JPS59113213A - Double-pressure type superhigh temperature and high-pressure steam turbine plant - Google Patents

Double-pressure type superhigh temperature and high-pressure steam turbine plant

Info

Publication number
JPS59113213A
JPS59113213A JP57221868A JP22186882A JPS59113213A JP S59113213 A JPS59113213 A JP S59113213A JP 57221868 A JP57221868 A JP 57221868A JP 22186882 A JP22186882 A JP 22186882A JP S59113213 A JPS59113213 A JP S59113213A
Authority
JP
Japan
Prior art keywords
pressure steam
boiler
turbine
low pressure
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57221868A
Other languages
Japanese (ja)
Inventor
Narihisa Sugita
杉田 成久
Shozo Nakamura
中村 昭三
Nobuhiro Seiki
信宏 清木
Taiji Inui
泰二 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57221868A priority Critical patent/JPS59113213A/en
Publication of JPS59113213A publication Critical patent/JPS59113213A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/18Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbine being of multiple-inlet-pressure type

Abstract

PURPOSE:To improve a thermal recovery efficiency of a boiler and to improve a total thermal efficiency of a turbine plant by a method wherein a low pressure generating device is mounted in a boiler and low pressure steam generated by the steam generating device is supplied to a turbine. CONSTITUTION:A super high temperature and high pressure steam turbine plant is comprised of a boiler 1, turbines 2-5, condenser 6, water feed pump 11, feeding water heaters 8 and 13 etc. A low pressure steam generating device 21 is placed between the coal economizer 14 and air heater 17 and water feeding pipe 22 is mounted with being branched from a main water feeding system subsequent to the deaerator 9. There is mounted a low pressure steam piping 23 for guiding steam generated by the low pressure steam generating device 21 to a steam turbine 4. The low pressure steam generating system is added to an ultra-high temperature and high pressure steam turbine plant, thereby a thermal recovery rate of the boiler 1 is improved and an output of the turbine is increased. In this way, a total thermal efficiency of a steam turbine plant is improved.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超高温高圧蒸気タービンプラントに係)、特に
超高温高圧ボイラの熱効率向上に好適な蒸気発生システ
ム及び蒸気利用システムに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an ultra-high-temperature, high-pressure steam turbine plant, and particularly to a steam generation system and a steam utilization system suitable for improving the thermal efficiency of an ultra-high-temperature, high-pressure boiler.

〔従来技術〕[Prior art]

石油系燃料の供給不安定化、価格の上昇に対し新設の火
力発電所は石炭火力が主流となりつつある。しかし、石
炭火力は石油火力よりも石炭前処理系や排ガス処理系な
どの補機動力が大きく、送電端効率が低下する欠点があ
る。したがって蒸気タービンプラントの蒸気条件を向上
させる事によって効率向上をはかる開発が行なわれてい
る。
In response to the unstable supply and rising prices of petroleum-based fuels, coal-fired power is becoming the mainstream for newly built thermal power plants. However, coal-fired power requires more power from auxiliary equipment such as coal pre-treatment systems and exhaust gas treatment systems than oil-fired power, and has the disadvantage of lower transmission efficiency. Therefore, efforts are being made to improve the efficiency of steam turbine plants by improving the steam conditions.

超高温高圧蒸気タービ/プラントの代表的なプラント構
成例を第1図によって説明する。
A typical plant configuration example of an ultra-high-temperature, high-pressure steam turbine/plant will be explained with reference to FIG.

通常の超高温高圧蒸気タービンプラントは主としてボイ
ラ1.超高圧タービン2.高圧タービン3、中圧タービ
ン4.低圧タービア5.復水器6゜復水ポンプ7、低圧
給水加熱器系統8.脱気器9゜昇圧ポンプ10.給水ポ
ンプ11.給水ポンプ駆動用タービン12.高圧給水加
熱器系統13などよ)構成されている。すなわち、ボイ
ラ1で発生した超高温高圧蒸気は超高圧タービン2に入
シ動力を発生させたのち再びボイラ1にて再熱されて高
圧タービン3へ入シ動力を発生させる。この高圧タービ
ン排気蒸気は再度ボイラ1にて再熱されて中圧タービン
4.低圧タービン5に入シ動力を発生させた後、復水器
6にて凝縮する。この凝縮液は復水ポンプ7にて低圧給
水加熱器系統8.脱気器9へ送られる。この脱気器9に
て脱気された給水は昇圧ボ/プ10.給水ポンプ11に
て高圧給水加熱器13へ送られ昇温された後、ボイラ1
へ戻る。
A typical ultra-high-temperature, high-pressure steam turbine plant mainly consists of boiler 1. Ultra-high pressure turbine 2. High pressure turbine 3, intermediate pressure turbine 4. Low pressure turbia5. Condenser 6゜Condensate pump 7, Low pressure feed water heater system 8. Deaerator 9゜boosting pump 10. Water pump 11. Turbine for driving water supply pump 12. (such as a high-pressure water heater system 13). That is, the ultra-high temperature and high-pressure steam generated in the boiler 1 causes the ultra-high pressure turbine 2 to generate input power, and is then reheated in the boiler 1 again to generate input power to the high-pressure turbine 3. This high-pressure turbine exhaust steam is reheated again in the boiler 1 and is then reheated in the intermediate-pressure turbine 4. After generating power in the low pressure turbine 5, it is condensed in the condenser 6. This condensate is passed through a condensate pump 7 to a low pressure feed water heater system 8. It is sent to the deaerator 9. The feed water deaerated by this deaerator 9 is fed to a pressurizing valve 10. After being sent to the high-pressure feed water heater 13 by the feed water pump 11 and heated, the boiler 1
Return to

ここで、ボイラlにおいて給水は節炭器14゜蒸発器1
5.過熱器16を通って超高温高圧の蒸気となる。また
一方、蒸気を加熱したボイラ燃焼ガスは節炭器14を出
た後、空気加熱器17に入り空気を加熱する。ここで、
給水ポンプ11の駆動には中圧タービン4からの抽気蒸
気にて作動する給水ポンプ駆動用タービン12が用いら
れている。
Here, in the boiler L, the water is supplied to the energy saver 14 and the evaporator 1.
5. It passes through the superheater 16 and becomes extremely high temperature and high pressure steam. On the other hand, after the boiler combustion gas that has heated the steam exits the economizer 14, it enters the air heater 17 and heats the air. here,
To drive the water supply pump 11, a water supply pump driving turbine 12 operated by extracted steam from the intermediate pressure turbine 4 is used.

このように構成された超高温高圧蒸気タービンプラント
においては、高圧給水加熱器系統13を出た給水の温度
が従来の火力プラントにおける給水温度よシもはるかに
高くなっているため、必然的にボイラl内の節炭器14
を出た燃焼ガスの温度も従来のボイラに比べてはるかに
高くなってくる。このため、このボイラ排ガスからの熱
回収をはかりガス温度を低下させなけれはボイラの熱効
率が低下してしまい、プラント全体の熱効率低下の主要
な原因となる。
In an ultra-high-temperature, high-pressure steam turbine plant configured in this way, the temperature of the feed water exiting the high-pressure feed water heater system 13 is much higher than that in a conventional thermal power plant, so it is inevitable that the boiler Economizer 14 in l
The temperature of the combustion gas exiting the boiler is also much higher than in conventional boilers. Therefore, unless heat is recovered from the boiler exhaust gas to lower the gas temperature, the thermal efficiency of the boiler will decrease, which is the main cause of the decrease in the thermal efficiency of the entire plant.

〔発明の目的〕[Purpose of the invention]

本発明の目的は超高温高圧蒸気タービンプラントにおい
て、前記したボイラの熱効率の低下を防止するために、
ボイラでの熱回収率を向上させるだめの装置および回収
した熱を利用するだめの系統を設置することにより効率
の商い超高温高圧蒸気タービンプラントを提供すること
にある。
The purpose of the present invention is to prevent the above-mentioned reduction in the thermal efficiency of the boiler in an ultra-high-temperature, high-pressure steam turbine plant.
The object of the present invention is to provide an ultra-high-temperature, high-pressure steam turbine plant with high efficiency by installing a device for improving the heat recovery rate in a boiler and a system for utilizing the recovered heat.

〔発明の概要〕[Summary of the invention]

本発明の特徴とするところは、ボイラでの熱回収率を向
上させるためにボイラ内に低圧の蒸気発生器を設置し、
この蒸気発生器にて発生した蒸気をタービンの駆動に用
いることにある。
The present invention is characterized by installing a low-pressure steam generator in the boiler to improve the heat recovery rate in the boiler,
The purpose is to use the steam generated by this steam generator to drive a turbine.

〔開明の実施例〕[Example of enlightenment]

以下、本発明の具体的実施例を図面に基づいて説明する
Hereinafter, specific embodiments of the present invention will be described based on the drawings.

本発明の一実施例を第2図に示す。この図は第1図に示
した超高温高圧タービンプラントにおいて、ボイラでの
熱回収率向上をはかるための低圧蒸気発生器で発生した
蒸気をタービンに導く系統を設置したものである。すな
わち、S炭器14を出た後のボイラ燃焼ガスから熱回収
をはかるための低圧蒸気発生器21を節炭器14と空気
加熱器17との間に設置し、この低圧蒸気発生器21へ
給水を導くための給水配管22を脱気器9以降の主給水
系統より分岐して設置する。また、低圧蒸気発生器21
で発生した蒸気をタービン4に導くだめの低圧蒸気配管
23を設置する。このように構成されたシステムは次の
ように運用される。すなわち、脱気器9にて脱気された
給水の一部が給水配管22を通って低圧蒸気発生器21
へ流入し。
An embodiment of the present invention is shown in FIG. This diagram shows the ultra-high-temperature, high-pressure turbine plant shown in Figure 1, in which a system is installed to guide the steam generated in the low-pressure steam generator to the turbine in order to improve the heat recovery rate in the boiler. That is, a low-pressure steam generator 21 for recovering heat from the boiler combustion gas after exiting the S coalizer 14 is installed between the economizer 14 and the air heater 17, and the low-pressure steam generator 21 is A water supply pipe 22 for introducing water is installed so as to be branched from the main water supply system after the deaerator 9. In addition, the low pressure steam generator 21
A low-pressure steam pipe 23 is installed to guide the steam generated in the turbine 4 to the turbine 4. The system configured as described above is operated as follows. That is, a portion of the feed water deaerated by the deaerator 9 passes through the water feed pipe 22 and is delivered to the low pressure steam generator 21.
flowing into.

節炭器14の後流のボイラ燃焼ガスより熱を回収して蒸
気となる。この低圧蒸気発生器21にて発生した蒸気は
低圧蒸気配管23f:通ってタービン4へ流入し動力を
発生する。
Heat is recovered from the boiler combustion gas downstream of the economizer 14 and turned into steam. The steam generated in the low pressure steam generator 21 flows into the turbine 4 through the low pressure steam pipe 23f and generates power.

このような低圧蒸気発生システムを超高温高圧蒸気ター
ビンプラントに付加することによシ、ボイラlでに熱回
収率が向上し、ボイラの熱効率が向上する。また、ター
ビンへの供給蒸気が増加するためタービンの出力が増加
し蒸気タービンサイクルの熱効率が向上する。
By adding such a low-pressure steam generation system to an ultra-high-temperature, high-pressure steam turbine plant, the heat recovery rate in the boiler I is improved, and the thermal efficiency of the boiler is improved. Furthermore, since the amount of steam supplied to the turbine increases, the output of the turbine increases and the thermal efficiency of the steam turbine cycle improves.

また、他の実施例では、給水系統と低圧ボイラ間に制御
弁を設け、低圧ボイラへの給水量を制御することである
。また、低圧ボイラとタービン間に制御弁を設ける事に
よシ低圧ボイラへの給水量を制御することもできる。こ
れらの実施例によれば、プラント負荷の変化に対応し良
好な運転状態を保持可能である。
In another embodiment, a control valve is provided between the water supply system and the low pressure boiler to control the amount of water supplied to the low pressure boiler. Furthermore, by providing a control valve between the low pressure boiler and the turbine, the amount of water supplied to the low pressure boiler can be controlled. According to these embodiments, it is possible to maintain good operating conditions in response to changes in plant load.

さらに、上記制御弁の制御信号をボイラ節炭器出(口の
燃焼ガス温度とすることである。このことによって、ボ
イラ排ガス温度の制御が可能で、与えられた条件に対し
ボイラ熱効率を常に最大に保つことが可能となる。
Furthermore, the control signal for the control valve described above is set to the combustion gas temperature at the outlet of the boiler economizer.This makes it possible to control the boiler exhaust gas temperature and always maximize the boiler thermal efficiency for the given conditions. It is possible to maintain the

〔発明の効果〕〔Effect of the invention〕

本発明によれば、超高温高圧蒸気タービンプラントのボ
イラの熱回収率が向上するためボイラ自体の熱効率が向
上するためボイラ自体の熱効率が向上するとともに、タ
ービンへの供給蒸気量が増加し、タービンの出力が増加
するため、蒸気タービンサイクルの熱効率も向上するた
め、@高温高圧蒸気タービンプラントの総合熱効率が向
上する。
According to the present invention, the heat recovery rate of the boiler of an ultra-high-temperature, high-pressure steam turbine plant is improved, so the thermal efficiency of the boiler itself is improved, and the amount of steam supplied to the turbine is increased. Since the output of the steam turbine increases, the thermal efficiency of the steam turbine cycle also improves, so the overall thermal efficiency of the high temperature and high pressure steam turbine plant improves.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な超高温高圧蒸気タービンプラントの基
本構成図、第2図は本発明の一実施例の超高温高圧蒸気
タービンプラントの構成図である。 l・・・ボイラ、2・・・超高圧タービン、3・・・高
圧タービン、4・・・中圧タービン、5・・・低圧ター
ビン、6・・・復水器、7・・・復水ポンプ、8・・・
低圧給水加熱器系統、9・・・脱気器、10・・・昇圧
ポンプ、11・・・給水ポンプ、12・・・給水ポンプ
駆動用タービン。 13・・・高圧給水加熱器系統、14・・・節炭器、1
5・・・蒸発器、16・・・過熱器、17・・・空気加
熱器。 21・・・低圧蒸気発生器、22・・・給水配管、23
・・・低圧蒸気配管。 代理人 弁理士 高橋明夫
FIG. 1 is a basic configuration diagram of a general ultra high temperature high pressure steam turbine plant, and FIG. 2 is a configuration diagram of an ultra high temperature high pressure steam turbine plant according to an embodiment of the present invention. l...Boiler, 2...Ultra high pressure turbine, 3...High pressure turbine, 4...Intermediate pressure turbine, 5...Low pressure turbine, 6...Condenser, 7...Condensate Pump, 8...
Low-pressure feed water heater system, 9... Deaerator, 10... Boost pump, 11... Water feed pump, 12... Water pump driving turbine. 13... High pressure water heater system, 14... Energy saver, 1
5... Evaporator, 16... Superheater, 17... Air heater. 21...Low pressure steam generator, 22...Water supply piping, 23
...Low pressure steam piping. Agent Patent Attorney Akio Takahashi

Claims (1)

【特許請求の範囲】[Claims] 1、 ポイッ、タービン、復水器、給水ポンプおよび給
水加熱器などからなる超高温高圧蒸気タービンプラント
において、ボイラ内に超高温高圧蒸気系統とは別に低圧
の蒸気を発生させる低圧蒸気発生器を設置し、この低圧
蒸気発生器にて発生した低圧蒸気をタービ/に供給する
ことを特徴とする複圧式超高温高圧蒸気タービンプラン
ト。
1. In an ultra-high-temperature, high-pressure steam turbine plant consisting of a turbine, condenser, feedwater pump, feedwater heater, etc., a low-pressure steam generator that generates low-pressure steam is installed in the boiler, separate from the ultra-high-temperature and high-pressure steam system. A double-pressure ultra-high-temperature, high-pressure steam turbine plant characterized in that the low-pressure steam generated by the low-pressure steam generator is supplied to a turbine.
JP57221868A 1982-12-20 1982-12-20 Double-pressure type superhigh temperature and high-pressure steam turbine plant Pending JPS59113213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57221868A JPS59113213A (en) 1982-12-20 1982-12-20 Double-pressure type superhigh temperature and high-pressure steam turbine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57221868A JPS59113213A (en) 1982-12-20 1982-12-20 Double-pressure type superhigh temperature and high-pressure steam turbine plant

Publications (1)

Publication Number Publication Date
JPS59113213A true JPS59113213A (en) 1984-06-29

Family

ID=16773435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57221868A Pending JPS59113213A (en) 1982-12-20 1982-12-20 Double-pressure type superhigh temperature and high-pressure steam turbine plant

Country Status (1)

Country Link
JP (1) JPS59113213A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63253105A (en) * 1987-04-08 1988-10-20 Hitachi Ltd Compound generating plant
JPH0763303A (en) * 1993-08-27 1995-03-07 Yoshiharu Tachibana System for utilizing combustion exhaust gas of boiler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63253105A (en) * 1987-04-08 1988-10-20 Hitachi Ltd Compound generating plant
JPH0763303A (en) * 1993-08-27 1995-03-07 Yoshiharu Tachibana System for utilizing combustion exhaust gas of boiler

Similar Documents

Publication Publication Date Title
US8186142B2 (en) Systems and method for controlling stack temperature
JPS6119806B2 (en)
CN102840575A (en) Composite cycle power generation system improved in efficiency
JP3925985B2 (en) Combined cycle power plant
JPH0392508A (en) Method and equipment for forming steam and power for starting and auxiliarily operat- ing steam power station
JP2001082109A (en) Ultra-high temperature power generation system
JP2000110511A (en) Cogeneration method and its system
JPH0440524B2 (en)
JPS59113213A (en) Double-pressure type superhigh temperature and high-pressure steam turbine plant
CN108487955A (en) System and method is utilized based on the coal gas synergy that steam parameter is promoted
JP2007183068A (en) Once-through exhaust heat recovery boiler
US4236968A (en) Device for removing heat of decomposition in a steam power plant heated by nuclear energy
US3826093A (en) Reheat vapor generator
JPS6365807B2 (en)
JP3133183B2 (en) Combined cycle power plant
CN206681807U (en) A kind of TRT transformed based on medium temperature and medium pressure waste heat, complementary energy electricity generation system
CN108487954B (en) Coal gas synergistic power generation system based on industrial dragging
JP3068972B2 (en) Combined cycle power plant
CN108487953B (en) Coal gas synergistic utilization system
JPH11166403A (en) Turbine bypass steam supply device
CN117490044A (en) Boiler feed water heating system and method for deep peak shaving unit
JPH08312905A (en) Combined cycle power generating facility
JPS5954709A (en) Steam turbine plant
SU1557340A1 (en) Peak-load steam-and-gas plant
JPH0988516A (en) Exhaust heat recovery boiler