JPS5911688A - Blue light-emitting element - Google Patents

Blue light-emitting element

Info

Publication number
JPS5911688A
JPS5911688A JP57121555A JP12155582A JPS5911688A JP S5911688 A JPS5911688 A JP S5911688A JP 57121555 A JP57121555 A JP 57121555A JP 12155582 A JP12155582 A JP 12155582A JP S5911688 A JPS5911688 A JP S5911688A
Authority
JP
Japan
Prior art keywords
layer
type
carrier concentration
znse
blue light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57121555A
Other languages
Japanese (ja)
Other versions
JPS6351553B2 (en
Inventor
Kiyoshi Yoneda
清 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57121555A priority Critical patent/JPS5911688A/en
Publication of JPS5911688A publication Critical patent/JPS5911688A/en
Publication of JPS6351553B2 publication Critical patent/JPS6351553B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of group II and group VI of the periodic system

Abstract

PURPOSE:To obtain a blue color of high luminance brightness by low currents even when ZnSe is used as a material for the blue light-emitting element by laminating an N type first ZnSe layer on a P type ZnTe layer and laminating an N type second ZnSe layer, carrier concentration thereof is larger than the first ZnSe layer, on the first ZnSe layer. CONSTITUTION:The blue light-emitting element consists of a P type GaAs substrate 11, one main surface thereof is a 100 face and carrier concentration thereof is 10<18>/cm<3>, the P type ZnTe layer 12, which is laminated on the substrate 11 and carrier concentration thereof is approximately 2X10<17>/cm<3>, the N type first ZnSe layer 13, which is laminated on the ZnTe layer 12 and carrier concentration thereof is approximately 5X10<16>/cm<3>, the N type second ZnSe layer 14, which is laminated on the first ZnSe layer 13 and carrier concentration thereof is approximately 5X10<17>/cm<3>, and a P-N junction 15 existing in a boundary between the P type ZnTe layer 12 and the first ZnSe layer 13, and each growth layer 12-14 can be formed by an MBE. With the blue light-emitting diode, holes are easily injected to the first ZnSe layer 13 side because the relation, Np>>Nn is formed in the carrier concentration Np of the P type ZnTe layer 12 and the carrier concentration Nn of the first ZnSe layer 13 when a forward bias is applied to the P-N junction 15. A pure blue light is obtained because there is the first ZnSe layer 13 only in said blue light-emitting sensor.

Description

【発明の詳細な説明】 本発明は青色発光素子に関する。[Detailed description of the invention] The present invention relates to a blue light emitting device.

発光素子は当初従来のパイロットランプに替る固体ラン
プとして応用されはじめ、数字表示素子、文字表示素子
など年々応用範囲が拡がり、それにつれて需要も高1υ
現在では化合物半導体の中でも市場性の高い1つの分野
を築くまで成長した。
Light-emitting devices were first used as solid-state lamps to replace conventional pilot lamps, and the range of applications has expanded year by year, including numeric display devices and character display devices, and demand has increased accordingly.
Today, the company has grown to the point where it has become one of the most marketable fields in compound semiconductors.

最近オフィスオートメーション分野の産業が高まるにつ
れて、画像表示装置の分野でも従来のテレどの分野だけ
でなく応用が拡がりつつある。現在主にこの方面で用い
られている画像表示装置は、CRTが中心であるが、C
,TLTは、高電圧が必要で、しかもスペース的に限度
があυ寿命が短かく、振動その他のショックに弱いなど
の欠点があり、低電圧でIC駆動が可能でしかも小さな
スペースですみ、信頼性の高い、平面画像表示装置の開
発が望まれ、LCD、EL、FDP、LEDなどを用い
た平面画像表示装置の開発がさかんになってきている。
Recently, as the industry in the office automation field has grown, applications in the field of image display devices are expanding, not just in the conventional television field. Currently, the image display devices mainly used in this field are CRTs;
, TLTs have disadvantages such as requiring high voltage, space limitations, short lifespan, and being susceptible to vibration and other shocks.However, TLTs can be driven with ICs at low voltages, require a small space, and are reliable. There is a desire to develop a flat image display device with high performance, and development of flat image display devices using LCDs, ELs, FDPs, LEDs, etc. is gaining momentum.

中でもカラー表示が可能なLEDを用いた平面画像表示
装置の開発は、将来CRTに替るものとして有望視され
ている。しかしながら、現段階ではLEDも赤から緑色
のLEDは、すてに開発され、商品化されているが、カ
ラーら原色の1つである青色LEDの開発は遅れている
In particular, the development of flat image display devices using LEDs capable of color display is seen as a promising future replacement for CRTs. However, at present, red to green LEDs have already been developed and commercialized, but the development of blue LEDs, which is one of the primary colors, is lagging behind.

青色LEDに用いられる材料としては、GaN(窒化ガ
リウム)、5ic(シリコンカー)くイド)、Zn5e
(亜鉛セレン)、Zn5(硫化亜鉛)等かある。GaN
、SiOについては商品化の一歩手前まで開発が進んで
きているが、Zn5eについては材料的には優れた点を
多く有しているKもかかわらず上記2つの材料に較べて
開発は遅れている。その理白としては、 中高品質の単結晶が得られない。
Materials used for blue LEDs include GaN (gallium nitride), 5ic (silicon carbide), and Zn5e.
(zinc selenium), Zn5 (zinc sulfide), etc. GaN
The development of SiO has progressed to the point of commercialization, but the development of Zn5e has been delayed compared to the above two materials, although it has many excellent features as a material. . The reason is that medium to high quality single crystals cannot be obtained.

(1)n型の一方向の導電型しか得られないのでP−n
接合が形成できなく、発光効率が形成できない。
(1) Since only n-type conductivity type can be obtained in one direction, P-n
A junction cannot be formed and luminous efficiency cannot be achieved.

■従来の液相、気相成長法では、不純物制御が困囃であ
る。
■It is difficult to control impurities using conventional liquid phase and vapor phase growth methods.

という3点が挙げられる。There are three points to mention.

最近従来の結晶成長法に比べて同程度あるいはそれ以上
の高品質の単結晶薄膜を得る技術として分子線エピタキ
シャル成長法(以下MBEと称す)が注目をあびている
。つまりMBEを用いて成長させると高品質でかつ所望
不純物濃度を有し走単結晶薄膜を得ることができる。従
ってZn8e単結晶をMBEで成長させることによシ上
記(1)(i)の問題は解決される。
Recently, molecular beam epitaxial growth (hereinafter referred to as MBE) has been attracting attention as a technique for obtaining single crystal thin films of a quality comparable to or higher than that of conventional crystal growth methods. In other words, when grown using MBE, it is possible to obtain a single crystalline thin film of high quality and having a desired impurity concentration. Therefore, the above problem (1)(i) can be solved by growing the Zn8e single crystal by MBE.

また、I−l化合物の中でP型が得られる材料としては
ZnTe(亜鉛テルル)があるがこれはバンドギャップ
が2.26eV とZn5eに比して小さく緑色あるい
はそれ以上の長い波長を有した発光しか得られない。し
かし、斯るP型ZnTeとn型Zn8eとを結合させた
へテロ型Pn接合においてn型Zn5e側で電子と正孔
との再結合を行えば高φパ 効率で青色光を得ること可能である。従って上記ハ (′I)の問題も解決される。
Among I-l compounds, ZnTe (zinc tellurium) is a material that can obtain P-type, but this has a band gap of 2.26 eV, which is smaller than Zn5e, and has a long wavelength of green color or longer. All you can get is luminescence. However, if electrons and holes are recombined on the n-type Zn5e side in a hetero-type Pn junction in which P-type ZnTe and n-type Zn8e are combined, it is possible to obtain blue light with high φ efficiency. be. Therefore, the above problem (c)('I) is also solved.

第1図はこのような知見に基づいてなされた従来のP型
ZnTe−n型Zn5eヘテロ接合型の発光素子を示し
、(11はP型GaAs(ガリウム砒素)基板、(2)
は該基板上に積層されたP型ZnTe層、(3)は該Z
nTe層上に積層されたn型Zn 8e層であシ、該Z
n8elとZnTe層(2)との境界にはPn接合(4
)が存在する。
FIG. 1 shows a conventional P-type ZnTe-n-Zn5e heterojunction light-emitting device based on such knowledge, (11 is a P-type GaAs (gallium arsenide) substrate, (2)
(3) is the P-type ZnTe layer laminated on the substrate, and (3) is the ZnTe layer laminated on the substrate.
The n-type Zn 8e layer is laminated on the nTe layer, and the Z
There is a Pn junction (4) at the boundary between n8el and ZnTe layer (2).
) exists.

このような構成において上記ZnTe層(2)及びZn
5e  層(3)をMBEで形成することにより空孔子
等の結晶欠7Qi4が少ない高品質の単結晶薄膜が得ら
れ、かつ上記ZnTe層(2)のキャリア濃度Npと2
nSe層(3)のキャリア濃度NnとをNp>> N 
nとなるように各不純物濃度を制御することによ5Zn
8e層(3)側で再結合発光が得られる。
In such a structure, the ZnTe layer (2) and Zn
By forming the 5e layer (3) by MBE, a high quality single crystal thin film with few crystal defects such as vacancies 7Qi4 can be obtained, and the carrier concentration Np and 2 of the ZnTe layer (2) can be
The carrier concentration Nn of the nSe layer (3) is Np >> N
By controlling the concentration of each impurity so that 5Zn
Recombination light emission is obtained on the 8e layer (3) side.

またn型Zn8e層(3)において青色発光を生じさせ
んとする場合、成長温度(MBEでは基板温度)を約4
00°C以下としてキャリア濃度が5X1[]、7以下
となるように上記Zn5e層(3)をMBEで成長させ
れば艮いことが確認されている。尚、成長温度が400
°C以上のときはキャリア濃度を制御したとしても緑色
等の長波長発光が生じるという結果も得られている。
In addition, when trying to generate blue light emission in the n-type Zn8e layer (3), the growth temperature (substrate temperature in MBE) is set to about 4
It has been confirmed that the above-mentioned Zn5e layer (3) can be grown by MBE at a temperature of 00° C. or lower and a carrier concentration of 5×1[], 7 or lower. In addition, the growth temperature is 400
It has also been found that when the temperature is above .degree. C., even if the carrier concentration is controlled, long-wavelength light such as green light is emitted.

従ってn型Zn5e層(3)を基板温度が400°C以
下でそのキャリア濃度が5X10/d 以上となるよう
にMBEで成長させると共にP型ZnTe層(2)のキ
ャリア濃度を2X10/d程度以上とすることによりシ
上記Zn5e層(3)において青色発光が得られる。
Therefore, the n-type Zn5e layer (3) is grown by MBE at a substrate temperature of 400°C or less so that its carrier concentration is 5X10/d or more, and the carrier concentration of the P-type ZnTe layer (2) is about 2X10/d or more. By doing so, blue light emission can be obtained in the above Zn5e layer (3).

ところが、キャリア濃度が5x10/dと低いZn8e
層(3)ではその比抵抗が約5Ω−傷と非常に高く、か
つオーミック特性が非常に悪いため、順方向立上シミ圧
が高く高電流が得にくく、Pn接合であるにもかかわら
ず効率が低い。
However, Zn8e has a low carrier concentration of 5x10/d.
Layer (3) has a very high specific resistance of about 5Ω-scratch, and has very poor ohmic characteristics, so the forward rising stain voltage is high and it is difficult to obtain a high current, and the efficiency is low even though it is a Pn junction. is low.

本発明は斯る点に鑑みてなされたもので以下、一実施例
につき本発明を説明する。
The present invention has been made in view of these points, and the present invention will be described below with reference to one embodiment.

第2図は本発明の一実施例青色発光素子を示し、01)
は−主面が(ロ)面でキャリア濃度が10/iのP型G
aAs基板、柩は該基板上に積層されたキャリア濃度が
約2x 10/ag’ tv P型ZnTe層、(I3
)は該ZnTe層上に積層されたキャリア濃度が約5X
10/cIAのn型の第1Znse層、(14)は該第
1 Zn5e層上に積層されたキャリア濃度が約5X1
0/dのn型の第2ZnSe層、05)はP型ZnTe
1Q3と第1 Zn5e層a3との境界に存在するPn
接合である。
FIG. 2 shows a blue light emitting device according to an embodiment of the present invention, 01)
is a P-type G whose principal plane is the (b) plane and whose carrier concentration is 10/i.
The aAs substrate, Coffin, is a P-type ZnTe layer (I3
) has a carrier concentration of about 5X layered on the ZnTe layer.
The n-type first Znse layer (14) of 10/cIA is laminated on the first Zn5e layer and has a carrier concentration of about 5X1.
0/d n-type second ZnSe layer, 05) is P-type ZnTe
Pn existing at the boundary between 1Q3 and the first Zn5e layer a3
It is a joining.

上記各成長層(121〜(141はMBEで形成できる
The above growth layers (121 to (141) can be formed by MBE.

第6図は分子線エピタキシャル装置を原理的に示しだも
のである。バックグランド真空度5×10Torrに排
気した真空容器内に、基板部(21)と第1〜第5セル
■〜■とが対向配置され、これらの間には主シャッタ勾
と個別シャッタ(28&)〜(28e)とが介在されて
いる。
FIG. 6 shows the principle of a molecular beam epitaxial device. In a vacuum container evacuated to a background vacuum level of 5 x 10 Torr, the substrate section (21) and the first to fifth cells ■ to ■ are arranged facing each other. -(28e) are interposed.

基板部(21)はヒータ機構を備えた基板ホルダ(支)
とその上にIn(イ〃ウム)メタル缶によυ貼着された
GaA+s基板(111とからなる。第1〜第5セル■
〜(支)には夫々るつは(31&) 〜(31e)内に
8b、Te、Zn、Be、Gaを個々に収納してお9、
その周囲にるつは加熱用ヒータ国を有し、又各るつは温
度検出用熱電対(財)を備えている。
The board part (21) is a board holder (support) equipped with a heater mechanism.
and a GaA+s substrate (111) on which an In (I) metal can is attached. 1st to 5th cells ■
〜(branch) contains 8b, Te, Zn, Be, Ga individually in (31 &) 〜(31e) 9,
Around it, each bolt has a heater for heating, and each bolt is equipped with a thermocouple for detecting temperature.

上記MBE装置自体は周知であシ、基板αυや各セルの
温度を制御すると共に各シャッタ(28a)〜(286
)を適宜開閉することによシ第2図に示す如く、GaA
s基板01)上にP型ZnTe層し、第1n型ZnSe
MQ3)及び第2ZnSe層04)が成長する。
The MBE device itself is well known and controls the temperature of the substrate αυ and each cell, as well as controlling the temperature of each shutter (28a) to (286).
) by appropriately opening and closing the GaA
A p-type ZnTe layer is formed on the s substrate 01), and a first n-type ZnSe
MQ3) and a second ZnSe layer 04) are grown.

次に上記各成長層の成長条件を下記表に示す。Next, the growth conditions for each of the above growth layers are shown in the table below.

成長層の成長条件 尚、上記基板01)は36ぽC−370°Cに保持する
Growth conditions for the growth layer: The substrate 01) is maintained at a temperature of 36°C to 370°C.

また上記表においてsb(アンチモン)及ヒGa(ガリ
ウム)は夫々ZnTe層及びZn5e層の不純物である
Furthermore, in the above table, sb (antimony) and Ga (gallium) are impurities in the ZnTe layer and Zn5e layer, respectively.

本実施例青色発光ダイオードでは、Pnn接合部9順方
向バイアスを印加するとP型ZnTe層O7のキャリア
濃度Npと第1Znse層03)のキャリア濃度Nnと
がNp>>Nn であるノテ第1Znse層09側への
正孔の注入が容易に起る。また第1ZnSe層αQは既
述したように青色発光センターしか存在しない。従って
純粋な青色光を得ることができる。
In the blue light emitting diode of this embodiment, when a forward bias is applied to the Pnn junction 9, the carrier concentration Np of the P-type ZnTe layer 07 and the carrier concentration Nn of the first Znse layer 03) are Np>>Nn. Injection of holes to the side easily occurs. Further, as described above, the first ZnSe layer αQ only has blue light emitting centers. Therefore, pure blue light can be obtained.

また、第2ZnSe層04)のキャリア濃度は非常に大
きいためオーミック特性が艮好であシ、従って斯る層に
金属電極を形成すれば直接第1 Zn5e層α段に形成
する場合に比して立上シミ圧を小さくすることができる
In addition, since the carrier concentration of the second ZnSe layer 04) is very high, its ohmic characteristics are excellent. Therefore, if a metal electrode is formed in such a layer, it will be more difficult to form a metal electrode than if it is directly formed in the first Zn5e layer α. The rising stain pressure can be reduced.

尚、このときオーミック特性が艮好な電極が得られたと
しても第1Znse層03)は高抵抗であるので斯る層
厚が大であると内部抵抗が大となり内部破損が生じる危
惧があるので第1ZnSem(13)は極力薄い方が艮
い。ところが第1ZnSe層(13)が正孔の拡散長以
下であると斯る正孔が第2ZnSe層圓にまで拡がシ斯
る層中で青色発光以外の発光を生じるという問題が生じ
る。
In addition, even if an electrode with good ohmic characteristics is obtained at this time, the first Znse layer 03) has a high resistance, so if the layer thickness is large, the internal resistance will become large and there is a risk of internal damage. The first ZnSem (13) is best if it is as thin as possible. However, if the first ZnSe layer (13) has a hole diffusion length or less, a problem arises in that the holes spread to the second ZnSe layer, causing light emission other than blue light emission in the layer.

本発明者の実験によれば上記正孔の拡散距離は約1μm
であることが判明した。そこで本実施例では第1 Zn
 S eN03)を1μmとした。尚このような層厚制
御はMBEでは簡単に行える。
According to the inventor's experiments, the diffusion distance of the holes is approximately 1 μm.
It turned out to be. Therefore, in this example, the first Zn
SeN03) was set to 1 μm. Note that such layer thickness control can be easily performed by MBE.

上記実施例素子では立上υ電圧が2■と低く、かつ高輝
度の青色発光が得られた。また10mA以上の電流を保
持しても高抵抗である第1ZnSe層(13)が1μm
と薄いため内部破損及び劣化は生じなかった。
In the above example element, the rise voltage υ was as low as 2■, and high-intensity blue light emission was obtained. In addition, the first ZnSe layer (13), which has a high resistance even when holding a current of 10 mA or more, has a thickness of 1 μm.
Because it was so thin, no internal damage or deterioration occurred.

以上の説明よシ明らかな如く本発明の青色発光、・−子
ではZn8eを材料としているにもかかわらず低電流で
高輝度の青色光を得ることができる。
As is clear from the above explanation, the blue light emitting device of the present invention can produce high brightness blue light with a low current even though it is made of Zn8e.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のZnTe−Zn8eヘテロ接合形発光素
千を示す断面図、第2図は本発明の実施例を示す断面図
、第6図は分子線エピタキシャル成長装置を示す原理図
である。 (1’lr−・・−P型ZnTe層、03)・・・・・
・第1ZnSe層、圓・・・・・・第2ZnSe層。
FIG. 1 is a sectional view showing a conventional ZnTe-Zn8e heterojunction type light emitting device, FIG. 2 is a sectional view showing an embodiment of the present invention, and FIG. 6 is a principle diagram showing a molecular beam epitaxial growth apparatus. (1'lr-...-P-type ZnTe layer, 03)...
- First ZnSe layer, circle...second ZnSe layer.

Claims (1)

【特許請求の範囲】[Claims] (1) P mZnTe層、該ZnTe層上に積層され
たn型の第1 Zn5e層、該第1 Zn5e層上に積
層されキャリア濃度が上記第1Znse層よシ大である
n型の第2 Zn5e層からなる青色発光素子。 (2、特許請求の範囲第1項において、上記第1Zns
e層のキャリア濃度は5x10/d以下であシ、上記第
2ZnBe層のキャリア濃度は5x10/d以上である
ことを特徴とする青色発光素子。
(1) P mZnTe layer, an n-type first Zn5e layer stacked on the ZnTe layer, and an n-type second Zn5e layer stacked on the first Zn5e layer and having a higher carrier concentration than the first Znse layer. A blue light emitting device consisting of layers. (2. In claim 1, the first Zns
A blue light-emitting device characterized in that the e-layer has a carrier concentration of 5x10/d or less, and the second ZnBe layer has a carrier concentration of 5x10/d or more.
JP57121555A 1982-07-12 1982-07-12 Blue light-emitting element Granted JPS5911688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57121555A JPS5911688A (en) 1982-07-12 1982-07-12 Blue light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57121555A JPS5911688A (en) 1982-07-12 1982-07-12 Blue light-emitting element

Publications (2)

Publication Number Publication Date
JPS5911688A true JPS5911688A (en) 1984-01-21
JPS6351553B2 JPS6351553B2 (en) 1988-10-14

Family

ID=14814136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57121555A Granted JPS5911688A (en) 1982-07-12 1982-07-12 Blue light-emitting element

Country Status (1)

Country Link
JP (1) JPS5911688A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232379A (en) * 1987-03-20 1988-09-28 Toshiba Corp Semiconductor light emitting element
US5113233A (en) * 1988-09-02 1992-05-12 Sharp Kabushiki Kaisha Compound semiconductor luminescent device
US5506423A (en) * 1993-07-22 1996-04-09 Kabushiki Kaisha Toshiba Semiconductor light-emitting device with ZnTe current spreading layer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48104484A (en) * 1972-02-17 1973-12-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48104484A (en) * 1972-02-17 1973-12-27

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232379A (en) * 1987-03-20 1988-09-28 Toshiba Corp Semiconductor light emitting element
US5113233A (en) * 1988-09-02 1992-05-12 Sharp Kabushiki Kaisha Compound semiconductor luminescent device
US5616937A (en) * 1988-09-02 1997-04-01 Sharp Kabushiki Kaisha Compound semiconductor luminescent device
US5506423A (en) * 1993-07-22 1996-04-09 Kabushiki Kaisha Toshiba Semiconductor light-emitting device with ZnTe current spreading layer

Also Published As

Publication number Publication date
JPS6351553B2 (en) 1988-10-14

Similar Documents

Publication Publication Date Title
US5925897A (en) Optoelectronic semiconductor diodes and devices comprising same
JP2650744B2 (en) Light emitting diode
JP2650730B2 (en) Pn junction type light emitting diode using silicon carbide semiconductor
US5068204A (en) Method of manufacturing a light emitting element
JPH0821730B2 (en) Blue light emitting diode formed in silicon carbide
JPH0468579A (en) Compound semiconductor light emitting element
JPH0268968A (en) Compound semiconductor light-emitting device
US4606780A (en) Method for the manufacture of A3 B5 light-emitting diodes
JPS5911688A (en) Blue light-emitting element
JPH0658977B2 (en) Semiconductor element
JPH05243613A (en) Light-emitting device and its manufacture
US5032539A (en) Method of manufacturing green light emitting diode
KR100693407B1 (en) Method to Make Light Emitting Devices using p-ZnO
JP2001015803A (en) AlGaInP LIGHT EMITTING DIODE
Yu et al. High‐brightness II–VI light‐emitting diodes grown by molecular‐beam epitaxy on ZnSe substrates
JP2545212B2 (en) Blue light emitting element
JPH0728052B2 (en) Semiconductor light emitting device and manufacturing method thereof
US5382813A (en) Light emission diode comprising a pn junction of p-type and n-type A1-containing ZnS compound semiconductor layers
JPS63213378A (en) Manufacture of semiconductor light emitting element
JPS6351552B2 (en)
JPH05121327A (en) Manufacture of gallium nitride thin film
JPS5880883A (en) Blue color light emitting element
KR100719915B1 (en) light emitting devices and manufacturing method thereof using ZnO
JPS62211971A (en) Semiconductor light emitting device
JP3649170B2 (en) Laminated structure and light emitting element, lamp, and light source using the same