリ素子の転送パ
ターンバブルドメイン伸張器形状を示す平面図、第6図
は本発明の第1の実施例におけるバブルメモリ素子転送
パターン形状を示す平面図%第7図は本発明の第2の実
hI!i例におけるバブルメモリ素子転送パターン形状
を示す平面図、第8図は本発明の用3の実施例における
バブルメモリ素子のバブルメイン伸彊器形状を示す平面
図である。 尚、図において、 1・・・・・・GGG基板、2・・・・・検出器パター
ン、3・・・・・・従来の転送パターン、4・・・・・
・非磁性4体薄膜パターンh 5* 6,7・旧・・P
3縁層、8・・・・・本発明の第1層転送パターン、9
・・・・・・本発明の@2層転パターン、20.21・
・団・バブルドメイン、11〜14・・・・・・回転磁
界方向、21〜24.24’、25゜26.32,33
.43,44.44’、45゜45’、51.52・・
・・・・位ffiである。 幣1図 第6図 幣4図 第5図 第7図 542−
FIG. 1 is a cross-sectional view showing a conventional bubble memory device, FIG. 2 is a cross-sectional view of a bubble memory device according to an embodiment of the present invention, and FIG. 3 is a plane view showing a typical transfer pattern shape of a conventional bubble memory device. 4 is a diagram showing the direction of the rotating magnetic field in the plane of the substrate, FIG. 5 is a plan view showing the shape of a transfer pattern bubble domain expander of a conventional bubble memory element, and FIG. FIG. 7 is a plan view showing the shape of the bubble memory element transfer pattern in the embodiment. FIG. 8 is a plan view showing the shape of the bubble memory element transfer pattern in Example i, and FIG. 8 is a plan view showing the shape of the bubble main expander of the bubble memory element in the third embodiment of the present invention. In the figure, 1... GGG board, 2... detector pattern, 3... conventional transfer pattern, 4...
・Non-magnetic 4-body thin film pattern h 5* 6, 7・Old...P
3 Edge layer, 8...First layer transfer pattern of the present invention, 9
...@2-layer rotation pattern of the present invention, 20.21.
・Group/bubble domain, 11-14... Rotating magnetic field direction, 21-24.24', 25° 26.32, 33
.. 43, 44.44', 45°45', 51.52...
...It is ffi. Figure 1 Figure 6 Figure 4 Figure 5 Figure 7 542-

Claims (2)

【特許請求の範囲】[Claims] (1)バブルドメイン転送のための転送パターンを有す
る磁気バブルメモリ素子rCおいて、前記転送パターン
は2層の軟磁性薄膜パターンを含み。 前記一方の薄膜のパターン間ギャップのバブルドメイン
が通過すべき部分の少なくとも1部に前記他方の薄膜パ
ターンの少なくとも1部が位置していることを特徴とす
る磁気バブルメモリ素子。
(1) In a magnetic bubble memory element rC having a transfer pattern for bubble domain transfer, the transfer pattern includes a two-layer soft magnetic thin film pattern. A magnetic bubble memory element, wherein at least a portion of the other thin film pattern is located in at least a portion of a portion through which the bubble domain of the interpattern gap of the one thin film should pass.
(2)転送パターンがバブル検出器パターンと同時に形
成された200〜700λの厚さを持つ第記載の磁気バ
ブルメモリ素子。
(2) The magnetic bubble memory device according to the above, wherein the transfer pattern is formed simultaneously with the bubble detector pattern and has a thickness of 200 to 700λ.
JP58001863A 1983-01-10 1983-01-10 Magnetic bubble memory element Pending JPS59127291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58001863A JPS59127291A (en) 1983-01-10 1983-01-10 Magnetic bubble memory element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58001863A JPS59127291A (en) 1983-01-10 1983-01-10 Magnetic bubble memory element

Publications (1)

Publication Number Publication Date
JPS59127291A true JPS59127291A (en) 1984-07-23

Family

ID=11513378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58001863A Pending JPS59127291A (en) 1983-01-10 1983-01-10 Magnetic bubble memory element

Country Status (1)

Country Link
JP (1) JPS59127291A (en)

Similar Documents

Publication Publication Date Title
US3967002A (en) Method for making high density magnetic bubble domain system
US7989224B2 (en) Sidewall coating for non-uniform spin momentum-transfer magnetic tunnel junction current flow
JPH08212517A (en) Small read/write magnetic head with biased giantic magnetoresistance (gmr) element,its manufacture and flux- transition detection method by it
US4086661A (en) Cylindrical magnetic domain element
EP0011137A1 (en) Manufacture of a magnetic bubble domain chip with enhanced propagation margins
JPS59127291A (en) Magnetic bubble memory element
JPS5933962B2 (en) magnetic bubble domain chip
US5959809A (en) Magnetoresistive head and method of manufacturing the same and magnetic recording apparatus
US4415990A (en) Complementary bi-level magnetic bubble propagation circuit
JPS63138513A (en) Thin film magnetic head and its production
JPS5877208A (en) Multi-layer magnetic thin film and manufacture thereof
JP3028495B2 (en) Thin film magnetic head
JPH0714118A (en) Thin-film magnetic head and its production
US4376137A (en) Method of fabricating a bi-level magnetic bubble propagation circuit
JP2649209B2 (en) Method for manufacturing thin-film magnetic head
JPS60167189A (en) Magnetic babble memory element
JPS5990289A (en) Magnetic bubble memory element
JPS645395B2 (en)
JPS6321991B2 (en)
JP2001056910A (en) Manufacture of magneto-resistance effect type magnetic head
JPS6134634Y2 (en)
JPS6117066B2 (en)
JPS5812665B2 (en) magnetic bubble element
JPS581748B2 (en) Jikikenshiyutsuki
Gergis et al. Complementary permalloy bubble propagation structure