JPS59122551A - Preparation of quinacridone pigment having gamma-crystal phase - Google Patents

Preparation of quinacridone pigment having gamma-crystal phase

Info

Publication number
JPS59122551A
JPS59122551A JP22747282A JP22747282A JPS59122551A JP S59122551 A JPS59122551 A JP S59122551A JP 22747282 A JP22747282 A JP 22747282A JP 22747282 A JP22747282 A JP 22747282A JP S59122551 A JPS59122551 A JP S59122551A
Authority
JP
Japan
Prior art keywords
quinacridone
crystal phase
alcohol
quinacridone pigment
mineral acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22747282A
Other languages
Japanese (ja)
Inventor
Kunitoshi Koga
古賀 邦俊
Fumio Suenaga
末永 文男
Yoshinori Yamazaki
山崎 吉則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP22747282A priority Critical patent/JPS59122551A/en
Publication of JPS59122551A publication Critical patent/JPS59122551A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prepare a high-purity quinacridone pigment having gamma-crystal phase in the form of fine powder, economically, by dissolving crude quinacridone in a mixed solvent comprising cyclic N-alkylamide compound, etc. in the presence of an alkaline hydroxide, and neutralizing the solution with a mineral acid. CONSTITUTION:A quinacridone pigment having gamma-crystal phase is prepared by dissolving (A) crude quinacridone having arbitrary crystal phase in (B) a mixed solvent composed of (i) a cyclic N-alkylamide compound (e.g. N-methyl-2-pyrrolidone, N-methyl-epsilon-caprolactam, etc.) and (ii) an alcohol having a solubility parameter of 11-13 at a weight ratio of preferably (50-80):(50-20) in the presence of (C) an alkaline hydroxide such an NaOH, KOH, etc. (preferably 1-3mol per 1mol of the crude quinacridone), and neutralizing the solution with mineral acid or mineral acid diluted with the above N-alkylamide compound and/or alcohol.

Description

【発明の詳細な説明】 本発明は−、γ−結晶相キナクリドン顔料の製法に関す
るものである。さらに詳しくは、任意の結晶相を有する
粗製キナクリドンを環状のN−アルキルアミド化合物と
アルコール類との混合溶媒にアルカリ水酸化物の存在下
に溶解し、これを鉱酸または環状N−アルキルアミド化
合物または/およびアルコール類で希釈した鉱酸で中和
することCより微粒子γ−結晶相キナクリドン顔料を製
造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing -, γ-crystalline phase quinacridone pigments. More specifically, crude quinacridone having any crystalline phase is dissolved in a mixed solvent of a cyclic N-alkylamide compound and an alcohol in the presence of an alkali hydroxide, and this is dissolved in a mineral acid or a cyclic N-alkylamide compound. and/or neutralization with a mineral acid diluted with an alcohol.This invention relates to a method for producing a fine particle γ-crystal phase quinacridone pigment from C.

キナクリドンには結晶構造の違いにより、α−型、β−
型、γ−型などの異型の゛ものがあることが知られてい
る。これらはいずれも耐熱、耐候性および耐溶剤性に優
れた鮮明な赤色または赤紫色の有機顔料であり、塗料、
インキ、および樹脂着色などに広く用いられている。
Quinacridone has α-type and β-type due to differences in crystal structure.
It is known that there are atypical forms such as the γ-type and the γ-type. All of these are bright red or reddish-purple organic pigments with excellent heat resistance, weather resistance, and solvent resistance.
Widely used for inks and resin coloring.

これまでのγ−結晶相キナクリドンの製造法としては次
のような方法が知られている。
The following methods are known as conventional methods for producing .gamma.-crystal phase quinacridone.

(1)  ジメチルホルムアミドなどの溶媒中で無機塩
類とミリングを行い磨砕と結晶型の調整を同時に行う方
法(特公昭36−13833号公報)。
(1) A method in which milling with an inorganic salt is carried out in a solvent such as dimethylformamide to simultaneously perform grinding and adjustment of the crystal form (Japanese Patent Publication No. 13833/1983).

(2)特定の溶媒中で処理して結晶型をγ−型に変える
方法。例えば、5〜10%の水を含むジメチルホルムア
ミドと共に煮沸する方法(特公昭39−9271号公報
)、ジメチルスルホキシド中て煮沸する方法(%公昭4
0−6098号公報)。
(2) A method of changing the crystal form to the γ-form by treatment in a specific solvent. For example, a method of boiling with dimethylformamide containing 5 to 10% water (Japanese Patent Publication No. 39-9271), a method of boiling in dimethyl sulfoxide (Japanese Patent Publication No. 1973-9271),
0-6098).

メタノール中で水酸化カリウムと共に煮沸する方法(特
公昭39−20073号公報)などが提案されている。
A method of boiling with potassium hydroxide in methanol (Japanese Patent Publication No. 39-20073) has been proposed.

(3)  キナクリドンの濃硫酸溶液をアルコールなど
の極性溶媒中に滴下してキナクリドンを析出させる方法
(特公昭45−16343号公報、同47−17149
号公報)。
(3) A method in which a concentrated sulfuric acid solution of quinacridone is dropped into a polar solvent such as alcohol to precipitate quinacridone (Japanese Patent Publication No. 16343/1986, 17149/1982)
Publication No.).

(4)  アルカリ、水の存在下ジメチルスルホキシド
溶媒中でキナクリドンをアルカリ金属塩として溶解し、
これにジメチルスルホキノドで希釈した鉱酸を添加する
か、あるいは硫酸酸性アルコールで希釈する方法(特開
昭54−132625号公報、同54−130622号
公報)。
(4) Dissolving quinacridone as an alkali metal salt in a dimethyl sulfoxide solvent in the presence of an alkali and water,
A method of adding a mineral acid diluted with dimethylsulfoquinide or diluting it with sulfuric acidic alcohol (Japanese Unexamined Patent Publication Nos. 54-132625 and 54-130622).

しかしなから、上記のような従来より提案されている方
法には、それぞれ次に示すような問題点を内包している
。すなわち、(1)の方法は処理工程か長く操作か繁雑
であり、(2)の方法では、顔料として使用できるよう
な充分小さな粒子径にすることができない。(3)の方
法では濃硫酸に溶解するため1部分的にスルホン化を受
ける危険かある。(4)の方法においては微粒子のキナ
クリドンを得ることができる。しかし、多量の高価な溶
媒を用いることから、それを回収することが必要となる
が。
However, each of the conventionally proposed methods described above has the following problems. That is, the method (1) requires long processing steps and is complicated, and the method (2) cannot make the particle size small enough to be used as a pigment. In method (3), there is a risk of partial sulfonation because it is dissolved in concentrated sulfuric acid. In the method (4), fine particles of quinacridone can be obtained. However, since a large amount of expensive solvent is used, it is necessary to recover it.

溶剤回収のための費用や回収率の悪さから製造コストの
上昇を、伴う。
This is accompanied by an increase in manufacturing costs due to the expense for solvent recovery and poor recovery rate.

本発明者は、これらの点を考慮し、粗製キナクリドンか
ら粒子径が充分小さく、かつ純度の高いγ−結晶相キナ
クリドンを経済的に有利に製造する方法を鋭意検討した
。その結果、キナクリドンは環状N−アルキルアミド化
合物とアルコール類との混合溶媒中にアルカリの存在下
に完全に溶解するので、この溶液を1過することにより
不溶性のゴミや不純物も除去できること、捷だ、このよ
うにして得たキナクリドン溶液を鉱酸または前記環状N
−アルキルアミド化合物捷たは/およびアルコール類で
希釈した鉱酸で中和することにより粒子径が充分小さく
、かつ純度の高いγ−結晶相キナクリドンが得られるこ
と、さらに、溶媒系からキナクリドンを1別する過程で
生成塩も同時に除去できるため、溶媒系をリサイクル使
用でき。
Taking these points into consideration, the present inventors have intensively investigated an economically advantageous method for producing γ-crystal phase quinacridone having a sufficiently small particle size and high purity from crude quinacridone. As a result, quinacridone completely dissolves in a mixed solvent of a cyclic N-alkylamide compound and an alcohol in the presence of an alkali, so insoluble dust and impurities can also be removed by passing this solution once. The quinacridone solution thus obtained is treated with mineral acid or the cyclic N
- It is possible to obtain γ-crystal phase quinacridone with a sufficiently small particle size and high purity by neutralizing it with an alkylamide compound and/or a mineral acid diluted with an alcohol; During the separation process, the salts produced can be removed at the same time, allowing the solvent system to be recycled.

溶剤回収の費用を大巾に低減できることなどを見出し9
本発明に到達した。
It was discovered that the cost of solvent recovery can be significantly reduced9.
We have arrived at the present invention.

すなわち1本発明は、粗製キナクリドンをアルカリ水酸
化物の存在下に環状N−アルキルアミド化合物と溶解性
パラメーターが11〜]−3の範囲のアルコール類との
混合溶媒に溶解し、これを鉱酸寸たは前記環状N−アル
キルアミド化合物または/およびアルコール類で希釈し
た鉱酸で中和することを特徴とするγ−結晶相キナクリ
トン顔料の製法に関するものである。
That is, in the present invention, crude quinacridone is dissolved in a mixed solvent of a cyclic N-alkylamide compound and an alcohol having a solubility parameter in the range of 11 to ]-3 in the presence of an alkali hydroxide, and this is dissolved in a mineral acid. Specifically, the present invention relates to a method for producing a γ-crystalline phase quinacrytone pigment, which is characterized in that the pigment is neutralized with a mineral acid diluted with the cyclic N-alkylamide compound and/or an alcohol.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明に用いる粗製キナクリドンは任意の結晶相を有す
るものか使用でき、その粒子の大小も問わない。
The crude quinacridone used in the present invention can have any crystalline phase, and the size of the particles does not matter.

溶媒は環状トJ−アルキルアミド化合物とアルコール類
の混合溶媒系を用いる。環状N−アルキルアミド化合物
としてはN−メチル−2−ピロリドン、N−エチル−2
−ピロリドン、N−メチル−ε−カプロラクタムが挙げ
られ、アルコール類としては溶解性パラメーターが11
−13のもの。
As the solvent, a mixed solvent system of a cyclic tri-J-alkylamide compound and alcohols is used. As the cyclic N-alkylamide compound, N-methyl-2-pyrrolidone, N-ethyl-2
-pyrrolidone, N-methyl-ε-caprolactam, and alcohols with a solubility parameter of 11
-13 things.

、!=<K、エタノール、プロパツール、エチレングリ
コールモノメチルエーテル□のようなアルカリ水酸化物
をある程度溶解しうるものが適する。混合溶媒中のN−
アルキルアミド化合物とアルコール類との重−訃比率は
50〜80 : 50〜2oが適当である。この範囲を
こえてアルコール類が多くなるとキナクリドンの溶解度
が低下すると同時に得られるキナクリドン顔料中にβ−
型が混入するようになる。才だ、アルコール類が少ない
とアルカリ水酸化物の溶解性が悪くなるため目的の顔料
を得にくくなる。なおこの混合溶媒に水を添加すること
はγ−結晶相以外のキナクリドンが混入し。
,! =<K, ethanol, propatool, and those that can dissolve alkali hydroxide to some extent, such as ethylene glycol monomethyl ether □, are suitable. N- in mixed solvent
The suitable ratio of the alkylamide compound to the alcohol is 50 to 80:50 to 2o. When the amount of alcohol exceeds this range, the solubility of quinacridone decreases and at the same time, β-
Types become mixed. However, if the alcohol content is low, the solubility of the alkali hydroxide will deteriorate, making it difficult to obtain the desired pigment. Note that when water is added to this mixed solvent, quinacridone other than the γ-crystalline phase is mixed in.

粒子径も大きくなるので好ましくない。This is not preferable because the particle size also increases.

キナクリドンのアルカリ金属塩を形成するだめのアルカ
リ水酸化物としては、水酸化す) IJウムあるいは水
酸化カリウムなどのアルカリ金属の水−酸化物が用いら
れる。この使用量としては粗製キナクリドン1モルに対
して1−3モルが適当である。また、このアルカリ水酸
化物を溶媒に溶解するに当っては混合溶媒に直接加えて
もよいが、速やかに溶解するためにアルコール中で溶解
し、た方が好ましい。
As the alkali hydroxide for forming the alkali metal salt of quinacridone, an alkali metal hydroxide such as aluminum hydroxide or potassium hydroxide is used. The appropriate amount to be used is 1 to 3 moles per mole of crude quinacridone. Further, when dissolving this alkali hydroxide in a solvent, it may be added directly to the mixed solvent, but it is preferable to dissolve it in alcohol for rapid dissolution.

キナクリドンをそのアルカリ金属′塩として溶媒中に速
やかに溶解するには、アルカリ水酸化物を溶解した溶媒
中に粗製キナクリドンを加え、さらに加熱、撹拌した方
が良い。この場合、キナクリドンの酸化を防ぐため不活
性ガス雰囲気下で行うことが車重しい。
In order to quickly dissolve quinacridone as its alkali metal salt in a solvent, it is better to add crude quinacridone to a solvent in which an alkali hydroxide has been dissolved, and further heat and stir. In this case, it is difficult to carry out the process under an inert gas atmosphere to prevent oxidation of the quinacridone.

キナクリドンを溶解した溶液は室温にしても結晶を析出
することはなく均一な溶液のま1である。
A solution in which quinacridone is dissolved does not precipitate crystals even at room temperature and remains a homogeneous solution.

この溶液を熱時または放冷後ガラスフィルターなどで1
−’過し、コミや不溶性の不純物を除去することができ
る。
Pour this solution through a glass filter, etc., while hot or after cooling.
- It is possible to remove dust and insoluble impurities by filtration.

このようにして得られたキナクリドンの溶液を鉱し2て
中和し、キナクリドンを析出させる。この時用いる鉱酸
としては硫酸、リン酸などがあるが。
The solution of quinacridone thus obtained is neutralized by mineralization to precipitate quinacridone. Mineral acids used at this time include sulfuric acid and phosphoric acid.

とくに硫酸か好ましい。Sulfuric acid is particularly preferred.

鉱酸は単独で、または前記環状N−アルキルアミド化合
物または/およびアルコール類で希釈した状態で用いて
もよい。また、中和の方法は酸の中にキナクリドン溶液
を加えて行うこともてきるし。
The mineral acid may be used alone or diluted with the cyclic N-alkylamide compound or/and alcohol. Also, neutralization can be done by adding quinacridone solution to the acid.

逆にキナクリドン溶液の中に酸を加えて行うこともでき
る。とくに後から酸を加える方法がとれることは装置上
、大きな利点となる。また、酸中和時の温度を調節する
ことにより、析出するキナクリドンの粒子の大きさを変
えることができる。例えば、中和時の温度が10℃前後
では0.1μ前後の微粒子となり、30℃前後では0.
3〜0.5μ程度となるので、中和温度は30℃以下に
保持するのが好ましい。
Conversely, it can also be carried out by adding an acid to the quinacridone solution. In particular, the ability to add acid later is a major advantage in terms of equipment. Further, by adjusting the temperature during acid neutralization, the size of the precipitated quinacridone particles can be changed. For example, if the neutralization temperature is around 10°C, the particles will be around 0.1μ, and if the neutralization temperature is around 30°C, the particles will be around 0.1μ.
Since the neutralization temperature is about 3 to 0.5 μ, it is preferable to maintain the neutralization temperature at 30° C. or lower.

酸中和後のシラジー状溶液e濾過なとて分別することに
より、キナクリドンか得られるか、同時に中和で生成し
た塩もj11別するととかてきる。このため、lコ液は
塩、酸、アルカリを殆んと含捷ない状態となり、そのi
t再使用することか可能となる。このことは溶媒回収な
どの費用を犬1jに低減できるだめ経済的に大きな効果
を及はす。
Quinacridone can be obtained by separating the silage-like solution after acid neutralization by filtration, and at the same time, the salt produced by neutralization can also be separated. For this reason, the liquid is in a state where it contains almost no salt, acid, or alkali;
It becomes possible to reuse it. This has a great economical effect as it can reduce the cost of solvent recovery and the like.

酸中和後のスラリーをf+過などの方法でキナクリドン
を分離するが、これを水で充分洗浄し塩などを除去する
ことにより粒子径が小さく、かつ純度の高いγ−結晶相
のキナクリドンか容易に得られる。このようにして得ら
れた粒子径が小さく。
Quinacridone is separated from the slurry after acid neutralization by a method such as f+ filtration, and by thoroughly washing it with water to remove salts etc., it is easy to obtain quinacridone with a small particle size and high purity in the γ-crystalline phase. can be obtained. The particle size thus obtained is small.

かつ純度の高いγ−結晶相のキナクリドンは顔料以上、
説明した本発明による顔料化の方法を用いれば、優れた
性能の顔料を製造できるだけでなく、従来のγ−結晶相
キナクリトン顔料の製造方法に比へ次のような特長をも
つことがら、工業的に有利となる。すなわち、(1)非
水溶媒系を用いるため、酸中和により、キナクリドンを
析出させると同時に生成塩も析出する。これらは容易に
分離てき1分離後の溶媒は塩、酸、アルカリを殆んど含
呼ない状態となり、そのま1再使用することがrji能
となる。(2)酸中和の方法は酸の中にキナクリドン浴
f夜を力いえてもより、マた逆にキナクリドン溶成の中
に酸を加えてもよい。−とくに、後者の方法かとれるこ
とは装置上、大きな利点となる。(3)原オ;−1とな
る粗製キナクリドンはとのような形状であってもよく、
酸中和時の温度を調整するたけで。
And the highly pure γ-crystalline quinacridone is superior to pigments.
By using the described method for producing pigments according to the present invention, it is possible to not only produce pigments with excellent performance, but also to have the following advantages compared to the conventional method for producing γ-crystalline phase quinacrytone pigments, which makes it suitable for industrial use. be advantageous to That is, (1) since a non-aqueous solvent system is used, quinacridone is precipitated by acid neutralization, and the salt produced is also precipitated at the same time. These are easily separated, and the solvent after separation becomes a state containing almost no salt, acid, or alkali, and can be reused as is. (2) Acid neutralization may be carried out by bathing quinacridone in acid or, conversely, by adding acid to the solution of quinacridone. - In particular, being able to use the latter method is a great advantage for the device. (3) The crude quinacridone serving as -1 may have the shape of
Just to adjust the temperature during acid neutralization.

生成するキナクリドンの粒子径をコントロールすること
ができ、広い用途の顔料を同一の装置で製造することが
できる。
The particle size of the quinacridone produced can be controlled, and pigments for a wide range of uses can be produced using the same equipment.

次に本発明の実施例および比較例を記載する。Next, Examples and Comparative Examples of the present invention will be described.

500 mp、のフラスコにエタノール1oOyを入れ
、まず、水酸化ナトリウム5.02を溶解した。
1000y of ethanol was placed in a 500mp flask, and 5.02ml of sodium hydroxide was first dissolved therein.

これにN−メチル−2−ピロリドン200g加え。Add 200g of N-methyl-2-pyrrolidone to this.

アルカリ性混合溶媒とした。これに9粒子径が約5μの
粗製キナクリドン202を加え、 )t12ガス流通下
、80℃で2時間加熱撹拌した。この時、器内液は濃青
色の溶液状態となっていた。放冷後。
An alkaline mixed solvent was used. Crude quinacridone 202 having a particle size of about 5 μm was added to this, and the mixture was heated and stirred at 80° C. for 2 hours under a )t12 gas flow. At this time, the liquid in the vessel was in a dark blue solution state. After cooling.

a−4ガラスフイルターでj′過し、微吊二存在する不
溶物を除去した。7ノー〕液は]tのフラスコに移し。
The mixture was filtered through an A-4 glass filter to remove a small amount of insoluble matter. 7. Transfer the [No] solution to the [t] flask.

さらに10℃まで冷した。一方、佃t1¥Q 4 、5
 pイ(′:N−メチル−2−ピロリドン土009とエ
タノール502で希釈した混合溶媒をあらかじめ10℃
にしておく。つぎに、この酸性混合溶媒を1・η押下に
キナクリドン溶液に加えた。
It was further cooled to 10°C. On the other hand, Tsukuda t1¥Q 4, 5
P i (': N-Methyl-2-pyrrolidone 009 and ethanol 502 diluted solvent mixture was heated at 10°C in advance.
Keep it. Next, this acidic mixed solvent was added to the quinacridone solution at a pressure of 1·η.

析出物をG−5ガラスフイルターでj′取し、遠心分離
器を用いて充分水洗したのち、60℃て24時間乾燥し
た。
The precipitate was collected using a G-5 glass filter, thoroughly washed with water using a centrifugal separator, and then dried at 60°C for 24 hours.

得られたキナクリドンは赤色の粉末であり、X線回折を
行ったところ、−20で6.4°、13’、7°、26
.3゜に強いピーク、そして16.8°、20.3°、
23.6°に弱いピークを示し、γ−結晶相キナクリド
ンの解析パターンに一致した。寸だ、この赤色粉末の粒
子状態をME子顕微鏡により観堅したところ、粉末は粒
子径が0.1μ前後の非常に微細な粒子から構成されて
いることが判明した。さらに、このキナクリドン粉末を
用いた塗膜試験においては、優れた着色力と鮮明な色調
を示すことが確認された。
The obtained quinacridone was a red powder, and when X-ray diffraction was performed, it was found that at -20 it was 6.4°, 13', 7°, 26
.. Strong peak at 3°, 16.8°, 20.3°,
It showed a weak peak at 23.6°, which matched the analytical pattern of γ-crystal phase quinacridone. When the particle state of this red powder was examined using an ME microscope, it was found that the powder was composed of extremely fine particles with a particle diameter of approximately 0.1 μm. Furthermore, in a coating test using this quinacridone powder, it was confirmed that it exhibited excellent tinting strength and clear color tone.

実施例2〜5.比較例1.2 実施例1においてキナクリドンを溶解するために用いる
混合尋媒系を第1表のように変えたほか(は同様の操作
を行った。その結果は同じ第1表実Nj例に示したよう
に、非常に微細なγ−結晶相キナクリドンであり、塗膜
試験においても優れた着色力と鮮明な色調を示すことが
確認された。寸だ。
Examples 2-5. Comparative Example 1.2 The mixed solvent system used to dissolve quinacridone in Example 1 was changed as shown in Table 1, and the same operations were performed. The results are shown in Example Nj in the same Table 1. As shown, it is a quinacridone with a very fine γ-crystalline phase, and it was confirmed in the coating film test that it exhibited excellent tinting power and clear color tone.

N−メチル−2−ピロリドンとエタノールの混合組成に
おいてエタノール割合が50%以上壕だ工0係以下では
比較例1.2に示したように目的のキナクリドンは得ら
れなかった。
As shown in Comparative Example 1.2, the desired quinacridone could not be obtained when the ethanol ratio in the mixed composition of N-methyl-2-pyrrolidone and ethanol was 50% or more and less than 0%.

第1表 比較例3 実施例1において、キナクリドンを溶解するだめの混合
溶妹3001にさらに水8gを加えたほかは同様の操作
を行った。その結果、キナクリドンの溶解性は著しく減
少し、得られたキナクリドンは純粋なγ−型の結晶型を
示さず9粒子径も1μに近いものとなった。
Table 1 Comparative Example 3 The same operation as in Example 1 was carried out except that 8 g of water was further added to the mixed solution 3001 in which quinacridone was dissolved. As a result, the solubility of quinacridone was significantly reduced, and the obtained quinacridone did not exhibit a pure γ-type crystal form, and the particle size of the quinacridone was close to 1 μ.

実施例6〜9 実施例1において中和の方法を第2表のように変えたほ
かは同様の操作を行った。その結果、いずれも非常に微
細なγ−結晶相キナクリドンか得られ、塗膜試験におい
ても優れた着色力と鮮明な色調を示すことが確認された
Examples 6 to 9 The same operations as in Example 1 were performed except that the neutralization method was changed as shown in Table 2. As a result, very fine γ-crystal phase quinacridone was obtained in all cases, and it was confirmed that the coating film test also showed excellent tinting power and clear color tone.

第  2  表 実施例10〜12 実施例1における酸中和時の温度を第3表のように変え
たほかは同様の操作を行つ/こ。その結果。
Table 2 Examples 10 to 12 The same operations as in Example 1 were performed except that the temperature during acid neutralization was changed as shown in Table 3. the result.

その温度が低い場合(10℃以下)は非常に微細なγ−
結晶相キナクリトンが得られ、塗膜試験においても透明
性1着色力に優れた鮮明な色調を示すことが確認された
。また、その温度が高く(約30℃)になると微細なγ
−結晶相のキナクリドンが得られ、塗膜試験においても
隠ぺい性に優れた鮮明な色調を示すことが確認された。
If the temperature is low (below 10℃), very fine γ-
Crystal phase quinacritone was obtained, and it was confirmed in the coating film test that it exhibited clear color tone with excellent transparency and tinting strength. Also, when the temperature is high (approximately 30℃), fine γ
- Quinacridone in a crystalline phase was obtained, and it was confirmed that it exhibited a clear color tone with excellent hiding properties in the coating film test.

第  3  表 実施例13 実施例1とまったく同様にしてキナクリドン顔料を得た
のち、l−1液を2:lに分け、多い方に水酸化ナトリ
ウム5.0 gを小さくくだいて加え加熱1イエ拌し溶
解させた。これを50’ Omlフラスコに移し、粗製
キナクリドン20yを加えN2流通下、80〜90℃で
2時間加熱撹拌し以下実施例と同様の処理を行った。酸
中和はj−J液の残りに硫酸4.52を加えてこれを用
いた。このようにして、キナクリドン顔料を得、さら(
これをくり返した。このように混合溶妨、を再使用して
得られたキナクリドンはいずれも微細なr−結晶相のキ
ナクリドンであり、塗膜試験においても優れた着色力と
鮮明な色調を示すことが確認された。
Table 3 Example 13 After obtaining a quinacridone pigment in exactly the same manner as in Example 1, divide the l-1 solution into a ratio of 2:1, add 5.0 g of sodium hydroxide in small pieces to the larger portion, and heat for 1 hour. Stir to dissolve. This was transferred to a 50' Oml flask, 20y of crude quinacridone was added thereto, and heated and stirred at 80 to 90°C for 2 hours under N2 flow, followed by the same treatment as in the example. For acid neutralization, 4.5% of sulfuric acid was added to the remainder of the J-J solution. In this way, a quinacridone pigment was obtained and further (
This was repeated. The quinacridone obtained by reusing the mixed solution in this way is all quinacridone with a fine r-crystalline phase, and it was confirmed that it exhibited excellent coloring power and clear color tone in the coating film test. .

特許出願人  宇部興産株式会社Patent applicant: Ube Industries Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] (1)粗製キナクリドンをアル゛カリ水酸化物の存在下
に環状N−アルキルアミド化合物と溶解性パラメーター
が11〜13の範囲のアルコール類との混合溶媒に溶解
し、これを鉱酸または前記環状N−アルキルアミド化合
物または/およびアルコール類で希釈した鉱酸で中和す
ることを特徴とするγ−結晶相キナクリドン顔料の製法
(1) Crude quinacridone is dissolved in a mixed solvent of a cyclic N-alkylamide compound and an alcohol having a solubility parameter in the range of 11 to 13 in the presence of alkali hydroxide, and this is dissolved in a mineral acid or A method for producing a γ-crystal phase quinacridone pigment, which comprises neutralizing with a mineral acid diluted with an N-alkylamide compound or/and an alcohol.
(2)環状N−アルキルアミド化合物かN−メチル−2
−ピロリド/、IJ−エチル−2−ピロリドン、N−メ
チル−ε−カプロラクタムである特許請求の範囲(1)
項記載のγ−結晶相キナクリドン顔料の製法。
(2) Cyclic N-alkylamide compound or N-methyl-2
-Pyrrolide/, IJ-ethyl-2-pyrrolidone, N-methyl-ε-caprolactam Claim (1)
A method for producing a γ-crystalline phase quinacridone pigment as described in Section 1.
(3)  アルカリ水酸化物が水酸化ナトリウム、水酸
化カリウムで、その使用量が粗製キナクリドン1モルに
対して1〜3モルである特許請求の範囲(1)項記載の
γ−結晶相キナクリドン顔料の製法。
(3) The γ-crystal phase quinacridone pigment according to claim (1), wherein the alkali hydroxide is sodium hydroxide or potassium hydroxide, and the amount used is 1 to 3 mol per 1 mol of crude quinacridone. manufacturing method.
(4)鉱酸が硫酸mAIJン酸である特許請求の範囲(
1)項記載のγ−結晶相キナクリドン顔料の製法。
(4) Claims in which the mineral acid is sulfuric acid (
A method for producing the γ-crystal phase quinacridone pigment described in section 1).
(5)N−アルキルアミド化合物と溶解性パラメーター
が11〜13の範囲のアルコール類との重量比率が50
〜80 : 50〜20である混合溶媒である特許請求
の範囲(1)項記載のγ−結晶相キナクリドン顔料の製
法。
(5) The weight ratio of the N-alkylamide compound and the alcohol having a solubility parameter in the range of 11 to 13 is 50
80: The method for producing a γ-crystal phase quinacridone pigment according to claim (1), wherein the mixed solvent is 50 to 20.
JP22747282A 1982-12-28 1982-12-28 Preparation of quinacridone pigment having gamma-crystal phase Pending JPS59122551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22747282A JPS59122551A (en) 1982-12-28 1982-12-28 Preparation of quinacridone pigment having gamma-crystal phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22747282A JPS59122551A (en) 1982-12-28 1982-12-28 Preparation of quinacridone pigment having gamma-crystal phase

Publications (1)

Publication Number Publication Date
JPS59122551A true JPS59122551A (en) 1984-07-16

Family

ID=16861412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22747282A Pending JPS59122551A (en) 1982-12-28 1982-12-28 Preparation of quinacridone pigment having gamma-crystal phase

Country Status (1)

Country Link
JP (1) JPS59122551A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6402829B1 (en) * 2000-12-20 2002-06-11 Sun Chemical Corporation Process for preparing a substantially pure gamma phase quinacridone pigment of large particle size

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6402829B1 (en) * 2000-12-20 2002-06-11 Sun Chemical Corporation Process for preparing a substantially pure gamma phase quinacridone pigment of large particle size

Similar Documents

Publication Publication Date Title
JPH0376877A (en) Use of perylene-3,4,9,10- tetracarboxylic acid diimide pigment
JP5492782B2 (en) Production of epsilon copper phthalocyanine with small primary particle size and narrow particle size distribution by kneading
US4247696A (en) Process for preparing gamma phase quinacridone
JPS59122551A (en) Preparation of quinacridone pigment having gamma-crystal phase
JP2010539309A (en) Production of epsilon copper phthalocyanine with small primary particle size and narrow particle size distribution
JPH04252273A (en) Production of epsilon type copper phthalocyanine pigment
US3351481A (en) Process of producing phthalocyanine pigments
JPS6293271A (en) Collection of 4,4&#39;-dihydroxydiphenylsulfone from isomer mixture
JPS59122550A (en) Preparation of quinacridone pigment having gamma-crystal phase
KR102599442B1 (en) Alpha alumina with excellent aspect ratio and free of heavy metals and its manufacturing method
JP2008239870A (en) Method for producing fine copper phthalocyanine pigment
WO1993009186A1 (en) Process for preparing pigment from 2,9-dimethylquinacridone compound
JPS5847425B2 (en) Method for producing perylene series pigments
JP3787771B2 (en) Method for producing purified cuprous chloride
US4010180A (en) Process for the purification of copper phthalocyanine
US2360010A (en) Process for the sulphonation of alpha - aminoanthraquinone compounds
JPS58147461A (en) Preparation of quinacridone pigment having gamma-crystal phase
JPS63101459A (en) Production of phthalocyanine green pigment
JP2005029633A (en) Treated pigment and method for producing the same
JP2001172519A (en) Production method for organic pigment applying supercritical field
JPS6032850A (en) Production of beta-quinacridone pigment
JPH05163441A (en) Production of 4,4&#39;-diamino-1,1&#39;-dianthraquinonyl pigments
JPH03181570A (en) Production of oxititanium phthalocyanine
US5416263A (en) Process for producing 4,4&#39;-Diamino-1,1&#39;-dianthraquinonyl pigments
JP2001181529A (en) Production method for copper phthalocyanine semicrude and production method for copper phthalocyanine crude