JPS589801B2 - Method for producing low oxygen, low carbon iron powder - Google Patents

Method for producing low oxygen, low carbon iron powder

Info

Publication number
JPS589801B2
JPS589801B2 JP51016525A JP1652576A JPS589801B2 JP S589801 B2 JPS589801 B2 JP S589801B2 JP 51016525 A JP51016525 A JP 51016525A JP 1652576 A JP1652576 A JP 1652576A JP S589801 B2 JPS589801 B2 JP S589801B2
Authority
JP
Japan
Prior art keywords
powder
reduction
carbon
iron
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51016525A
Other languages
Japanese (ja)
Other versions
JPS52100308A (en
Inventor
一哉 遠藤
重彰 高城
俊治 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP51016525A priority Critical patent/JPS589801B2/en
Publication of JPS52100308A publication Critical patent/JPS52100308A/en
Publication of JPS589801B2 publication Critical patent/JPS589801B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、とくに粉末冶金用の粉末原料に適する低炭素
、低酸素鉄系粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a low-carbon, low-oxygen iron-based powder that is particularly suitable as a powder raw material for powder metallurgy.

粉末冶金用の鉄系粉末の製造においては、非金属介在物
を含めて含有酸素量および炭素量を極力少なくすること
が非常に重要である。
In the production of iron-based powder for powder metallurgy, it is very important to minimize the amount of oxygen and carbon contained, including nonmetallic inclusions.

すなわち、鉄系粉末に酸化物を多く含むと、焼結部品を
製造する際にそれが原因で圧粉体および焼結体の密度が
向上しないばかりでなく、成形時に金型を傷めたり、部
品に切削を施す場合には被削性を低下させる等の種々の
問題を発生する。
In other words, if iron-based powder contains a large amount of oxides, it will not only prevent the density of green compacts and sintered compacts from improving when manufacturing sintered parts, but also damage the mold during molding and cause parts to deteriorate. When machining is performed, various problems such as a decrease in machinability occur.

また、焼結鍛造用鉄系粉末にあっては、高密度化および
高強度化した部品においても、この酸化物の存在のため
に疲労強度や衝撃靭性等の機械的特性が著しく低下する
In addition, in the case of iron-based powder for sintering and forging, even in high-density and high-strength parts, mechanical properties such as fatigue strength and impact toughness are significantly reduced due to the presence of this oxide.

一方、鉄系粉末に炭化物を多く含むと、含有酸素量が多
い場合と同様に部品を成形する際に圧粉体の密度が向上
しないばかりでなく、圧粉体の成形性が著しく低下し、
極端な場合にはこれら圧粉体の角が欠ける等の大きな問
題を発生する。
On the other hand, if the iron-based powder contains a large amount of carbide, not only will the density of the green compact not improve when molding parts, but also the formability of the green compact will decrease significantly, similar to when the amount of oxygen contained is large.
In extreme cases, serious problems such as chipping of the corners of these green compacts occur.

そのため、含有酸素量および炭素量の低い鉄系粉末の製
造方法の開発が要求されている。
Therefore, there is a need to develop a method for producing iron-based powders with low oxygen and carbon content.

一般に、従来から知られている粉末冶金用の鉄系粉末を
製造する方法としては、還元法、噴霧法、機械的粉砕法
および電解法などがある。
Generally, conventionally known methods for producing iron-based powders for powder metallurgy include reduction methods, atomization methods, mechanical pulverization methods, and electrolytic methods.

これらの製造方法においては、含有酸素量および炭素量
の少ない鉄系粉末とするために、いずれも仕上還元工程
を取り入れ、脱酸または脱炭もしくはこれらの両者の処
理を施さなければならない。
In these manufacturing methods, in order to obtain iron-based powders with low oxygen and carbon contents, a final reduction step must be incorporated and deoxidation or decarburization, or both of these treatments must be performed.

ところが合金成分を含まない純鉄粉の製造においては前
記仕上還元は比較的容易であるが、Cr,Mn,Si等
の合金成分を含む鉄系粉末においては、製造方法の違い
にもよるが、多少なりともこれら合金成分の酸化物が原
料粉に含有されるので仕上還元が非常に困難となる。
However, in the production of pure iron powder that does not contain alloy components, the above-mentioned final reduction is relatively easy, but in the case of iron-based powders that contain alloy components such as Cr, Mn, Si, etc., depending on the manufacturing method, Since some oxides of these alloy components are contained in the raw material powder, finishing reduction becomes extremely difficult.

そこで、従来技術における仕上還元工程においては、低
酸素粉末とするために、原料粉を露点(D.P.)が非
常に低い(−50℃以下)水素を含む還元性雰囲気か、
またはCO2ガス分圧が非常に低いCOガスを含む還元
性雰囲気中で750〜1400℃の温度範囲内で仕上還
元を行う必要があった。
Therefore, in the final reduction process in the conventional technology, in order to obtain a low-oxygen powder, the raw material powder is heated in a reducing atmosphere containing hydrogen with a very low dew point (D.P.) (-50°C or less).
Alternatively, it was necessary to perform the final reduction within a temperature range of 750 to 1400° C. in a reducing atmosphere containing CO gas with a very low partial pressure of CO2 gas.

しかし、このように露点またはCO2ガス分圧の低い還
元性雰囲気を工業的に得ることは困難でもあるし,また
、これら還元性雰囲気は水素ガスあるいはCOガスを含
むものであるから還元後のガスには必ず幾分かの水蒸気
またはCO2ガスを含むことになり、結局,露点または
CO2ガス分圧が上昇する還元性雰囲気となる。
However, it is difficult to industrially obtain a reducing atmosphere with such a low dew point or CO2 gas partial pressure, and since these reducing atmospheres contain hydrogen gas or CO gas, the gas after reduction is It will necessarily contain some water vapor or CO2 gas, resulting in a reducing atmosphere that increases the dew point or CO2 gas partial pressure.

従って、工業的には難還元性酸化物,とくにCr,Mn
,Si等からなる金属酸化物またはこれら金属の複合酸
化物を含む原料粉の脱酸には多量の水素ガス又はCOガ
スを含む露点またはCO2ガス分圧の低い還元ガスを用
いることが必要となる。
Therefore, industrially it is difficult to reduce oxides, especially Cr and Mn.
, Si, etc., or composite oxides of these metals, it is necessary to use a large amount of hydrogen gas or a reducing gas containing CO gas with a low dew point or CO2 gas partial pressure. .

また、仕上還元温度を高くすることにより露点を低くお
さえながら脱酸する方法も可能であるが,高温還元のた
め後工程の半焼結した脱酸ケーキの粉砕が困難となるの
で、このような方法も採用できない。
It is also possible to deoxidize while keeping the dew point low by increasing the final reduction temperature, but this method is difficult because the high temperature reduction makes it difficult to crush the semi-sintered deoxidized cake in the subsequent process. cannot be adopted either.

さらにこのような露点の低い還元性雰囲気下では、原料
粉の脱炭が困難であり,従来方法ではとくに難還元性酸
化物を含む原料粉から低酸素かつ低炭素の鉄系粉末を製
造することは非常に困難とされている。
Furthermore, in such a reducing atmosphere with a low dew point, it is difficult to decarburize the raw material powder, and with conventional methods, it is difficult to produce low-oxygen, low-carbon iron-based powder from raw material powder that contains particularly refractory oxides. is considered to be extremely difficult.

一方、前記した低酸素、低炭素の鉄系粉末を得る目的で
、原料粉にあらかじめ炭素を合金化させるかまたは黒鉛
粉、油もしくは炭化水素化合物等の炭素源となる物質を
混合し、中性雰囲気または減圧下で加熱し、脱酸および
脱炭させる方法も考えられる。
On the other hand, in order to obtain the above-mentioned low-oxygen, low-carbon iron-based powder, the raw material powder is alloyed with carbon in advance, or mixed with a carbon source material such as graphite powder, oil, or a hydrocarbon compound, and then neutralized. A method of deoxidizing and decarburizing by heating in an atmosphere or under reduced pressure is also considered.

この場合、脱酸速度および脱炭速度を大きくするために
は、熱力学から推定されるように高温かつ高真空下での
加熱が必要であるが、この場合には含有酸素モル量より
も添加炭素モル量を多くしなければならない。
In this case, in order to increase the deoxidation rate and decarburization rate, heating at high temperature and under high vacuum is necessary as estimated from thermodynamics, but in this case, the amount of added oxygen is greater than the molar amount of oxygen contained. The molar amount of carbon must be increased.

なぜならば、炭素による直接還元反応のみが進行してい
るために炭素の消費量が多いからである。
This is because only the direct reduction reaction with carbon is proceeding, so a large amount of carbon is consumed.

このように直接還元反応のみにより粉末に要求される含
有炭素量、酸素量がそれぞれ0.30重量係未満、0.
20重量%未満となる制約条件を満たす脱酸を行うには
種々の試、験の結果から明らかになったのであるが、原
料粉の含有炭素量と酸素量とのモル比(C/Oモル比)
が2.0を超える必要がある。
In this way, the carbon content and oxygen content required for the powder only by direct reduction reaction are less than 0.30% by weight and 0.00% by weight, respectively.
It has become clear from the results of various tests that in order to perform deoxidation that satisfies the constraint of less than 20% by weight, the molar ratio between the amount of carbon and oxygen contained in the raw material powder (C/O mol. ratio)
must exceed 2.0.

理想的な直接還元ではこの比は1.0であるが、実際に
は、混粉法又は母合金法により添加した炭素が減圧開始
時および加熱時に遊離し、炭素のロスが発生するからで
ある。
In an ideal direct reduction, this ratio is 1.0, but in reality, carbon added by the mixed powder method or master alloy method is liberated at the start of depressurization and during heating, resulting in carbon loss. .

特に、高真空及び高温下での加熱ほどこのロス量は多い
In particular, the amount of loss increases as heating is performed under higher vacuum and higher temperatures.

また、後述するように高真空下で高周波により直接粉末
を誘導加熱する場合には鉄系粉末粒子間にアークが飛び
、このためカーボン蒸着現象に見られる如く炭素のロス
が発生し、このロス量は非常に多い。
In addition, as will be described later, when directly inductively heating powder with high frequency under high vacuum, arcs fly between iron-based powder particles, resulting in carbon loss as seen in the carbon deposition phenomenon. There are very many.

これ故に炭素の直接還元反応のみにより脱酸することは
好ましいことではない。
Therefore, it is not preferable to deoxidize only by a direct reduction reaction of carbon.

さらに、直接還元反応のみにより脱酸させる場合には、
添加すべき炭素量はC/Oモル比で2.0を超える必要
があるから、水噴霧前の溶湯に炭素を添加するいわゆる
母合金法により粉末を得る場合、このように炭素が多い
水噴霧粉は中空球体状となり粉末冶金用に適する粉末と
はならない。
Furthermore, when deoxidizing only by direct reduction reaction,
The amount of carbon to be added needs to exceed 2.0 in C/O molar ratio, so when obtaining powder by the so-called master alloy method, in which carbon is added to the molten metal before water spraying, it is necessary to add carbon to the molten metal before water spraying. The powder becomes hollow spheres and is not suitable for powder metallurgy.

それでは、混合法により黒鉛粉等の炭素粉を混合すれば
よいと考えられるが、C/Oモル比が2.0を超えると
混合すべき炭素粉の量は多くなり比重の大きい鉄粉と比
重の小さい炭素粉の均一混合は非常に困難となる。
Then, it would be possible to mix carbon powder such as graphite powder using a mixing method, but if the C/O molar ratio exceeds 2.0, the amount of carbon powder to be mixed will increase and Uniform mixing of small carbon powder is extremely difficult.

この場合、たとえ両者が均一に混合されたように見えて
もミクロ的には不均一となり、高温加熱の下では、この
ミクロ的不均一が原因で局部的に粉末原料粉の融点が低
下し、得られた脱酸ケーキは液相焼結の発生した半溶融
状態となり、後の粉砕が困難となる故に粉末製造には不
適当である。
In this case, even if the two appear to be mixed uniformly, they become microscopically nonuniform, and under high-temperature heating, the melting point of the raw material powder locally decreases due to this microscopic nonuniformity. The resulting deoxidized cake becomes a semi-molten state in which liquid phase sintering occurs, making subsequent pulverization difficult and therefore unsuitable for powder production.

さらに、C/Oモル比が大きいためにどうしても脱酸さ
れた粉末中の残留炭素量及び酸素量を調整することが難
しくなる。
Furthermore, since the C/O molar ratio is large, it becomes difficult to control the amount of residual carbon and oxygen in the deoxidized powder.

従って、このように炭素の直接還元のみによる脱酸を行
わせるには種々の欠点がある。
Therefore, carrying out deoxidation only by direct reduction of carbon as described above has various drawbacks.

それ故、粉末治金用鉄系粉末の仕上還元に要求される低
酸素含有量および低炭素含有量を実現することが困難で
ある。
Therefore, it is difficult to achieve the low oxygen content and low carbon content required for final reduction of iron-based powders for powder metallurgy.

一方、実際に減圧状態を得る場合には、油回転ポンプ、
メカニカルブースター、またはこれら排気装置と油もし
くは水銀拡散ポンプ等の併用で行われるのが常である。
On the other hand, when actually obtaining a reduced pressure state, an oil rotary pump,
This is usually done using a mechanical booster or a combination of these exhaust devices and an oil or mercury diffusion pump.

このような装置により排気を行うと容易に0.05To
rr程度の高真空度が得られ、このような減圧下では酸
化物の還元はMxOy+ycO→xM+ycO2
(1)の炭素による間接還元は進行しずらく、 MxOy+yC→xM+ycO (2)
の直接還元が支配的となる。
When exhausting with such a device, it is easy to achieve 0.05To
A high degree of vacuum of about rr can be obtained, and under such reduced pressure, the reduction of oxides is MxOy + ycO →
Indirect reduction with carbon in (1) is difficult to proceed, and MxOy+yC→xM+ycO (2)
direct reduction becomes dominant.

ここで、Mは金属元素である。Here, M is a metal element.

従って、前記難還元性酸化物の還元が可能となるが、直
接還元のみにより還元速度を増大させるには高温加熱は
勿論のこと、原料粉中のC/Oモル比を前記した理由の
ため2.0を超えるようにしなければ還元率の向上すな
わち所望の低酸素とすることは極めて困難である。
Therefore, it becomes possible to reduce the refractory oxide, but in order to increase the reduction rate only by direct reduction, high temperature heating is of course necessary, and the C/O molar ratio in the raw material powder must be reduced to 2. Unless it exceeds .0, it is extremely difficult to improve the reduction rate, that is, to achieve the desired low oxygen level.

この直接還元により含有炭素量も同時に低減されるが、
前記したように残留炭素および酸素のコントロールが難
しいことから、還元された粉末の酸素量が所望の目的を
満足しても、逆に炭素量が好ましい含有量までに低下せ
ず、炭化物の形で残留する場合が多い。
This direct reduction also reduces the amount of carbon contained, but
As mentioned above, it is difficult to control residual carbon and oxygen, so even if the amount of oxygen in the reduced powder satisfies the desired purpose, the amount of carbon does not decrease to the desired content and remains in the form of carbides. It often remains.

この結果、これら従来法により得られた製品粉末の硬さ
が増し、粉末の成形性が低下するばかりでなく、圧粉体
の密度も低下する等の理由により粉末治金用鉄系粉末に
は適さない。
As a result, the hardness of the product powder obtained by these conventional methods increases, and the moldability of the powder decreases, as well as the density of the green compact. Not suitable.

本発明の目的は、上述した従来の欠点を解消し、純鉄粉
あるいは鉄合金元素や酸化物とくにCr,Mn,Si等
の難還元性の酸化物またはこれら金属の隼合酸化物を含
む鉄合金粉の鉄系原料粉から、とくに粉末治金世に適し
た低酸素、低炭素鉄系粉末を得ることができる製造方法
を提案することにある。
The object of the present invention is to eliminate the above-mentioned conventional drawbacks and to provide an iron powder containing pure iron powder or iron alloy elements or oxides, particularly hard-to-reducible oxides such as Cr, Mn, and Si, or alloy oxides of these metals. The object of the present invention is to propose a manufacturing method that can obtain low-oxygen, low-carbon iron-based powder, which is particularly suitable for powder metallurgy, from iron-based raw material powder for alloy powder.

本発明者等は従来法の欠点を解決するため、純鉄粉並び
に前記とくに難還元性酸化物を含む鉄系粉末素材の脱炭
を伴った脱酸方法につき各種の研究を重ねた結果、つぎ
のことを見い出した。
In order to solve the drawbacks of conventional methods, the inventors of the present invention have conducted various studies on deoxidation methods involving decarburization of pure iron powder and iron-based powder materials containing particularly refractory oxides. I discovered that.

即ち海綿鉄粉砕粉、噴霧粉、機械的粉砕粉等の原料粉の
表面および内部には合金元素及び鉄の酸化物が形成され
ている。
That is, alloying elements and iron oxides are formed on the surface and inside of raw material powder such as sponge iron pulverized powder, sprayed powder, mechanically pulverized powder, etc.

これら酸化物の還元においては原料粉に予め炭素を合金
化(母合金法)させるか、原料粉に炭素源となる物質を
添加混合(混合法)するかして、これら原料粉を直接減
圧下又は少量の中性ガスもしくは還元性ガスをキャリャ
ーガスとして注入した減圧下で加熱し、加熱中の真空度
を適切な範囲内に調整して前記直接還元および間接還元
を同時に進行させると、鉄系原料粉の脱酸および脱炭を
効率よく行うことができるのである。
In the reduction of these oxides, the raw material powders are either alloyed with carbon in advance (master alloy method), or a substance that becomes a carbon source is added to and mixed with the raw material powders (mixing method), and these raw material powders are directly reduced under reduced pressure. Alternatively, if a small amount of neutral gas or reducing gas is injected as a carrier gas and heated under reduced pressure, and the degree of vacuum during heating is adjusted within an appropriate range to allow the direct reduction and indirect reduction to proceed simultaneously, iron-based raw materials can be produced. This makes it possible to efficiently deoxidize and decarburize powder.

つまり、本発明の低酸素、低炭素鉄系粉末の製造方法は
、純鉄系粉末あるいは鉄合金元素の酸化物たとえばSi
の酸化物を含めこれよりも熱力学的に還元されやすい金
属酸化物およびこれら酸化物を構成する金属の複合酸化
物のうちの1種または2種以上を含む鉄合金系粉末の鉄
系原料粉に、あらかじめ炭素を合金化させるかまたは黒
鉛粉、油その他液体状もしくは粉末状の炭化水素等の炭
素源を添加混合するかして、仕上還元前のこれら原料粉
の含有酸素量を4.0重量%以下かっこの原料粉のC/
Oモル比を0. 7−2. 0の範囲内とし、これら原
料粉を平均圧力が100Torr以下の高真空度(本明
細書では1 0 0 Torr以下の真空度と略称する
)下に保ち、仕上還元温度750〜1400℃の範囲内
で加熱することにより脱炭と同時に脱酸を行い、含有酸
素量が0.20重量%未満でかつ含有炭素量が0.30
重量係未満の鉄系粉末を得ることを特徴とする。
In other words, the method for producing a low-oxygen, low-carbon iron-based powder of the present invention can be applied to pure iron-based powder or oxides of iron alloy elements such as Si.
Iron-based raw material powder of iron alloy-based powder containing one or more of metal oxides that are thermodynamically more easily reduced than these, including oxides of The oxygen content of these raw material powders before final reduction is reduced to 4.0 by alloying carbon in advance or adding and mixing carbon sources such as graphite powder, oil, and other liquid or powdered hydrocarbons. C/ of raw material powder in parentheses below weight%
The O molar ratio is 0. 7-2. 0, and keep these raw material powders under a high degree of vacuum with an average pressure of 100 Torr or less (abbreviated herein as vacuum degree of 100 Torr or less), and the final reduction temperature is within the range of 750 to 1400 ° C. Decarburization and deoxidation are performed at the same time by heating at
It is characterized by obtaining iron-based powder of less than the weight factor.

なお上記100Torr以下の真空度下での加熱に際し
て、還元保持温度の8割までは大気中、中性または還元
性雰囲気中にて予備加熱した後、直ちに前記の平均真空
度下および仕上げ還元温度その他の条件下で仕上還元す
る方法も本発明法に属する。
In addition, when heating under the vacuum degree of 100 Torr or less, 80% of the reduction holding temperature is preheated in the air, neutral or reducing atmosphere, and then immediately heated under the above average vacuum degree and at the final reduction temperature etc. The method of final reduction under the conditions described above also belongs to the method of the present invention.

本発明法において、鉄系原料粉の仕上還元加熱中の平均
真空度を1 0 0 Torr以下の範囲に限定したの
は次の理由による。
In the method of the present invention, the average degree of vacuum during the finishing reduction heating of the iron-based raw material powder is limited to a range of 100 Torr or less for the following reasons.

すなわち,100Torrを超える低真空中では原料粉
の脱酸および脱炭が十分に行われないからである。
That is, the raw material powder cannot be sufficiently deoxidized and decarburized in a low vacuum of over 100 Torr.

これは、直接還元に引続き起こる間接還元が活発になり
(前記(I)(2)式参照),発生したC02ガスの分
圧が高くなる閣係上相対的にCOガス分圧が低くなる結
果、粉末表面または内部め酸化物がもはや還元されない
ためと考えられる。
This is because the indirect reduction that occurs after the direct reduction becomes active (see formula (I) (2) above), and the partial pressure of the generated CO2 gas becomes higher.As a result, the partial pressure of the CO gas becomes relatively lower. This is thought to be because the powder surface or internal oxides are no longer reduced.

これに対し、本発明における加熱中の.平均真空度が1
00Torr以下の範囲の真空度下では、直接および間
接還元が同時に進行する領域であり、仕.上還元工程と
して有効となるに十分な原料粉の脱酸率および脱炭率を
得ることができることがわかった。
In contrast, during heating in the present invention. Average degree of vacuum is 1
Under the degree of vacuum in the range of 00 Torr or less, direct and indirect reduction proceed simultaneously. It was found that the deoxidation rate and decarburization rate of the raw material powder were sufficient to be effective as an upper reduction process.

ここに脱酸率及び脱炭率はつぎの(3) , (4)式
により定義する。
Here, the deoxidation rate and decarburization rate are defined by the following equations (3) and (4).

また、前記の如く加熱中に少量の中性ガス又は還元性ガ
スをキャリャニガスとして注入し、平均真空度を100
Torr以下の範囲内に保つことによっても本発明法は
有効に適用されることについて説明を加える。
In addition, as mentioned above, a small amount of neutral gas or reducing gas is injected as carrier gas during heating, and the average degree of vacuum is increased to 100.
An explanation will be added that the method of the present invention can be effectively applied even if the temperature is maintained within a range of Torr or less.

まず、中性ガスとしては99%以上の純度の良いヘリウ
ム(He)、アルゴン(Ar),窒素(N2)等のガス
が考えられる。
First, as the neutral gas, gases such as helium (He), argon (Ar), and nitrogen (N2) having a purity of 99% or more can be considered.

これらのガスの注入によってCOガス分圧が低くおさえ
られる結果、直接還元による脱酸が進行すると考えられ
る。
It is thought that as a result of the CO gas partial pressure being kept low by the injection of these gases, deoxidation by direct reduction proceeds.

しかし、これら中性ガスを注入して還元する場合には注
入しない時よりも脱酸率および脱炭率が向上することは
ない。
However, when these neutral gases are injected for reduction, the deoxidation rate and decarburization rate are not improved compared to when they are not injected.

だが、真空排気装置の能力が低く、又は排気系の容積が
大きい場合には、中性ガスを注入して排気系の能力の許
す範囲で加熱中の平均真空度を1 0 0 Torr以
下に適宜調整して直接還元と間接還元とを同時{こ進行
させることができる利点がある。
However, if the capacity of the vacuum evacuation equipment is low or the volume of the evacuation system is large, neutral gas may be injected to reduce the average degree of vacuum during heating to 100 Torr or less within the range permitted by the capacity of the evacuation system. There is an advantage that direct reduction and indirect reduction can proceed simultaneously through adjustment.

次に示す還元性ガスの注入は中性ガスの場合よりももつ
と有効である。
The following injection of reducing gas is more effective than the case of neutral gas.

この場合には、露点が−30℃以下の水素ガスを注入す
る。
In this case, hydrogen gas having a dew point of −30° C. or lower is injected.

これにより炭素の直接還元と間接還元及び水素による還
元の相乗作用により脱酸は効率よく進行する。
As a result, deoxidation proceeds efficiently due to the synergistic effects of direct reduction of carbon, indirect reduction, and reduction by hydrogen.

ここで、注意せねばならないことは注入水素の露点を−
30℃以下にとどめることである。
Here, it is important to note that the dew point of the injected hydrogen is -
The temperature should be kept below 30°C.

このようにしないと、真空系内の露点を上昇させる原因
となるからである。
This is because, if this is not done, the dew point within the vacuum system will increase.

次に、仕上還元前の原料粉の含有酸素量を4.0重量%
以下かつこの原料粉のC/Oモル比を0.7〜2.0の
範囲内に限定した根拠について詳しく説明する。
Next, the oxygen content of the raw material powder before finishing reduction was reduced to 4.0% by weight.
The basis for limiting the C/O molar ratio of this raw material powder to within the range of 0.7 to 2.0 will be explained in detail below.

先ず、原料粉のC/Oモル比の下限については、一つに
は減圧を開始する時におよび加熱中に、フリーの炭素が
舞い上ってロスを生ずること、特に高周波加熱によると
きは粉末粒子同志のアーク放電によって炭素の蒸着現象
が起り炭素のロスが多いこと、二つには母合金法により
原料粉中に合金化した炭素(原子)は加熱中に原料粉末
粒子の表面にまで拡散し、1 0 0 Torr以下の
真空度といっても系内には若干の酸素が存在するため、
この酸素と直接反応してガス化すること、また、混合法
により原料粉に炭素源を混合した炭素粉についても同様
な現象を生じて炭素のロスを生ずること、などから定め
られる。
First of all, regarding the lower limit of the C/O molar ratio of the raw material powder, one reason is that when starting depressurization and during heating, free carbon flies up and causes loss, and especially when using high frequency heating, powder particles The second problem is that the vapor deposition phenomenon of carbon occurs due to the arc discharge of comrades, resulting in a large loss of carbon.Secondly, the carbon (atoms) alloyed in the raw material powder by the master alloy method diffuses to the surface of the raw material powder particles during heating. , even though the degree of vacuum is below 100 Torr, there is some oxygen in the system, so
This is determined based on the fact that carbon powder reacts directly with this oxygen and is gasified, and that a similar phenomenon occurs with carbon powder obtained by mixing raw material powder with a carbon source using a mixing method, resulting in loss of carbon.

このような状況により脱酸に関与する以外の炭素のロス
が発生するので(1)式および(2)式の還元が理想的
に進行する場合のC/Oモル比の下限は0.5の値より
も大きくする必要がある。
This situation causes the loss of carbon other than those involved in deoxidation, so the lower limit of the C/O molar ratio is 0.5 when the reduction of formulas (1) and (2) proceeds ideally. Must be greater than the value.

この点に関し、本発明者等が海綿鉄粉砕粉、機械的粉砕
粉、低合金および高合金の噴霧粉の鉄系原料粉を用いて
、加熱中の平均真空度1 0 0 Torrでの種々の
試験を重ねた結果、C/Oモル比の下限は0.7であり
、これ未満では含有酸素量が0.20重量%未満の所望
の低酸素鉄系粉末が得られないことを確認した。
In this regard, the present inventors used iron-based raw material powders such as pulverized sponge iron powder, mechanically pulverized powder, and low-alloy and high-alloy atomized powders to obtain various results at an average vacuum degree of 100 Torr during heating. As a result of repeated tests, it was confirmed that the lower limit of the C/O molar ratio is 0.7, and that if it is less than this, the desired low-oxygen iron-based powder with an oxygen content of less than 0.20% by weight cannot be obtained.

また、C/Oモル比の上限については、鉄系原料粉の表
面または内部に存在する金属酸化物の還元が前記(2)
式の直接還元のみにより進行すること、すなわち、CO
ガスの生成と同時にこのCOガスが排気されるとすれば
、理論上は還元に必要な炭素量は原料粉に含有する酸素
量に等しいモル数となる。
Regarding the upper limit of the C/O molar ratio, the reduction of metal oxides present on the surface or inside of the iron-based raw material powder is explained in (2) above.
Proceeding only by direct reduction of the formula, i.e. CO
If this CO gas is exhausted at the same time as the gas is generated, the amount of carbon required for reduction is theoretically the number of moles equal to the amount of oxygen contained in the raw material powder.

すなわち、原料粉のC/Oモル比が1.0となるときで
ある。
That is, when the C/O molar ratio of the raw material powder becomes 1.0.

しかし、実際には前記の如く炭素のロスが発生するので
現実に炭素の直接還元のみにより脱酸する場合のC/O
モル比についても理論的な値である1.0より大きくせ
ねばならず、本発明者等が平均真空度0.05Torr
において種種の実験を行った結果、現実の粉末充填層に
おけるC/Oモル比の上限を20とする必要があること
がわかった。
However, in reality, as mentioned above, carbon loss occurs, so in reality, when deoxidizing only by direct reduction of carbon, C/O
The molar ratio must also be larger than the theoretical value of 1.0, and the inventors have determined that the average vacuum degree is 0.05 Torr.
As a result of conducting various experiments, it was found that it is necessary to set the upper limit of the C/O molar ratio in an actual powder packed bed to 20.

つまり,C/Oモル比が2.0を超えると、製品鉄系粉
末中の残留炭素量が増加し、所望の含有炭素量が0.3
0重量係未満の低炭素鉄系粉末が得られないためである
In other words, when the C/O molar ratio exceeds 2.0, the amount of residual carbon in the product iron-based powder increases, and the desired amount of carbon content decreases to 0.3.
This is because a low carbon iron-based powder with a weight coefficient of less than 0 cannot be obtained.

したがって、加熱中の平均真空度が1 0 0 Tor
r以下の範囲内において炭素による直接還元および間接
還元を同時に進行させるためには、仕上還元処理すなわ
ち脱酸前の鉄系原料粉末のC/Oモル比を0.7〜2.
0の範囲内とする必要がある。
Therefore, the average degree of vacuum during heating is 100 Torr.
In order to proceed with direct reduction and indirect reduction with carbon at the same time within the range of 0.7 to 2.
It must be within the range of 0.

次に、脱酸前の原料粉の含有酸素量を4.0重量係以下
に限定する理由ζこついて詳記する。
Next, the reason for limiting the oxygen content of the raw material powder before deoxidation to 4.0 weight coefficient or less will be described in detail.

実際には、含有酸素量が4.0重量係を超えても、脱酸
および脱炭は可能であるが、本発明法の目的は鉄系原料
粉の二次還元とも言うべき仕上還元にあり、所定の低酸
素と低炭素の鉄系粉末を安価にしかも犬量に製造すると
ころにあること、および含有酸素量が4.0重量係を超
えると炭素のロス分をも含めて添加すべき炭素量が多く
なり、還元時間を長く要するほか製品粉末に残留する酸
素および炭素量が一定とならず、粉末治金用の鉄系粉末
に要求される残留酸素量および炭素量を所定量に容易に
制御するのが困難になり、従って、事前に設定した還元
条件から脱炭率および脱酸率を想定するのが困難になる
こと、などの理由により、含有酸素量を4.0重量係以
下に制限するのである。
In reality, deoxidation and decarburization are possible even if the oxygen content exceeds 4.0% by weight, but the purpose of the method of the present invention is the final reduction, which can be called secondary reduction, of the iron-based raw material powder. , The specified low oxygen and low carbon iron-based powder can be produced at low cost and in small quantities, and if the oxygen content exceeds 4.0 weight factor, it should be added including carbon loss. The amount of carbon increases, requiring a longer reduction time, and the amount of oxygen and carbon remaining in the product powder is not constant, making it easier to maintain the amount of residual oxygen and carbon required for iron-based powder for powder metallurgy. Therefore, it is difficult to control the amount of oxygen content to 4.0% by weight or less, and therefore it is difficult to estimate the decarburization rate and deoxidation rate from the preset reduction conditions. It is limited to.

ここで、鉄系原料粉に含有する酸素とは、この粉末粒子
表面の酸化物、水酸化物の皮膜のほかに鉄系粉末粒子内
に介在する酸化物および合金金属の酸化物、水酸化物と
なっているものをすべて指す。
Here, the oxygen contained in the iron-based raw material powder refers to the oxides and hydroxide films on the surface of the powder particles, as well as the oxides and oxides and hydroxides of alloy metals interposed within the iron-based powder particles. Refers to everything that is.

また、酸化鉄や水酸化鉄の形態もFeO ,Fe3O
4,Fe2O3,Fe(OH)2,Fe(OH)3など
その如何を問わず、これと他の合金金属の酸化物、水酸
化物と複合した化合物や混合物もここでの含有酸素量の
範ちゅうに入る。
In addition, the forms of iron oxide and iron hydroxide are FeO, Fe3O
4. Compounds and mixtures of Fe2O3, Fe(OH)2, Fe(OH)3, etc., and other alloy metal oxides and hydroxides are also included in the oxygen content range here. Enter Chuu.

もちろん、酸洗により酸化被膜が一部除去された鉄系原
料粉にも本発明は適用される。
Of course, the present invention is also applicable to iron-based raw material powder whose oxide film has been partially removed by pickling.

一方,鉄系原料粉に含有する炭素とはこの形態が如何な
るものであっても差支えない。
On the other hand, the carbon contained in the iron-based raw material powder may be in any form.

つまり、黒鉛粉の如き粉体状のものを混合してもよく、
油の如き液体を添加してもよく、また、炭化水素、炭化
物等の炭素源となるものであってもよい。
In other words, powdered materials such as graphite powder may be mixed.
A liquid such as oil may be added, or a carbon source such as a hydrocarbon or carbide may be added.

たとえば、噴霧法で製造される粉末にあっては予め炭素
を噴霧前の溶湯中に合金化しておいて粉末化せしめたと
きの合金化炭素およびコークス等による鉄酸化物の粗還
元によって製造された海綿鉄に浸炭した炭素等などでも
よい。
For example, powder produced by the spraying method is produced by alloying carbon in the molten metal before spraying, and then coarsely reducing iron oxide with alloyed carbon and coke, etc. Carbon, etc. obtained by carburizing sponge iron may also be used.

要するに本発明法では混合法又は母合金法もしくはこの
両方法により含有せしめられた合計の炭素量と前記含有
酸素量とのモル比すなわちC/Oモル比が0.7〜2.
0の範囲内にあればよいのである。
In short, in the method of the present invention, the molar ratio between the total amount of carbon contained by the mixing method, the master alloy method, or both methods and the amount of oxygen contained, that is, the C/O molar ratio is 0.7 to 2.
It is sufficient that it is within the range of 0.

次に、加熱保持温度(還元保持温度)については750
〜1400°Cの範囲が適切である。
Next, the heating holding temperature (reduction holding temperature) is 750
A range of ~1400°C is suitable.

すなわち、上限温度が1400゜Cを越えると、とくに
添加炭素量が多い場合には液相が発生し、脱酸後のケー
キの粉砕が困難となる。
That is, when the upper limit temperature exceeds 1400°C, a liquid phase is generated, especially when the amount of added carbon is large, and it becomes difficult to crush the cake after deoxidation.

特に、黒鉛粉等を混粉した場合には炭素の混合がマクロ
的に均一になされても、ミクロ的には均一とならず、炭
素の偏折が多い部分から液相が発生し、液相焼結が進み
、後工程の粉砕が非常に困難となる。
In particular, when mixing graphite powder, etc., even if the carbon is mixed uniformly macroscopically, it is not uniform microscopically, and a liquid phase is generated from areas where carbon is highly polarized. As sintering progresses, pulverization in the subsequent process becomes extremely difficult.

また、750℃未満の温度では所望の脱酸率および脱炭
率を得るには長時間加熱が必要となり、生産能力が非常
に低下する。
Further, at a temperature below 750°C, long-term heating is required to obtain the desired deoxidation rate and decarburization rate, resulting in a significant decrease in production capacity.

また、予備加熱として酸素含有量が4.0重量係以下か
つC/Oモル比が0.7〜2.0の範囲内にある鉄系原
料粉末を、還元保持温度の8割までの温度の間は排気系
を閉じて大気圧もしくは1気圧の中性または還元性雰囲
気中で昇温し、その後直ちに仕上温度において平均真空
度が100Torr以下の範囲内になるようにして所定
の仕上還元条件下で還元しても所望の目的である低酸素
かつ低炭素の粉末製品が得られる。
In addition, for preheating, iron-based raw material powder with an oxygen content of 4.0 weight coefficient or less and a C/O molar ratio in the range of 0.7 to 2.0 is heated to a temperature of up to 80% of the reduction holding temperature. During this period, the exhaust system is closed and the temperature is raised in a neutral or reducing atmosphere at atmospheric pressure or 1 atm. Immediately thereafter, the average degree of vacuum at the finishing temperature is maintained within the range of 100 Torr or less under the specified finishing reducing conditions. Reduction with can also yield a low-oxygen, low-carbon powder product, which is the desired objective.

この理由として、還元保持温度の8割を越える温度域か
ら残りの保持温度までの温度の区域は脱酸及び脱炭速度
が大きいので予備加熱の影響が打消されるからである。
The reason for this is that the deoxidation and decarburization rates are high in the temperature range from the temperature range exceeding 80% of the reduction holding temperature to the remaining holding temperature, so that the influence of preheating is canceled out.

それ故に、加熱開始を平均真空度が1 0 0 Tor
r以下の範囲内となるまで待つ必要はなく、原料粉の装
入が完了した後、直ちに真空排気と昇温とを同時に開始
することが可能となり、仕上還元工程に費やされる時間
が短縮される長所がある。
Therefore, heating should be started at an average degree of vacuum of 100 Torr.
There is no need to wait until the temperature is below r, and it is possible to immediately start evacuation and heating at the same time after charging the raw material powder, which shortens the time spent on the final reduction process. There are advantages.

還元温度750〜1400°Cの範囲に保持する時間は
、粉末中の酸素量に応じて任意に設定すればよいが、保
持時間が従来法に比べて短いにも拘らず所望の脱酸が行
われる。
The time for holding the reduction temperature in the range of 750 to 1,400°C may be set arbitrarily depending on the amount of oxygen in the powder, but the desired deoxidation can be achieved even though the holding time is shorter than in conventional methods. be exposed.

なぜならば、従来の還元法はH2,CO等のガス還元で
行っているのに対し、本発明法によればCOガスの間接
還元すなわちガス還元も伴うが、炭素による直接還元も
起るのである。
This is because, while conventional reduction methods involve gas reduction such as H2 and CO, the method of the present invention involves indirect reduction of CO gas, that is, gas reduction, and direct reduction with carbon also occurs. .

また、加熱手段として、炭化珪素発熱体等による真空系
の外部から加熱する所謂電気炉加熱よりも、高周波誘導
加熱ζこよる昇温手段を採用すれば保持温度までの昇温
時間が短縮できる。
Furthermore, if a heating means based on high-frequency induction heating ζ is employed as a heating means, the time required to raise the temperature to the holding temperature can be shortened, rather than so-called electric furnace heating in which heating is performed from outside the vacuum system using a silicon carbide heating element or the like.

この場合自己発熱を伴うので表面酸化物を還元する場合
粒子内炭素の拡散を促進しさらに都合がよい。
In this case, since self-heating occurs, it is more convenient to promote the diffusion of carbon within the particles when reducing the surface oxide.

要するに脱酸後のケーキの粉砕が困難とならない程度の
保持時間および所望の脱酸率および脱炭率が得られる程
度の時間があればよい。
In short, it is sufficient that the holding time is long enough not to make it difficult to crush the cake after deoxidation and to obtain the desired deoxidation rate and decarburization rate.

そのためには、750℃程度の低温では比較的長時間、
1400℃程度の高温では短時間でよい。
To do this, it is necessary to spend a relatively long time at a low temperature of about 750℃.
At a high temperature of about 1400°C, a short time is sufficient.

この加熱保持時間について種々の試験を行った結果、4
時間以下とするが適当であることが判明した。
As a result of various tests regarding this heating holding time, 4
It was found that it was appropriate to set the time to less than 1 hour.

前記外部からの電気炉加熱による場合には昇温時間が長
いため、保持時間が4時間程度としても全体としての加
熱時間は比較的長くなる。
In the case of external electric furnace heating, the temperature rise time is long, so even if the holding time is about 4 hours, the overall heating time is relatively long.

これに反し、高周波誘導加熱の場合には粉末そのものが
加熱されるので所定の温度までの昇温時間は非常に短く
できる。
On the other hand, in the case of high-frequency induction heating, the powder itself is heated, so the time required to raise the temperature to a predetermined temperature can be extremely short.

加熱手段については750〜1400℃までの昇温が可
能となる方式であればよく、電気、ガス等からの熱エネ
ルギーにより外部から加熱してもよいし、前記した高周
波誘導加熱により鉄系原料粉末そのものを加熱してもま
ったく同様な結果が得られる。
The heating means may be any method that can raise the temperature to 750 to 1400°C, and may be heated externally using thermal energy from electricity, gas, etc., or the above-mentioned high-frequency induction heating may be used to heat the iron-based raw material powder. Exactly the same result can be obtained by heating it.

鉄系原料粉に添加する炭素源としては、灰分や硫黄分等
の粉末治金用鉄系粉末に好ましくない成分が少ないこと
、およびその添加混合が炭素の偏析を極力おさえるため
ミクロ的にも均一となるものほど望ましい。
As a carbon source to be added to the iron-based raw material powder, it is microscopically uniform because there are few components that are undesirable for iron-based powders for powder metallurgy, such as ash and sulfur, and the addition and mixing suppresses carbon segregation as much as possible. The more desirable it is.

また、油等の炭化水素化合物を添加する場合には原料粉
末をまんべんなく濡らすものがよい。
Furthermore, when adding a hydrocarbon compound such as oil, it is preferable to wet the raw material powder evenly.

本発明法により目的が達せられる鉄系原料粉末素材の種
類と合金成分の種類および添加量について記すと、まず
、本発明法に使用される鉄系粉末素材としては海綿鉄の
粉砕粉、切削等で発生した切粉の機械的粉砕粉、噴霧粉
、さらに脱酸を必要とする場合には市販鉄系粉末等も含
まれすべての鉄系粉末が対象となる。
To describe the types of iron-based raw powder materials and the types and amounts of alloy components that can be used to achieve the purpose of the method of the present invention, first, the iron-based powder materials used in the method of the present invention include crushed sponge iron powder, cuttings, etc. All iron-based powders are covered, including mechanically crushed powder of chips generated in the process, sprayed powder, and commercially available iron-based powders if deoxidation is required.

要は、酸素含有量が4.0重量係以下かつC/Oモル比
が0.7〜2. 0 の範囲内にすればよい。
In short, the oxygen content is 4.0% by weight or less and the C/O molar ratio is 0.7-2. It should be within the range of 0.

合金成分の種類については、種々の合金鋼粉を製造し、
脱酸、脱炭試験を行った結果、純鉄系粉末並びにCu,
Pb,Ni,Co,W,Moおよび難還元性酸化物を構
成するNb,B,Cr,V,Mn,Siの1種類または
2種類以上の合金元素を含む鉄合金系粉末が本発明によ
り処理されうる。
Regarding the types of alloy components, we manufacture various alloy steel powders,
As a result of deoxidation and decarburization tests, pure iron powder and Cu,
Iron alloy powder containing one or more alloying elements of Pb, Ni, Co, W, Mo and Nb, B, Cr, V, Mn, and Si constituting a refractory oxide is treated by the present invention. It can be done.

さらに、これら金属酸化物の還元の難易度の順序は熱力
学から推定されるものと一致する。
Furthermore, the order of difficulty in reducing these metal oxides is consistent with that predicted from thermodynamics.

これらの中でも、最も難還元性のSi02が一部還元さ
れることから、本発明法により還元可能な金属酸化物の
種類はSi02を含め、Si02より還元されやすいす
べての金属酸化物およびこれらの金属の複合酸化物に有
効である。
Among these, since Si02, which is the most difficult to reduce, is partially reduced, the types of metal oxides that can be reduced by the method of the present invention include all metal oxides that are more easily reduced than Si02, including Si02, and these metals. It is effective for complex oxides.

これら合金元素の添加量は低合金および高合金鋼粉、フ
エロアロイ粉等に及んでおり非常に広範囲の鉄系金属粉
末を対象とすることが出来る。
The amounts of these alloying elements added range from low-alloy and high-alloy steel powders to ferroalloy powders, and a very wide range of iron-based metal powders can be targeted.

前記の諸条件を満たす本発明法によると、Si02を含
む低合金および高合金鋼粉の脱酸率および脱炭率は共に
64.0〜99.4%の範囲内となり、含有酸素量が4
.0重量%,含有炭素量が6.0重量%(C/Oモル比
が2.0)と最高の水準にある場合にも鉄系粉末として
市販されている製品の含有酸素量および炭素量の上限値
未満となる。
According to the method of the present invention that satisfies the above conditions, the deoxidation rate and decarburization rate of low alloy and high alloy steel powder containing SiO2 are both within the range of 64.0 to 99.4%, and the oxygen content is 4%.
.. Even when the content of carbon is at the highest level of 0% by weight and 6.0% by weight (C/O molar ratio is 2.0), the amount of oxygen and carbon contained in products commercially available as iron-based powders is less than the upper limit.

従って、本発明法は粉末冶金用鉄系粉末の仕上還元に適
した方法であるといえる。
Therefore, it can be said that the method of the present invention is suitable for the final reduction of iron-based powder for powder metallurgy.

以下、実施例により本発明法が如何に有効かを具体的に
説明する。
Hereinafter, how effective the method of the present invention is will be specifically explained using examples.

まず、第1表は仕上還元に使用した鉄系粉末素材(原料
粉)の化学組成と非金属介在物量などを示すものであり
、第2表はこれら粉末素材の本発明法および従来法によ
る仕上還元条件を示すものである。
First, Table 1 shows the chemical composition and amount of nonmetallic inclusions of the iron-based powder materials (raw material powder) used for finishing reduction, and Table 2 shows the finishing results of these powder materials by the present invention method and the conventional method. This shows the reduction conditions.

第3表は本発明法を実施した場合および従来法lこよっ
て仕上還元して得られた鉄系粉末に残留する炭素量(以
下C量と略す)、酸素量(以下O量と略す)、非金属介
在物量および脱炭率、脱酸率を示すものである。
Table 3 shows the amount of carbon (hereinafter abbreviated as C amount), oxygen amount (hereinafter abbreviated as O amount) remaining in the iron-based powder obtained by final reduction using the method of the present invention and the conventional method. It shows the amount of nonmetallic inclusions, decarburization rate, and deoxidation rate.

第1表において素材Aは鋼板の圧延で発生するリムド鋼
ミルスケールを原料として製造した市販還元鉄粉であり
素材Bはキルド鋼ミルスケールを原料としてコークスで
粗還元して得られた海綿鉄を粉砕し、粒度を100メッ
シュ以下としたものである。
In Table 1, material A is a commercially available reduced iron powder manufactured using rimmed steel mill scale generated in the rolling of steel plates, and material B is sponge iron obtained by rough reduction with coke using killed steel mill scale as a raw material. It is pulverized to a particle size of 100 mesh or less.

Bは合金成分としてSi,Mnを比較的多く含むので、
非金属介在物の分析は行わなかったがSi,Mnの酸化
物を多く含んでいると推定される。
Since B contains relatively large amounts of Si and Mn as alloy components,
Although analysis of nonmetallic inclusions was not performed, it is presumed that they contain a large amount of oxides of Si and Mn.

素材Cは鋼板の塩酸酸洗での廃酸を噴霧焙焼して製造さ
れた副生へマタイトを原料とし、Bと同様に粗還元した
粒度100メッシュ以下の粗還元粉である。
Material C is a coarsely reduced powder with a particle size of 100 mesh or less, which is made from by-product hematite produced by spray roasting waste acid from hydrochloric acid pickling of steel plates, and is coarsely reduced in the same way as B.

これらのうち、A,Bでは黒鉛粉を混合してC/Oモル
比をそれぞれ0.76,1.62とした、、Cでは菜種
油を添加してC/Oモル比を0.94とした。
Of these, in A and B, graphite powder was mixed to set the C/O molar ratio to 0.76 and 1.62, respectively, and in C, rapeseed oil was added to set the C/O molar ratio to 0.94. .

素材Dは水噴霧純鉄系原料粉末であり、素材Eは合金成
分としてMnO.39,Ni2.09,Mo0.50各
重量%を含む水噴霧低合金鋼原料粉である。
Material D is a water-sprayed pure iron-based raw material powder, and Material E contains MnO. This is a water-sprayed low-alloy steel raw material powder containing 39% by weight, 2.09% by weight of Ni, and 0.50% by weight of Mo.

素材Fは同様に水噴霧原料粉末であり、合金成分として
MnO.23,NiO、51,Cr0.54,Mo0.
53各重量係を含有する低合金鋼原料粉である。
Material F is similarly a water spray raw material powder, and contains MnO. 23, NiO, 51, Cr0.54, Mo0.
It is a low-alloy steel raw material powder containing each weight factor of 53.

素材Gも水噴霧粉であり、合金成分としてMnO.73
,Cr1.08,Mo0.33各重量%を含み、かつ非
金属介在物としてS1020.186,Mn00.33
7,Cr2030.0503,Fe06.24各重量%
を含む低合金鋼原料粉である。
Material G is also a water spray powder and contains MnO. 73
, Cr1.08, Mo0.33 each weight%, and S1020.186, Mn00.33 as nonmetallic inclusions.
7, Cr2030.0503, Fe06.24 each weight%
It is a low-alloy steel raw material powder containing

これらのうちD.E.Fでは黒鉛粉を混合してC/Oモ
ル比をすべて1.00とし、Gでは同様にして1.50
とした。
Among these, D. E. In F, graphite powder was mixed to make the C/O molar ratio all 1.00, and in G, the same was made to 1.50.
And so.

素材H,Iは水噴霧のままの状態であり、混合法により
黒鉛粉を添加せず、水噴霧直前の溶湯中に炭素を約1.
0重量%合金化せしめ水噴霧したものすなわち母合金法
により予め炭素を固溶せしめた低合金鋼原料粉である。
Materials H and I are in the water-sprayed state, and no graphite powder is added by the mixing method, and approximately 1.
It is a low alloy steel raw material powder that has been alloyed with 0% by weight and sprayed with water, that is, carbon has been dissolved in solid solution in advance by the master alloy method.

H.I粉末の特徴は合金成分としてMnを約1.3重量
%と多く、このほかCrを約0.5重量%、Moを約0
.5重量%とし、■においてはさらにNiを約0.5重
量%含有するところにある。
H. I powder has a large amount of Mn as an alloy component at about 1.3% by weight, as well as about 0.5% by weight of Cr and about 0% of Mo.
.. 5% by weight, and in case (2), it further contains about 0.5% by weight of Ni.

これらの粉末ではMnO,FeOの非金属介在物量が比
較的多くなっている。
These powders have relatively large amounts of nonmetallic inclusions such as MnO and FeO.

これら粉末のC/Oモル比はほぼ1.5程度である。The C/O molar ratio of these powders is approximately 1.5.

素材Jは■にSiを多く添加した粉末に相当するもので
あり、母合金法による炭素量は0.228重量%であり
、これに菜種油を0.8重量%添加してC/Oモル比を
0.82とした低合金鋼原料粉である。
Material J corresponds to a powder in which a large amount of Si is added to ■, and the carbon content according to the master alloy method is 0.228% by weight, and 0.8% by weight of rapeseed oil is added to this to adjust the C/O molar ratio. It is a low-alloy steel raw material powder with a ratio of 0.82.

素材KはSiのみを合金成分とした水噴霧低合金鋼原料
粉であり、H,Iと同様に水噴霧のままのものであり、
C/Oモル比は1.66である。
Material K is a water-sprayed low-alloy steel raw material powder containing only Si as an alloy component, and like H and I, it is still water-sprayed.
The C/O molar ratio is 1.66.

素材Lは溶湯中の炭素量を多くして噴霧した高速度鋼S
KH−9相当の水噴霧のままの高合金鋼原料粉であり、
合金成分としてSi,Mn,Cr,MoのほかにW,■
を含み、このC/Oモル比は1.64である。
Material L is high-speed steel S that is sprayed with a large amount of carbon in the molten metal.
It is high alloy steel raw material powder that is equivalent to KH-9 water spray,
In addition to Si, Mn, Cr, and Mo, W, ■
The C/O molar ratio is 1.64.

このようにC/Oモル比はすべて0.7〜2.0の範囲
内におさまるようにした。
In this way, all C/O molar ratios were kept within the range of 0.7 to 2.0.

以上のA−Lの素材に第2表に示す条件の仕上還元処理
を施すのであるが以下これらの条件について簡単に説明
を加える。
The materials A-L above were subjected to finishing reduction treatment under the conditions shown in Table 2, and a brief explanation of these conditions will be added below.

まず、素材B,G,H,I,J,KおよびLを高周波に
より直接加熱する場合には、それぞれ約230gを取り
出し、内径30mmφの石英管に充填する。
First, when materials B, G, H, I, J, K, and L are directly heated by high frequency, about 230 g of each is taken out and filled into a quartz tube with an inner diameter of 30 mmφ.

このときの充填高さは約100mmであった。The filling height at this time was about 100 mm.

この充填層管を真空系内に装入し、油回転ポンプで減圧
する。
This packed bed tube is inserted into a vacuum system and the pressure is reduced using an oil rotary pump.

その後、周波数380KHz、出力5KWの高周波発生
装置で徐々に誘導加熱する。
Thereafter, induction heating is gradually performed using a high frequency generator with a frequency of 380 KHz and an output of 5 KW.

ただし、素材Hの一部については後述する如く減圧開始
と加熱開始の順序を逆とした。
However, for a part of the material H, the order of starting pressure reduction and starting heating was reversed, as will be described later.

高周波誘導加熱の場合には、所定の還元温度までの昇温
時間はすべて40分以内とした。
In the case of high-frequency induction heating, the heating time to a predetermined reduction temperature was all within 40 minutes.

また、昇温を含めた加熱中に所定の平均真空度を得るに
は油回転ポンプの排気量をコックにより調整した。
In addition, in order to obtain a predetermined average degree of vacuum during heating including temperature rise, the displacement of the oil rotary pump was adjusted using a cock.

次に、素材A,C,D,EおよびFを電気炉により外部
から加熱する場合にはそれぞれ約230gの粉末を取り
、巾50mm、高さ20mm、長さ200mmの石英製
角形ボートに自由落下により充填し、これらを耐火物の
炉芯管に装入し、油回転ポンプおよび油拡散ポンプの2
段の排気装置で減圧する。
Next, when materials A, C, D, E, and F are heated from the outside in an electric furnace, about 230 g of powder is taken from each powder and allowed to fall freely into a square quartz boat with a width of 50 mm, a height of 20 mm, and a length of 200 mm. These are charged into the refractory core tube, and the two oil rotary pumps and oil diffusion pumps
Reduce the pressure using the stage exhaust system.

その後、炭化珪素発熱体の出力20KWの電気炉で炉芯
管の外部から加熱する。
Thereafter, the furnace core tube is heated from the outside in an electric furnace with a silicon carbide heating element having an output of 20 kW.

所定の還元温度までの昇温時間はすべてほぼ3時間とし
た。
The heating time to the predetermined reduction temperature was approximately 3 hours in all cases.

また、所定の平均真空度を得るには高周波加熱の場合と
まったく同様にコックにより排気量を訓療した。
In addition, in order to obtain a predetermined average degree of vacuum, the displacement was adjusted using a cock, just as in the case of high-frequency heating.

これら高周波および電気炉による加熱後の冷却において
は、所定の還元保持時間に達した後、加熱用の電源を切
り、100℃になるまで所定の平均真空度に保ちながら
炉冷した。
In the cooling after heating using high frequency waves and electric furnaces, after reaching a predetermined reduction holding time, the heating power was turned off, and the furnace was cooled to 100° C. while maintaining a predetermined average degree of vacuum.

従来法の水素ガスによる仕上還元においてはA−L素材
を前記石英ボートにそれぞれ約230gを自由落下によ
り充填し、これらをステンレス炉芯管に装入し、市販ボ
ンベの水素ガスを純化装置により高純度かつ低露点(D
.P.−50℃)として用い、その流量を2l/min
と比較的大きくした。
In the conventional method of final reduction using hydrogen gas, approximately 230 g of the A-L material is filled into the quartz boat by free fall, and these are charged into a stainless steel furnace tube, and hydrogen gas from a commercially available cylinder is purified by a purification device. Purity and low dew point (D
.. P. -50℃) and the flow rate was 2l/min.
and relatively large.

この場合にも前記と同様に炭化珪素発熱体電気炉により
外部から加熱した。
In this case as well, heating was performed from the outside using a silicon carbide heating element electric furnace in the same manner as above.

所定の還元温度までの昇温時間はほぼ3時間とした。The time for heating up to the predetermined reduction temperature was approximately 3 hours.

冷却は炉冷とし、100℃以下になるまで還元状態のま
まとし、D.P.の低い水素ガスを流し続けた。
Cooling is performed by furnace cooling, and the reduction state is maintained until the temperature drops to below 100°C.D. P. A low hydrogen gas flow was continued.

このときの還元温度、還元時間および加熱雰囲気等の還
元条件は第2表に示すとおりである。
The reduction conditions such as reduction temperature, reduction time, and heating atmosphere at this time are as shown in Table 2.

このような3種類の方法により仕上還元して得られた半
焼結した粉末ケーキをハンマーミルで粉砕し、炭素、酸
素および非金属介在物の分析を行った。
The semi-sintered powder cakes obtained by final reduction using these three methods were ground in a hammer mill and analyzed for carbon, oxygen and non-metallic inclusions.

素材A−Lの本発明法および従来法の仕上還元によって
製造された後の結果を示す第3表の粉末性状につき、第
2表を参照しながら具体的(こ説明する。
The powder properties in Table 3, which shows the results after the final reduction of materials A-L according to the present invention and the conventional method, will be specifically explained with reference to Table 2.

第2表で実施例1と2は素材Aの仕上還元例であるが、
A−1は本発明法によったもの、A−2は従来法の水素
還元によったものである。
In Table 2, Examples 1 and 2 are finished reduction examples of material A.
A-1 was obtained by the method of the present invention, and A-2 was obtained by hydrogen reduction using the conventional method.

A−1は素材Aを8〜10Torrの平均真空度下で電
気炉により加熱し、1100℃×2hrの還元条件で脱
酸したものである。
A-1 is obtained by heating material A in an electric furnace under an average degree of vacuum of 8 to 10 Torr, and deoxidizing it under reducing conditions of 1100°C x 2 hours.

A−1で得られた粉末のCおよびO量は第3表に示す如
くそれぞれ0.040,0.095各重量%であった。
The amounts of C and O in the powder obtained in A-1 were 0.040 and 0.095% by weight, respectively, as shown in Table 3.

また、脱炭率および脱酸率はそれぞれ93.3%,64
.0%であった。
In addition, the decarburization rate and deoxidation rate were 93.3% and 64%, respectively.
.. It was 0%.

1方、従来法のA−2ではCおよびO量はそれぞれ0.
065,0.102各重量%でA−1のものに比べて多
かった。
On the other hand, in conventional method A-2, the amounts of C and O are each 0.
065 and 0.102% by weight, which were higher than that of A-1.

従来法では用いた水素ガスが高純度かつそのD.P.が
−50゜Cと低いため、還元に5時間かけても脱炭は不
充分で高々53%の脱炭率であった。
In the conventional method, the hydrogen gas used is of high purity and its D. P. Since the temperature was as low as -50°C, decarburization was insufficient even after 5 hours of reduction, and the decarburization rate was only 53% at most.

しかし脱酸率はD.P.が低いため脱酸はA−1のもの
ほど進行しないが比較的高くなり、61.4%となった
However, the deoxidation rate is D. P. Although deoxidation did not progress as much as that of A-1 due to the low value, it was relatively high, reaching 61.4%.

なお、従来法で1100℃を超える温度を使用しなかっ
た理由は、純鉄粉系ではこのような高温を用いると、粉
末粒子間の焼結が進み後工程のケーキの粉砕が困難とな
るためである。
The reason why temperatures exceeding 1100°C were not used in the conventional method is that using such high temperatures in pure iron powder systems causes sintering between powder particles, making it difficult to crush the cake in the subsequent process. It is.

さて前述A−1の如く、本発明法の適用により低酸素か
つ低炭素粉末を得ることができるが、この理由は混粉し
た黒鉛が脱酸剤として作用したからである。
Now, as in A-1 above, low oxygen and low carbon powder can be obtained by applying the method of the present invention, and the reason for this is that the mixed graphite acts as a deoxidizing agent.

これを確かめるために、素材Aから黒鉛粉を除いたもの
をA−1とまったく同様に8〜10Torrの平均真空
度で加熱したところ、得られた粉末のO量は0.30重
量%で、加熱前のO量よりも多くなった。
In order to confirm this, material A except graphite powder was heated in the same manner as A-1 at an average vacuum level of 8 to 10 Torr, and the amount of O in the obtained powder was 0.30% by weight. The amount of O was greater than the amount before heating.

このように炭素をほとんど含有しない粉末素材では、単
に真空中で加熱しても脱酸することはできなかった。
In this way, a powder material containing almost no carbon could not be deoxidized simply by heating in a vacuum.

また、A−1の脱酸率がA−2のものより大きい理由は
、加熱中の平均真空度を8〜10Torrに保ち炭素の
直接還元および間接還元により脱酸したからである。
The reason why the deoxidation rate of A-1 was higher than that of A-2 is that the average degree of vacuum during heating was maintained at 8 to 10 Torr and deoxidation was performed by direct reduction and indirect reduction of carbon.

だが、A−2のものでは還元は水素によるから混合した
炭素はA−1に比べて消費される量が少なかったためで
ある。
However, in the case of A-2, the reduction was performed using hydrogen, so the amount of mixed carbon was consumed in a smaller amount than in A-1.

実施例3と4は粗還元粉Bを仕上還元した場合であって
、B−1は本発明法、B−2は従来の水素還元法を適用
したものである。
Examples 3 and 4 are cases where the coarse reduced powder B was subjected to final reduction, with B-1 using the method of the present invention and B-2 using the conventional hydrogen reduction method.

素材Aに比べてBのO量およびC量は多く、C/Oモル
比は1.62とAより大きい。
Compared to material A, the amount of O and the amount of C in B are larger, and the C/O molar ratio is 1.62, which is larger than that in A.

B−1では電気炉により外部から加熱し、加熱中の平均
真空度を0.05Torrとし、仕上還元条件は130
0℃×15mmとした。
In B-1, heating was performed externally using an electric furnace, the average degree of vacuum during heating was 0.05 Torr, and the final reduction condition was 130 Torr.
The size was 0°C x 15mm.

B−2ではD.P.−50℃の水素雰囲気で従来法によ
り1100°C×3hrの条件で還元した。
In B-2, D. P. Reduction was carried out using a conventional method in a -50°C hydrogen atmosphere at 1100°C for 3 hours.

この結果、粉末のCおよびO量はB−1でそれぞれ0.
202,0.114各重量%、B−2でそれぞれ2.1
3,0.195各重量%となり、本発明法での脱炭率お
よび脱酸率が共に従来法に比べて大きくなる。
As a result, the amount of C and O in the powder was 0.0 for B-1, respectively.
202, 0.114% by weight each, 2.1% each in B-2
3.0.195% by weight, and both the decarburization rate and the deoxidation rate in the method of the present invention are greater than those in the conventional method.

B−1のように高温で加熱したものでも、保持時間が短
いので粉末粒子間の焼結はそれほど進行せず、比較的簡
単に粉砕できた。
Even when heated at a high temperature like B-1, the holding time was short, so sintering between the powder particles did not progress much, and the powder could be ground relatively easily.

実施例5と6は素材Bと同様粗還元粉末の仕上還元例で
ある。
Examples 5 and 6, like Material B, are examples of final reduction of coarsely reduced powder.

素材Cは粗還元後の海綿鉄のC量が0.21重量%、O
量が1.72重量%の粉末に菜種油を2重量%添加混合
し、C/Oモル比を0.94としたものである。
Material C has a carbon content of 0.21% by weight and O after rough reduction.
2% by weight of rapeseed oil was added to and mixed with powder having an amount of 1.72% by weight, and the C/O molar ratio was set to 0.94.

C−1は電気炉により外部から加熱し、加熱中の平均真
空度を8〜10Torrに保ち、1100℃×1hrの
仕上還元を行った本発明法のものである。
C-1 is a method of the present invention in which heating was performed externally using an electric furnace, the average degree of vacuum during heating was maintained at 8 to 10 Torr, and final reduction was performed at 1100° C. for 1 hr.

C−2は従来法Cこ属する水素還元(D.P.−50℃
)の例である。
C-2 is hydrogen reduction (D.P. -50℃), which belongs to conventional method C.
) is an example.

C−2の仕上還元条件は1100℃×3hrとした。The final reduction conditions for C-2 were 1100°C x 3hr.

C−1粉末のCおよびO量はそれぞれ0.012,0.
198各重量%、C−2粉末のそれらはそれぞれ0.3
43,0.370各重量%であった。
The amounts of C and O in C-1 powder are 0.012 and 0.012, respectively.
198% by weight each, those of C-2 powder are 0.3% each
43 and 0.370% by weight.

この例の如く、本発明法では還元剤として例えば油のよ
うな液状のものも使用でき、固体および気体の還元剤と
併せて使用可能であり、要するに炭素源となる物質が添
加されればよく、この還元剤の種類は極めて多い。
As shown in this example, in the method of the present invention, a liquid reducing agent such as oil can also be used, and it can also be used in conjunction with a solid or gaseous reducing agent.In short, it is sufficient to add a substance to serve as a carbon source. There are many types of reducing agents.

実施例7と8は水噴霧した純鉄粉系原料粉D(黒鉛粉を
混合してC/Oモル比を1.00としたもの)の仕上還
元で、D−1は本発明法に属し、D−2は従来法によっ
たものである。
Examples 7 and 8 are the final reduction of water-sprayed pure iron powder-based raw material powder D (mixed with graphite powder to have a C/O molar ratio of 1.00), and D-1 belongs to the method of the present invention. , D-2 were obtained by the conventional method.

D−1は平均真空度8〜10Torr中(こおける例で
ある。
D-1 is an example in which the average degree of vacuum is 8 to 10 Torr.

還元条件は電気炉加熱により1100’C×2hrとし
た。
The reduction conditions were 1100'C x 2 hr by heating in an electric furnace.

D−2では水素(D.P.−50°G)を用い、110
0゜C×5hrの還元を行った。
In D-2, hydrogen (D.P. -50°G) was used, and 110
Reduction was performed at 0°C for 5 hours.

還元後の粉末のCおよびO量は、D−1がそれぞれ0.
101,0.198各重量%であるのに対し、D−2で
はCおよび0量がそれぞれ0.969,0.390各重
量%で、これまで示した例と同様に、本発明法では脱炭
率および脱酸率がそれぞれ95.7%,93.7%とな
り優れていることが判る。
The amounts of C and O in the powder after reduction are as follows: D-1 is 0.
101 and 0.198% by weight, whereas in D-2, the amount of C and 0 is 0.969 and 0.390% by weight, respectively.Similar to the examples shown so far, the method of the present invention It can be seen that the charcoal rate and deoxidation rate were 95.7% and 93.7%, respectively, which were excellent.

実施例9と10はNi添加量の多いMn−Ni−Mo系
低合金鋼原料粉Eに対する本発明法(E−1)と従来法
(E−2)の適用例である。
Examples 9 and 10 are examples of application of the method of the present invention (E-1) and the conventional method (E-2) to Mn-Ni-Mo based low alloy steel raw material powder E with a large amount of Ni added.

還元条件としてはE−1では平均真空度8〜10Tor
r中で電気炉により1100℃×2hrとし、これに対
してE−2では水素中(D.P.−50°G)、110
0゜C×5hrの長時間還元を行った。
The reduction conditions for E-1 are an average degree of vacuum of 8 to 10 Torr.
In E-2, it was heated at 1100°C x 2hr in an electric furnace at 110°C in hydrogen (D.P. -50°G).
Long-term reduction was performed at 0°C for 5 hours.

その結果、E−1粉末のCおよびO量はそれぞれ0.0
10,0.085各重量%、E−2のこれらはそれぞれ
0.534,0.170各重量%の値が得られ、低合金
鋼粉の脱酸に対しても本発明法が優れでいることがわか
る。
As a result, the C and O contents of E-1 powder were each 0.0
Values of 10 and 0.085% by weight were obtained for E-2 and 0.534 and 0.170% by weight, respectively, indicating that the method of the present invention is also excellent in deoxidizing low-alloy steel powder. I understand that.

この素材Eの場合にはMnの酸化物を除いては比較的還
元されやすいFe,Ni,Mo等の酸化物であると推定
されるため、本発明法および従来法では比較的低酸素粉
末が得られたのである。
In the case of this material E, it is assumed that other than the oxide of Mn, it is composed of oxides such as Fe, Ni, Mo, etc. that are relatively easy to reduce. It was obtained.

しかし、脱炭に関しては本発明法が優れていることが明
らかである。
However, it is clear that the method of the present invention is superior in terms of decarburization.

従来法により脱炭が進行しないとなれば炭素の混粉は不
要と考えられるが、水噴霧前の溶湯に適量の炭素を添加
すればFeC系状態図から明らかなように溶解温度が低
くなり、水噴霧原料粉の製造が比較的低温で行われ得る
という利点がある。
If decarburization does not proceed with the conventional method, it may be unnecessary to mix carbon powder, but if an appropriate amount of carbon is added to the molten metal before water spraying, the melting temperature will be lowered, as is clear from the FeC system phase diagram. There is an advantage that the production of water spray raw powder can be carried out at relatively low temperatures.

その結果、どうしてもC量の多い水噴霧原料粉末が得ら
れるから、C量の多いこれら粉末を脱炭および脱酸する
本発明法が有効となるのである。
As a result, water spray raw material powders with a large amount of C can be obtained, so the method of the present invention for decarburizing and deoxidizing these powders with a large amount of C is effective.

次に、実施例11と12は水噴霧された粉末に黒鉛粉を
混合し、C/Oモル比が1.0となル粉末素材Fに対す
る本発明法(F−1)および従来法(F−2)の例であ
る。
Next, in Examples 11 and 12, the method of the present invention (F-1) and the conventional method (F-1) for powder material F, in which graphite powder was mixed with water-sprayed powder and the C/O molar ratio was 1.0. This is an example of -2).

素材Fは素材Eに合金成分としてCrを0.54重量%
添加しかつNiを0.51重量%としたMn−Ni−C
r−Mo系低合金鋼原料粉である。
Material F is Material E with 0.54% by weight of Cr as an alloy component.
Mn-Ni-C with added Ni content of 0.51% by weight
This is r-Mo based low alloy steel raw material powder.

還元条件としてはF−1では電気炉にて平均真空度0.
05Torr中で1100°C×2hrでありF−2で
は水素中(D.P.−50℃)で1100℃×3hrと
した。
The reduction conditions for F-1 are an electric furnace with an average degree of vacuum of 0.
In F-2, the temperature was 1100°C x 2 hr in hydrogen (DP -50°C) at 1100°C x 3 hr in 05 Torr.

仕上還元後の粉末F−1ではCおよびO量がそれぞれ0
.0320、196各重量%,F−2ではこれらの値が
それぞれ0.870,0.399各重量%となった。
In powder F-1 after final reduction, the amount of C and O are each 0.
.. For F-2, these values were 0.870 and 0.399 weight %, respectively.

素材Fの0量はA〜Lの12種類の素材の内でも最も多
く、3.56重量%となっていることおよび難還元性酸
化物を構成する合金成分としてCrが添加されているこ
となどにもかかわらず、杢発明法(F−1)のO量は従
来法(F−2)のものより少なくなった。
The amount of 0 in material F is the largest among the 12 types of materials A to L, at 3.56% by weight, and Cr is added as an alloy component constituting a refractory oxide. Nevertheless, the amount of O in the heather invention method (F-1) was smaller than that in the conventional method (F-2).

またFのC量が多いためにF−2では残留するC量は多
くなった。
Further, since the amount of C in F was large, the amount of remaining C in F-2 was large.

実施例13から19までは水噴霧されたままの粉末に黒
鉛粉を混合し、C/Oモル比を1.50と比較的大きく
した場合の素材Gに対する適用例である。
Examples 13 to 19 are examples of application to material G in which graphite powder is mixed with the powder that has been sprayed with water, and the C/O molar ratio is made relatively large at 1.50.

GはMn−Cr−Mo系低合金鋼原料粉であるこの素材
には第1表に示す如く非金属介在物St02,MnO,
Cr203,FeOがそれぞれ0.186,0.337
,0.0503,6.24各重量%含むものである。
G is Mn-Cr-Mo based low alloy steel raw material powder. As shown in Table 1, this material contains non-metallic inclusions St02, MnO,
Cr203 and FeO are 0.186 and 0.337 respectively
, 0.0503, and 6.24% by weight.

従来法G−7は電気炉により加熱し,還元条件は水素中
(D.P.−50℃)で1100℃×5hrとした。
Conventional method G-7 was heated in an electric furnace, and the reduction conditions were 1100° C. x 5 hr in hydrogen (DP -50° C.).

本発明法G−1からG−6までは高周波誘導加熱により
、平均真空度8〜10Torr中で1300℃×15m
m還元したものである。
Methods G-1 to G-6 of the present invention are heated at 1300°C x 15 m in an average vacuum degree of 8 to 10 Torr by high-frequency induction heating.
m reduction.

この内、G−1では昇温開始前から平均真空度を8〜1
0Torr}こ保ちながら加熱した場合の例であり、G
−2,G−3,.G−4,G−5ではそれぞれ400,
600,800.1000℃まで排気できるようセット
してあるが減圧にせず,排気コックを閉じ大気中1気圧
に保ち、それぞれこれらの温度に達した後、平均真空度
を前記の8〜10Torrに保ちながら、それぞれこれ
らの温度以上に昇温を続けそれぞれl300’C×15
mで加熱還元した例である。
Among these, in G-1, the average degree of vacuum was set to 8 to 1 from before the start of temperature rise.
This is an example of heating while maintaining G
-2,G-3,. 400 each for G-4 and G-5,
It is set to exhaust up to 600, 800, and 1000 degrees Celsius, but without reducing the pressure, close the exhaust cock and keep it at 1 atm in the atmosphere, and after reaching these temperatures, maintain the average degree of vacuum at the 8 to 10 Torr mentioned above. However, the temperature continued to rise above these temperatures, and each reached 1300'C x 15
This is an example of thermal reduction at m.

G−6は(Ar+3%H2)をキャリャーガスとし少量
注入し、平均真空度が80〜100Torrになるよう
にして室温から1300℃まで昇温し、15分間保持し
て還元した例である。
G-6 is an example in which a small amount of (Ar + 3% H2) as a carrier gas was injected, the temperature was raised from room temperature to 1300° C. so that the average degree of vacuum was 80 to 100 Torr, and the temperature was maintained for 15 minutes for reduction.

本発明法G71からG−6までは残留CおよびO量がそ
れぞれ0.1重量%以下、0.06重量%以下となり、
脱炭および脱酸が進行している。
In the methods G71 to G-6 of the present invention, the residual C and O amounts are 0.1% by weight or less and 0.06% by weight or less, respectively.
Decarburization and deoxidation are progressing.

しかし、従来法G−7では残留CおよびO量は多くなっ
ている。
However, in conventional method G-7, the amount of residual C and O is large.

これらの例から昇温開始するときの真空度は必ずしも1
00Torr以下に保つ必要はなく、減圧が得られる状
態にセットできたら直ちに加熱を開始して還元温度の8
割に達するまでに排気し、所定の平均真空度に保てばよ
い。
From these examples, the degree of vacuum when starting temperature rise is not necessarily 1.
There is no need to maintain the temperature below 0.00 Torr, and once the pressure is set to a reduced pressure, start heating immediately to reach the reduction temperature of 8.0 Torr.
It is sufficient to evacuate the air until the vacuum level reaches a predetermined average degree of vacuum.

従って、所定の平均真空度が得られるまで昇温を待つこ
ともなく、それだけ仕上還元時間が短縮されることにな
る。
Therefore, there is no need to wait for the temperature to rise until a predetermined average degree of vacuum is obtained, and the final reduction time is shortened accordingly.

ただしこの場合、1気圧下での加熱が可能となる温度は
仕上還元を行おうとする750〜1400℃の範囲の8
割以下の温度までである。
However, in this case, the temperature at which heating is possible under 1 atm is 8°C in the range of 750 to 1400°C at which final reduction is to be performed.
The temperature is below 10%.

それ以上の温度まで1気圧下で加熱すると、この後のよ
り高温の還元でも所望の残留CおよびO量は得られなく
なる。
If heated to a temperature higher than that under 1 atm, the desired amount of residual C and O cannot be obtained even with subsequent reduction at a higher temperature.

このように仕上還元温度の8割以下の温度まで1気圧下
に保っても所望の目的が達せられる理由は8割を超える
温度での還元能力が非常に大きいためによるものである
The reason why the desired objective can be achieved even if the temperature is maintained at 1 atm below 80% of the final reduction temperature is that the reduction ability is extremely large at temperatures above 80%.

つぎに、G粉における還元前後の粉末中の非金属介在物
分析値の変化について見ると、素材GではSiO2,M
nO,Cr203,FeOがそれぞれ0.186,0.
337,0.0503,6.24各重量%のものが、本
発明法を実施すると第3表に示す如くG−1〜G−5で
はこれらの介在物量はそれぞれ0.0332,0.03
55,0.0009,0.0686各重量%以下となり
、本発明法は如何に還元能力が大きいかが分かるはずで
ある。
Next, looking at the changes in the analysis values of nonmetallic inclusions in the powder before and after reduction in the G powder, we find that in the material G, SiO2, M
nO, Cr203, and FeO are 0.186 and 0.186, respectively.
337, 0.0503, and 6.24% by weight respectively, when the method of the present invention is carried out, the amounts of these inclusions in G-1 to G-5 are 0.0332 and 0.03, respectively, as shown in Table 3.
55, 0.0009, and 0.0686% by weight or less, which should show how great the reducing ability of the method of the present invention is.

このように、本発明法では難還元性金属酸化物であるS
102,MnO,Cr203なども速かに還元されるこ
とが明らかとなった。
In this way, in the method of the present invention, S, which is a hard-to-reducible metal oxide,
It has become clear that 102, MnO, Cr203, etc. are also rapidly reduced.

このように難還元性物質が還元可能となる理由は前記し
たように、炭素による直接還元が進行しているからであ
り、かっ残留O量が少ナくナることはCOガスによる還
元(すなわち間接還元)も含まれていることによる。
The reason that hard-to-reducible substances can be reduced in this way is that, as mentioned above, direct reduction with carbon is proceeding, and the fact that the amount of residual O is small means that reduction with CO gas (i.e. This is because indirect reduction) is also included.

実施例20から27までは水噴霧したままの粉末でC/
Oモル比が1.46である低合金鋼素材Hについての例
である。
In Examples 20 to 27, C/
This is an example of a low alloy steel material H having an O molar ratio of 1.46.

HはSi−Mn−Cr−Mo系鉄系原料粉末である。H is a Si-Mn-Cr-Mo iron-based raw material powder.

この素材Hは第1表に示す如<Si02,MnO,Cr
203,FeO等の非金属介在物をそれぞれ0.038
2,0.298,0.0064,3.45各重量%含む
ものである。
This material H is as shown in Table 1 <Si02, MnO, Cr
203, non-metallic inclusions such as FeO, 0.038 each
It contains 2, 0.298, 0.0064, and 3.45% by weight.

H−1〜H−7は高周波により誘導加熱した例(H−1
〜H−4およびH−7は本発明法、H−5およびH−6
は従来法)であり、還元条件は1300℃×15min
(ただし、H−1のみ5mm)である。
H-1 to H-7 are examples of induction heating using high frequency (H-1
~H-4 and H-7 are the methods of the present invention, H-5 and H-6
is the conventional method), and the reduction conditions are 1300°C x 15 min.
(However, only H-1 is 5 mm).

H−8は水素(D.P.−50°℃)による従来法のも
のであり、この還元条件は1100℃×5hrである。
H-8 is a conventional method using hydrogen (DP -50°C), and the reduction conditions are 1100°C x 5 hr.

H−1〜H−7は加熱中の平均真空度の影響について調
べたものであり、H−1とH−2では8〜10Torr
,H−3,H−4,H−5,H−6,H一7では平均真
空度がそれぞれ0.05,30〜50,200〜300
,600〜700.80〜100Torrで仕上還元し
たものである。
H-1 to H-7 were investigated for the influence of the average degree of vacuum during heating, and H-1 and H-2 were 8 to 10 Torr.
, H-3, H-4, H-5, H-6, H-7, the average degree of vacuum is 0.05, 30-50, and 200-300, respectively.
, 600 to 700. Finish reduction was performed at 80 to 100 Torr.

ただし、H−7では中性ガス(Ar)をキャリャーガス
とした例である。
However, H-7 is an example in which neutral gas (Ar) is used as the carrier gas.

H−2の仕上還元時間は15分間であり、H−1のもの
は5分間であるため、H−2のように還元時間をより長
くすれば脱炭率および脱酸率が向上し、本発明法はより
有効となる。
The final reduction time for H-2 is 15 minutes and that for H-1 is 5 minutes, so if the reduction time is longer like H-2, the decarburization rate and deoxidation rate will improve, and this The invention method becomes more effective.

また、本発明法による仕上還元後の粉末の非金属介在物
量は第3表に示す如く、還元前の素材Hのものより低下
していることがわかり、特に、MnO,FeOの還元が
著しい。
Furthermore, as shown in Table 3, the amount of nonmetallic inclusions in the powder after final reduction by the method of the present invention is found to be lower than that of material H before reduction, and in particular, the reduction of MnO and FeO is remarkable.

さらに、SiO2の還元もわずかではあるが認められ、
Si02の還元が可能となることについては素材℃およ
び後述する素材I,Jについて見ればより明らかとなる
だろう。
Furthermore, reduction of SiO2 was also observed, albeit slightly.
The fact that Si02 can be reduced will become clearer when looking at the material temperature C and materials I and J, which will be described later.

第1図は素材Hを本発明法および従来法により仕上還元
した場合の脱炭率、脱酸率、残留Cおよび残留O量と加
熱中の平均真空度との関%(1300’C×15mm保
持)を示すグラフである。
Figure 1 shows the relationship between the decarburization rate, deoxidation rate, amount of residual C and residual O, and the average degree of vacuum during heating when material H is finished reduced by the method of the present invention and the conventional method (1300'C x 15mm FIG.

この図において脱炭率、脱酸率は平均真空度が数+To
rrを超える低真空度に保つと急激(こ低下することが
認められる。
In this figure, the decarburization rate and deoxidation rate are determined by the average degree of vacuum being several + To
If the degree of vacuum is maintained at a low degree exceeding rr, it is recognized that the degree of vacuum decreases rapidly.

また、残留C量が所望の0.30重量%未満となるとき
の平均真空度は100Torr以下の高真空度のときで
ある。
Further, the average degree of vacuum when the amount of residual C becomes less than the desired 0.30% by weight is a high degree of vacuum of 100 Torr or less.

一方、素材Hに適用した本発明法および従来法での残留
O量は所望の値0.20重量%未満が得られた。
On the other hand, the amount of residual O in the method of the present invention applied to material H and the conventional method was less than the desired value of 0.20% by weight.

また、第2図は素材Hを本発明法により仕上げ還元した
場合のSiO2量、MnO量、FeO量と加熱中の平均
真空度との関%(1300℃×15min保持)を示す
グラフである。
Moreover, FIG. 2 is a graph showing the relationship between the amount of SiO2, the amount of MnO, the amount of FeO and the average degree of vacuum during heating (held at 1300° C. for 15 minutes) when material H is finished reduced by the method of the present invention.

従って,本発明法が有効に実施されるには100Tor
r以下の高真空度が必要になる。
Therefore, in order for the method of the present invention to be effectively carried out, 100 Torr is required.
A high degree of vacuum below r is required.

実施例28から34までは水噴霧したままの粉末でC/
Oモル比が1.48である低合金鋼粉素材■についての
ものである。
In Examples 28 to 34, C/
This is about low alloy steel powder material (2) with an O molar ratio of 1.48.

■には素材Fと同様な種類の合金成分を有するが、Fに
比較して、Mn量がより多く含有する粉末であるMn−
Ni−Cr−Mo系低合金鋼原料粉である。
■ has the same type of alloy components as material F, but compared to F, it is a powder containing a larger amount of Mn.
This is Ni-Cr-Mo based low alloy steel raw material powder.

この素材にはSi02,MnO,Cr203,FeO等
の非金属介在物がそれぞれ0.0050,0.380,
0.0238,3.74各重量%含むものであり、I−
1からI−6までは本発明法に属するものであり、加熱
手段として高周波を用い、加熱中の平均真空度を8〜1
0Torrとしたときの例である。
This material contains nonmetallic inclusions such as Si02, MnO, Cr203, and FeO at 0.0050 and 0.380, respectively.
It contains 0.0238 and 3.74% by weight, and I-
1 to I-6 belong to the method of the present invention, in which high frequency is used as the heating means, and the average degree of vacuum during heating is 8 to 1.
This is an example when the torque is set to 0 Torr.

これらの実施例は還元保持温度と還元保持時間とが異な
る例である。
These Examples are examples in which the reduction holding temperature and the reduction holding time are different.

I−1からI−4までは還元保持温度が1300℃で還
元保持時間がそれぞれ0,5,15.60minである
For I-1 to I-4, the reduction holding temperature is 1300°C and the reduction holding time is 0, 5, and 15.60 min, respectively.

I−5,I−6はそれぞれ1250°C×5min,1
350℃×5minの仕上還元条件で行ったものである
I-5 and I-6 are each 1250°C x 5min, 1
The final reduction was performed at 350°C for 5 minutes.

従来法であるI−7においてはD.P.−50℃の水素
により1100°C×5hrの還元を行った例である。
In the conventional method I-7, D. P. This is an example in which reduction was performed at 1100°C x 5 hours using hydrogen at -50°C.

これらの本発明法では残留CおよびO量がそれぞれ0.
075,0.130各重量%以下となり、従来法のそれ
ぞれ0.624,0.176各重量%よりともに低くな
る。
In these methods of the present invention, the amounts of residual C and O are each 0.
0.075 and 0.130% by weight, respectively, which are lower than the conventional method's 0.624 and 0.176% by weight, respectively.

しかるに、当然本発明法では高い脱炭率および脱酸率が
得られる。
However, naturally, the method of the present invention provides high decarburization and deoxidation rates.

また、本発明法の粉末中のMnO,Cr203,FeO
等の非金属介在物においても素材■に比べて低い値とな
る。
Moreover, MnO, Cr203, FeO in the powder of the method of the present invention
Even the non-metallic inclusions, such as, are lower than those for material (2).

さらに、Si02についても素材の0.0050重量%
から還元後には0.0039重量%以下となり、SiO
2の1還元が可能となることが判明した。
Furthermore, Si02 is also 0.0050% by weight of the material.
After reduction, it becomes less than 0.0039% by weight, and SiO
It turns out that a 2-in-1 reduction is possible.

還元後の残留C,O量および非金属介在物量は高温度、
長時間の還元ほど低下し、本発明法が非常(こ有効であ
ることが認められる。
The amount of residual C and O and the amount of nonmetallic inclusions after reduction are determined by high temperature,
The longer the reduction, the lower the reduction, and it is recognized that the method of the present invention is extremely effective.

高周波加熱によると粉末そのものの発熱により昇温する
から炭化珪素発熱体等による外部からの加熱よりは短時
間で高温度が得られ、このような場合Cこは特に本発明
法が有利である。
With high frequency heating, the temperature rises due to the heat generated by the powder itself, so a higher temperature can be obtained in a shorter time than with external heating using a silicon carbide heating element, and in such cases, the method of the present invention is particularly advantageous.

高温では還元速度が大きくなるので60min以下の保
持時間でも十分に脱酸が進行する。
Since the reduction rate increases at high temperatures, deoxidation proceeds sufficiently even with a holding time of 60 minutes or less.

しかし、電気炉による加熱の場合には比較的低温還元と
なるため2〜5hrの還元時間が必要である。
However, in the case of heating with an electric furnace, the reduction is performed at a relatively low temperature, so a reduction time of 2 to 5 hours is required.

これを超える長時間加熱では仕上還元ケーキの粉砕が困
難となり粉末を得る目的には合致しない。
If the heating time is longer than this, it will be difficult to crush the finished reduced cake, and this will not meet the purpose of obtaining a powder.

実施例35と36は水噴霧したままの粉末に炭素源とし
て菜糧油を0.8重量%添加し、加熱前のC/Oモル比
を0.82とした素材Jの例である。
Examples 35 and 36 are examples of material J in which 0.8% by weight of vegetable oil was added as a carbon source to the powder as-sprayed with water, and the C/O molar ratio before heating was set to 0.82.

JはSi−■−Ni−Cr−Mo系低合金鋼原料粉であ
り、素材■に比べて、Si,Cr,Mo等の合金成分の
量を矛<含宥するものである。
J is a Si-■-Ni-Cr-Mo based low alloy steel raw material powder, which contains less alloy components such as Si, Cr, and Mo than the material (2).

J−1は高周波により1300℃×15minの仕上還
元を行った本発明法に属し,J−2は電気炉により水素
中(D.P.一50°C)で1100℃×5hrの仕上
還元を行った従来法のものである。
J-1 belongs to the method of the present invention in which final reduction was carried out at 1300°C for 15 minutes using high frequency, and J-2 belonged to the method of the present invention in which final reduction was carried out at 1100°C for 5 hours in hydrogen (DP - 50°C) using an electric furnace. This is the conventional method used.

素材JにはSi02,MnO,Cr203,FeOの非
金属介在物が0.1680.194,0.0084,1
.96各重量%含有していたが、本発明法による仕上還
元後のJ−1ではそれぞれ0.125,0.030,0
.0004,0.0054各重量%となり、難還元性酸
化物Si02,MnO,Cr203,等9還元が可能と
なっている。
Material J has nonmetallic inclusions of Si02, MnO, Cr203, and FeO at 0.1680.194, 0.0084, 1
.. 96% by weight, respectively, but in J-1 after final reduction by the method of the present invention, it contained 0.125, 0.030, and 0, respectively.
.. 0004 and 0.0054% by weight, respectively, and it is possible to reduce the hardly reducible oxides Si02, MnO, Cr203, etc.9.

このときの残留CおよびO量も従来法のものよりも低い
値となり、本発明法の有効性が明らかとなった。
The residual C and O amounts at this time were also lower than those of the conventional method, demonstrating the effectiveness of the method of the present invention.

また,1.3Mn−0.5Ni−0.5Cr−0.5M
o系低合金鋼原料粉(素材H,I,Jに粕当するもの。
Also, 1.3Mn-0.5Ni-0.5Cr-0.5M
O-type low alloy steel raw material powder (used as lees for materials H, I, and J).

しかし、HにはNi成分がなく、JにはSiを0.38
重量%含んでいる)において、水素ガスによる仕上還元
ではH−8,1−7,J−2などの従±法から推定され
るように、1還元保持時間が5時間程一の従来法では残
留O量がせいぜい0.15重量%止りであることがわか
る。
However, H has no Ni component, and J has 0.38 Si.
As estimated from conventional methods such as H-8, 1-7, and J-2, in the final reduction with hydrogen gas, the conventional method with one reduction holding time of about 5 hours It can be seen that the amount of residual O is at most 0.15% by weight.

しかし、本発明によるとI−4に示す如<0.055重
量%程度であり、このと今の残留C量も0.007重量
%となり、粉末に関する限りこれらの値は現在達成でき
る最低の値であり、他のとんな従来法でもこの類の実施
例は見られない。
However, according to the present invention, as shown in I-4, the amount of residual C is about <0.055% by weight, and the current amount of residual C is also 0.007% by weight, and as far as powder is concerned, these values are the lowest values currently achievable. This kind of embodiment is not found in any other conventional method.

実施例37と38はこれまでの例とは導って、Si含有
量の多い水噴霧したままの原料粉であり、母合金法によ
りC/0モル在を1.66とした訂どの素材Kは合金成
分としてSiのみ0.94重量%含むSi系低合金鋼原
料粉である。
Examples 37 and 38 differ from the previous examples in that they are raw material powders with a high Si content as they have been sprayed with water, and the revised material K has a C/0 molar content of 1.66 using the master alloy method. is a Si-based low alloy steel raw material powder containing only 0.94% by weight of Si as an alloy component.

K−1,K−2はそれぞれ本発明法、従来法により仕上
還元したものである。
K-1 and K-2 were finished reduced by the method of the present invention and the conventional method, respectively.

K−1は加熱中の平均真空度を8〜10Torrとし、
高周波により×300℃×15min,K−2は水素中
(D.P.−50°C)で電気炉により1100℃×5
hr仕上還元したものである。
K-1 has an average degree of vacuum during heating of 8 to 10 Torr,
By high frequency × 300℃ × 15 min, K-2 in hydrogen (D.P. -50℃) by electric furnace 1100℃ × 5
This is a product that has undergone hr finishing reduction.

素材KにはSiO2が0.0908重量%存在していた
が、本発明法(K−1)によるとこの値が0.0201
重量%となり、また、残留CおよびO量はそれぞれ0.
076,0.045各重量%となり、本発明法の有効性
が著しい。
Material K contained 0.0908% by weight of SiO2, but according to the method of the present invention (K-1), this value was reduced to 0.0201% by weight.
% by weight, and the residual C and O amounts are each 0.
0.076 and 0.045% by weight, indicating the remarkable effectiveness of the method of the present invention.

このことは、大変意義深く、Siを合金化した合金鋼原
料粉の脱酸が本発明法によりのみ可能となることが裏付
けられる。
This is very significant, and confirms that deoxidation of alloy steel raw material powder alloyed with Si is possible only by the method of the present invention.

実施例39と40は高合金鋼原料粉の脱酸例であり、高
速度鋼SKH−9に相当する水噴霧原料粉末(C/Oモ
ル比1.64)を本発明法(L−1)と従来法(L−2
)で仕上還在したものである。
Examples 39 and 40 are examples of deoxidizing high-alloy steel raw material powder, in which water-sprayed raw material powder (C/O molar ratio 1.64) corresponding to high-speed steel SKH-9 was deoxidized by the method of the present invention (L-1). and conventional method (L-2
) was finished and returned.

L=1は、平均真空度0.05Torr中で高周波によ
り加熱し、1300℃×15minの還元を行った。
For L=1, reduction was performed at 1300° C. for 15 minutes by heating with high frequency in an average vacuum degree of 0.05 Torr.

L−2は水素中(D.P.−50℃)で1100°C×
3hrの還元例で、これらの結果、粉末L−1のCおよ
びO量はそれぞれ0.271,0.105各重量%であ
ったのに対して、L−2の粉末ではそれそれ1.18,
0.347各重量%であり、高合金鋼粉の場合において
も本発明法が有効であることが分かった。
L-2 is heated at 1100°C in hydrogen (D.P. -50°C)
In the 3-hour reduction example, the C and O contents of powder L-1 were 0.271 and 0.105% by weight, respectively, whereas they were 1.18% by weight for powder L-2. ,
0.347% by weight, indicating that the method of the present invention is effective even in the case of high-alloy steel powder.

第4表は△C/△Oモル比(還元前後のCモル量の減量
(△C)と還元前後の0モル量の減量(△O)との.比
)と粉末素材のC/Oモル比との関%を示すものである
Table 4 shows the △C/△O molar ratio (the ratio of the weight loss (△C) of C mol before and after reduction to the weight loss (△O) of 0 mol before and after reduction) and the C/O mol of the powder material. It shows the relationship % with the ratio.

第3図は△C/△Oモル比と粉本素材のC/0モル比と
の関%を示すものである。
FIG. 3 shows the percentage relationship between the ΔC/ΔO molar ratio and the C/0 molar ratio of the powder material.

誠5表は加熱中の平均真空度とC02を生成する一元反
応形式の比率との関%を示すものである。
Table 5 shows the relationship between the average degree of vacuum during heating and the ratio of one-way reaction type that produces CO2.

本発明法の還元機構が従来法のものと異ぴる点は第4表
に示す如く△C/△Oモル比と粉末素材のC/Oモル比
との関係にある。
The difference between the reduction mechanism of the present invention and the conventional method lies in the relationship between the ΔC/ΔO molar ratio and the C/O molar ratio of the powder material, as shown in Table 4.

すなわち、.これらの表からわかるように本発明法では
△C/△Oが常に1.0より大きくなることおよび△C
/△OとC/Oとの間には正の相関があることである。
In other words,. As can be seen from these tables, in the method of the present invention, △C/△O is always greater than 1.0 and △C
There is a positive correlation between /ΔO and C/O.

これに対して、水素ガスによる従来法では△C/△Oが
常に1.0より小さくなることおよび△C/△OとC/
Oとの間には負の相関があることである。
On the other hand, in the conventional method using hydrogen gas, △C/△O is always smaller than 1.0 and △C/△O and C/
There is a negative correlation with O.

けれども実施例(従来法)のH−5およびH−6におい
てはC/Oモル比が1.46と太きいにもかかわらず、
△C/△Oが1.08〜1.18となっていることはこ
の実施例が加熱中の平均真空度が200Torr以上の
低真空度下で行ったことを除いては本発明法と同様に還
元したからである。
However, in H-5 and H-6 of Example (conventional method), despite the large C/O molar ratio of 1.46,
The fact that △C/△O is 1.08 to 1.18 is the same as in the method of the present invention, except that this example was conducted under a low degree of vacuum with an average degree of vacuum of 200 Torr or more during heating. This is because it has been reduced to

△C/△Oが1.0を超えることは(1)および(2)
式の還元反応以外に炭素のロスが発生したことを意味す
る。
If △C/△O exceeds 1.0, it means (1) and (2)
This means that carbon loss occurred in addition to the reduction reaction in the equation.

このロスとなる原因としては粉末に付着していたフリー
の炭素が減圧開始時にどうしても飛散することが考えら
れ、特に炭素粉を混合する場合にこの飛散が激しい。
A possible cause of this loss is that free carbon adhering to the powder inevitably scatters at the start of depressurization, and this scattering is particularly severe when carbon powder is mixed.

また減圧雰囲気中でもこの雰囲気にはわずかではあるが
空気を含む場合があって、この酸素分と反応してロスす
ることがあり、特に排気速度の大きい真空ポンプで排気
する場合には少々の真空もれがあっても所望の圧力10
0Torr以下が得られるので、この種のロスが大きい
In addition, even in a reduced pressure atmosphere, this atmosphere may contain a small amount of air, which may react with this oxygen and be lost. Especially when exhausting with a vacuum pump with a high pumping speed, even a small amount of vacuum may be present. Even if there is a difference, the desired pressure 10
Since 0 Torr or less can be obtained, this type of loss is large.

さらに粉末累材のC/Oモル比が大きくなると粉末に合
金化した炭素が加熱中に表面まで拡散し、粉末表面の酸
化物と反応せずフリーとなったカーボンの蒸発すなわち
減圧下であるからカーボン蒸着の現象によるロスがある
Furthermore, when the C/O molar ratio of the powder composite increases, the carbon alloyed with the powder diffuses to the surface during heating, and the free carbon that does not react with the oxide on the powder surface evaporates, i.e. under reduced pressure. There is loss due to the phenomenon of carbon deposition.

特に高周波加熱の場合には鉄系粉末粒子間にアークが飛
ぶのでこのロスが助長され、第4表に示す如く本発明法
の実施例では高周波加熱を行っているのでB−1,G−
1〜G−6,H−1〜H−4,H−7,I−1〜I−6
,K−1,L−1のように△C/△Oが1.0より大き
くなり1.12〜1.60の範囲内となり、炭素のロス
が大きくなる。
Particularly in the case of high-frequency heating, arcs fly between iron-based powder particles, which increases this loss.
1 to G-6, H-1 to H-4, H-7, I-1 to I-6
, K-1, and L-1, ΔC/ΔO becomes larger than 1.0 and falls within the range of 1.12 to 1.60, and the loss of carbon increases.

しかし、本発明法の実施例(、A−1,C−1,D−1
,E−1,F−1)の電気炉加熱では前記のアーク発生
は認められないので△C/△Oの値が1.0よりは大き
くなるが1.02〜1.10の範囲内となり、炭素のロ
スは少ない。
However, the embodiments of the method of the present invention (, A-1, C-1, D-1
, E-1, F-1), the above-mentioned arc generation is not observed, so the value of △C/△O is larger than 1.0, but within the range of 1.02 to 1.10. , carbon loss is small.

これに対し、水素ガスで還元する従来法の実施例(H−
5,H−6を除くすべての従来法の実施例)では△C/
△Oの値は0.44〜0.77の範囲内にある。
In contrast, an example of the conventional method of reducing with hydrogen gas (H-
5. In all conventional method examples except H-6), △C/
The value of ΔO is within the range of 0.44 to 0.77.

けれども、H−5,H−6では低真空度中の加熱であり
、本発明法ではないが高周波加熱を行ったために△C/
△Oは1.0より大きくなり、1.08〜1.18であ
る。
However, in H-5 and H-6, heating was done in a low degree of vacuum, and because high-frequency heating was performed, which is not the method of the present invention, △C/
ΔO is greater than 1.0 and ranges from 1.08 to 1.18.

要するに減圧加熱では△C/△Oは1.0より大きくな
り、水素等のガス還元では1.0より小さくなることで
ある。
In short, ΔC/ΔO becomes larger than 1.0 in reduced pressure heating, and smaller than 1.0 in gas reduction such as hydrogen.

しかし、減圧加熱でも100Torrを超える低真空度
での還元は本発明法に含まれない。
However, even with reduced pressure heating, reduction at a low degree of vacuum exceeding 100 Torr is not included in the method of the present invention.

この結果、すなわち△C/△Oと粉末素材のC/Oとの
関係を示したものが第3図である。
FIG. 3 shows the result, that is, the relationship between ΔC/ΔO and C/O of the powder material.

本発明法の減圧加熱ではC/Oモル比が大きくなると△
C/△Oは1.0を超え、ますます大きくなる。
In the reduced pressure heating method of the present invention, when the C/O molar ratio becomes large, △
C/ΔO exceeds 1.0 and becomes larger.

減圧加熱でも100Torr以上の低真空加熱ではC/
Oモル比が大きくなっても第3図に示すH−5,H−6
の如く△C/△Oは高々1.18となり本発明法の傾向
からはずれる。
Even with reduced pressure heating, C/
Even if the O molar ratio increases, H-5 and H-6 shown in Figure 3
As shown, ΔC/ΔO is at most 1.18, which deviates from the tendency of the method of the present invention.

更に、粉末素材Hを例にとって加熱中の平均真空度が変
ると脱酸形式(還元形式)が如何に変化するかを説明す
る。
Furthermore, using powder material H as an example, it will be explained how the deoxidation type (reduction type) changes when the average degree of vacuum during heating changes.

まず第5表に示すCO2を生成する還元形式の比率を求
める方法(こついて記す。
First, the method for determining the ratio of reduction methods that produce CO2 shown in Table 5 (details are given below).

(1)式と(2)式とから(5)式が得られる。Equation (5) is obtained from Equation (1) and Equation (2).

(2)式,(5)式の反応が進行する比率をそれぞれm
,n%とすると、一般の還元反応では(2)式と(5)
式との混合で進行するから(6)式が成立する。
The rate at which the reactions in equations (2) and (5) proceed is m
, n%, then in a general reduction reaction, equation (2) and (5)
Equation (6) holds true because it proceeds by mixing with Eq.

m+n−=100 (6) このときの還元操作で失われるCの変化量△Cモル数は
(7)式で表わされる。
m+n-=100 (6) The amount of change ΔC mole number of C lost in the reduction operation at this time is expressed by equation (7).

(6)式を用いて(7)式から(8)式が得られる。Using equation (6), equation (8) is obtained from equation (7).

ここで,△Clとは粉末素材中の炭素分が還元反応に関
与しないでロスするモル量である。
Here, ΔCl is the molar amount of carbon content in the powder material that is lost without participating in the reduction reaction.

(8)式からn値は(9)式のように表現される。From equation (8), the n value is expressed as shown in equation (9).

真空ポンプで、常時排気しながら素材Hを加熱する場合
には、真空度は0.01Torr以下の高真1.50と
なる。
When heating the material H with a vacuum pump while constantly evacuating, the degree of vacuum is 0.01 Torr or less, which is a height of 1.50.

ここで、素材HのC/Oモル比がは1.50程度となっ
た。
Here, the C/O molar ratio of material H was about 1.50.

また、このような高真空度下では(1)式の反応は進行
せず、(2)式の直接還元のみにより還元が進行すると
考えられるからn=なる。
Furthermore, under such a high degree of vacuum, it is thought that the reaction of formula (1) does not proceed, and the reduction proceeds only by direct reduction of formula (2), so n=.

それ故に0.01Torr以上での低真空度でのn。Therefore, n at low vacuum levels above 0.01 Torr.

は(10)式により計算で求められる。ように表現でき
る。
is calculated using equation (10). It can be expressed as

従って、任意の平均真空度でこる比率npが求められ、
これらを第5表に示した。
Therefore, the ratio np that occurs at any average degree of vacuum can be found,
These are shown in Table 5.

この表によるとH−5,H−6の従来法では(5)式の
反応が進行する比率は50%以上となり、CO2ガスが
発生する間接還元が支配的となる。
According to this table, in the conventional method for H-5 and H-6, the rate at which the reaction of formula (5) proceeds is 50% or more, and indirect reduction in which CO2 gas is generated becomes dominant.

このような場合には真空系内は(5)式の反応により生
成したCO2ガスで満たされることになり、CO2分圧
が高くなるので還元は進行しずらくなる。
In such a case, the inside of the vacuum system will be filled with CO2 gas generated by the reaction of equation (5), and the CO2 partial pressure will become high, making it difficult for reduction to proceed.

また水素ガスによる従来法での還元のn 値が168%
となっているがこの還元の本質は水素が△Cに比べ大き
くなり、脱炭は起こりにくいことを示唆するものである
In addition, the n value of conventional reduction using hydrogen gas was 168%.
However, the essence of this reduction is that hydrogen becomes larger than △C, suggesting that decarburization is difficult to occur.

それ故、このときのnpは見掛上の値であって100%
を超えるのである。
Therefore, np at this time is an apparent value and is 100%
It exceeds.

要するに本発明法が従来法と異なる点は昇温および降温
中も含めて加熱中の真空度を100Torr以下の範囲
内めある一定の値に常に保つため、(2)式による炭素
の直接還元と(5)式によるCO2が発生する還元が適
度に進行し、(5)式による還元反応が50%を超えな
いことにある。
In short, the method of the present invention differs from the conventional method in that the degree of vacuum during heating is always maintained at a certain value within the range of 100 Torr or less, including during temperature rise and temperature fall, so direct reduction of carbon according to equation (2) is performed. The reason is that the reduction in which CO2 is generated according to the formula (5) proceeds appropriately, and the reduction reaction according to the formula (5) does not exceed 50%.

すなわち、本発明法ではCOガスまたはH2ガスの平衡
に近い状態での還元が支配的でなく、ガス還元の伺倍も
還元能力のある炭素による非平衡状態での直接還元とC
OガスまたはキャリャーガスとしたH2ガスの還元が適
度に進行しているからである。
In other words, in the method of the present invention, the reduction of CO gas or H2 gas in a near-equilibrium state is not dominant, and the reduction of CO gas or H2 gas in a non-equilibrium state is twice as much as the direct reduction of CO gas or H2 gas in a non-equilibrium state with carbon that has reducing ability.
This is because the reduction of O gas or H2 gas used as carrier gas is proceeding appropriately.

このことを別な面から見ると、(2)式および(5)式
が同時に進行する本発明去では高真空中での直接還元の
みのときよりも同一C量でより多くの酸素量が脱酸でき
ること、すなわち最終的に同一O量の粉末を得るのに添
加C量(母合金法、混合法など総ての方法を含む)を少
なくできるということ、及び本発明法では炭素の直接還
元反応が伴っているので100Torrを超える低真空
度中での仕上還元および1気圧のCOまたはH2ガス中
での還元の従来法に比べてCr,V,Mn,Si等から
成る難還元性金属酸化物が還元できることなどの特徴が
ある。
Looking at this from another perspective, in the method of the present invention in which equations (2) and (5) proceed simultaneously, a larger amount of oxygen is desorbed with the same amount of C than in the case of only direct reduction in a high vacuum. In other words, the amount of added C (including all methods such as the master alloy method and the mixing method) can be reduced to obtain powder with the same amount of O, and the method of the present invention does not require a direct reduction reaction of carbon. Compared to the conventional method of final reduction in a low vacuum of over 100 Torr and reduction in CO or H2 gas at 1 atm, the reduction of refractory metal oxides consisting of Cr, V, Mn, Si, etc. It has the characteristic that it can be reduced.

これが本発明法が従来法に比較して優れる点である。This is the point where the method of the present invention is superior to the conventional method.

以上、本発明法の適用範囲は純鉄粉、低合金鋼粉、高合
金鋼粉、フエロアロイ粉なと非常に広範囲の鉄系金属粉
末の仕上還元に及ぶもので、低酸素、低炭素鉄系粉末を
得ることが出来る。
As mentioned above, the scope of application of the method of the present invention extends to the finishing reduction of a very wide range of iron-based metal powders such as pure iron powder, low-alloy steel powder, high-alloy steel powder, and ferroalloy powder. You can get powder.

さて、このような実施例から本発明法が鉄系粉末素材(
原料粉)の仕上還元方法として如何に有力かつ有効な方
法であるかが理解されるであろうが、これはひとえに鉄
系粉末素材を脱酸力の非常に強い炭素による直接還元と
COガスによる間接還元とが適度に重なって起こる相乗
作用によるものである。
Now, from these examples, it is clear that the method of the present invention can be applied to iron-based powder materials (
It will be understood how powerful and effective this method is as a final reduction method for raw material powder (raw material powder), but this method is based solely on the direct reduction of iron-based powder materials with carbon, which has a very strong deoxidizing ability, and the use of CO gas. This is due to a synergistic effect caused by moderate overlap with indirect reduction.

このように本発明法により粉末治金用の低酸素、低炭素
鉄系粉末の製造が可能となった。
As described above, the method of the present invention has made it possible to produce a low-oxygen, low-carbon iron-based powder for powder metallurgy.

従来技術ではこの目的が達せられなかったため、Cr,
Mn,Si等を合金化した焼入性およびその他の機械的
特性の優れる粉末治金用、特に焼結鍛造用鉄系粉末の製
造が不可能とされていた。
Since this objective could not be achieved with the conventional technology, Cr,
It has been considered impossible to manufacture iron-based powder for powder metallurgy, especially for sintering and forging, which is alloyed with Mn, Si, etc. and has excellent hardenability and other mechanical properties.

仮に製造されても含有酸素量が0.20重量%以上とな
り、所望の目的は達成できなかった。
Even if it were manufactured, the oxygen content would be 0.20% by weight or more, and the desired purpose could not be achieved.

しかし露点の非常に低い還元性雰囲気中での還元では0
.20重量%未満の含有酸素量となるが、工業的にこの
種の還元性雰囲気を得ることは極めて困難であった。
However, when reduced in a reducing atmosphere with a very low dew point, 0
.. Although the oxygen content is less than 20% by weight, it has been extremely difficult to obtain this type of reducing atmosphere industrially.

従って従来はMnを0.3重量%未満を含む純鉄粉及び
Ni,Moの合金成分を主体とする低合金鋼粉のみが製
造販売されていたと申しても過言ではない。
Therefore, it is no exaggeration to say that in the past, only pure iron powder containing less than 0.3% by weight of Mn and low alloy steel powder mainly containing alloy components of Ni and Mo were manufactured and sold.

だが、このうち、Ni,Moを含む鉄系粉末は高価であ
るばかりでなく、これら合金成分を主体とする低合金鋼
粉からの焼結部品は前記機械的特性にそれほど優れるも
のではない。
However, among these, iron-based powders containing Ni and Mo are not only expensive, but also sintered parts made from low-alloy steel powders mainly containing these alloy components do not have such excellent mechanical properties.

そこで、本発明法が実施されるとNi,Moを主体とす
る低合金鋼粉に代り、Cr,Mn,Si等を合金化した
比較的安価でかつ特性の優れる粉末治金用、特に焼結鍛
造用低合金鋼粉を製造され得る。
Therefore, if the method of the present invention is implemented, instead of low-alloy steel powder mainly composed of Ni and Mo, it will be possible to use powder metallurgy powder alloyed with Cr, Mn, Si, etc., which is relatively inexpensive and has excellent properties, especially for sintering. Low alloy steel powder for forging can be produced.

また、本発明法は低合金鋼粉ばかりでなく、0.3重量
%程度のMnを含む純鉄声の仕上還元にも応用でき、脱
酸かつ脱炭が迅速に進行することおよびH2,CO等の
還元ガスを必ずしも必要としないことなどの理由のため
コスト的にも安価であるから実用化した場合には利点が
多い。
In addition, the method of the present invention can be applied not only to low-alloy steel powder but also to the final reduction of pure steel powder containing about 0.3% by weight of Mn, and deoxidation and decarburization proceed rapidly, and H2, CO This method has many advantages when put into practical use because it is inexpensive because it does not necessarily require reducing gases such as .

さらに、実施例にも示した如く、高合金鋼粉の仕上還元
にも適用でき、本発明の用途は実に広範囲となる。
Furthermore, as shown in the examples, the present invention can be applied to finishing reduction of high alloy steel powder, and the applications of the present invention are truly wide-ranging.

特に高周波誘導加熱による方法を採用する場合には高温
、短時間の処理で難還元性酸化物が脱酸され、かつ粉末
の炭素量は低減できるから、いかなる鉄系粉末の仕上還
元にも適している。
In particular, when using a method using high-frequency induction heating, refractory oxides are deoxidized in a short time at high temperatures, and the amount of carbon in the powder can be reduced, making it suitable for the final reduction of any iron-based powder. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一例における脱炭率、脱酸率、残留C
量および残留O量と加熱中の平均真空度との関係を示す
グラフ、第2図は同じくSiO2量、MnO、,FeO
量と加熱中の平均真空度との関係を示すグラフ、第3図
は同じく△C/△Oモル比と粉末素材のC/Oモル比と
の関係を示すグラフである。
Figure 1 shows the decarburization rate, deoxidation rate, and residual C in an example of the present invention.
A graph showing the relationship between the amount of SiO2, the amount of residual O, and the average degree of vacuum during heating.
FIG. 3 is a graph showing the relationship between the amount and the average degree of vacuum during heating, and FIG. 3 is a graph showing the relationship between the ΔC/ΔO molar ratio and the C/O molar ratio of the powder material.

Claims (1)

【特許請求の範囲】[Claims] 1 純鉄系粉末あるいは鉄合金元素の酸化物を含む鉄合
金系粉末の鉄系原料粉に、あらかじめ炭素を合金化させ
るかまたは液体状もしくは粉末状の炭素源を添加混合す
るかして、これら原料粉の含有酸素量を4.0重量係以
下かつこの原料粉のC/Oモル比を0.7〜2.0の範
囲内とし、これら原料粉を平均圧力が100Torr以
下の真空度下でかつ仕上還元温度750〜1400℃の
範囲内で加熱することにより脱炭と同時に脱酸を行い、
含有酸素量が0.20重量%未満でかつ含有炭素量が0
.30重量%未満の鉄系粉末を得ることを特徴とする低
酸素、低炭素鉄系粉末の製造方法。
1. Pure iron-based powder or iron-based raw material powder of iron alloy-based powder containing oxides of iron alloy elements is alloyed with carbon in advance, or a liquid or powdered carbon source is added and mixed. The oxygen content of the raw material powder is 4.0% by weight or less and the C/O molar ratio of this raw material powder is within the range of 0.7 to 2.0, and these raw material powders are heated under a degree of vacuum with an average pressure of 100 Torr or less. Deoxidation is performed at the same time as decarburization by heating within the final reduction temperature range of 750 to 1400°C,
Oxygen content is less than 0.20% by weight and carbon content is 0
.. A method for producing a low-oxygen, low-carbon iron-based powder, characterized in that less than 30% by weight of iron-based powder is obtained.
JP51016525A 1976-02-19 1976-02-19 Method for producing low oxygen, low carbon iron powder Expired JPS589801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51016525A JPS589801B2 (en) 1976-02-19 1976-02-19 Method for producing low oxygen, low carbon iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51016525A JPS589801B2 (en) 1976-02-19 1976-02-19 Method for producing low oxygen, low carbon iron powder

Publications (2)

Publication Number Publication Date
JPS52100308A JPS52100308A (en) 1977-08-23
JPS589801B2 true JPS589801B2 (en) 1983-02-23

Family

ID=11918681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51016525A Expired JPS589801B2 (en) 1976-02-19 1976-02-19 Method for producing low oxygen, low carbon iron powder

Country Status (1)

Country Link
JP (1) JPS589801B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200021512A (en) 2017-07-26 2020-02-28 히다치 오토모티브 시스템즈 가부시키가이샤 Buffer and its manufacturing method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54133407A (en) * 1978-04-07 1979-10-17 Hitachi Ltd Production of super alloy member
JPS5922761B2 (en) * 1979-11-06 1984-05-29 川崎製鉄株式会社 Method for producing water atomized raw steel powder
JPS57164901A (en) * 1981-02-24 1982-10-09 Sumitomo Metal Ind Ltd Low alloy steel powder of superior compressibility, moldability and hardenability
JPS61190003A (en) * 1985-02-18 1986-08-23 Kawasaki Steel Corp Heat treatment of ferrous powder
JP2704064B2 (en) * 1991-07-04 1998-01-26 三菱製鋼株式会社 Iron-based powder for sintering and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4961008A (en) * 1972-10-16 1974-06-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4961008A (en) * 1972-10-16 1974-06-13

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200021512A (en) 2017-07-26 2020-02-28 히다치 오토모티브 시스템즈 가부시키가이샤 Buffer and its manufacturing method

Also Published As

Publication number Publication date
JPS52100308A (en) 1977-08-23

Similar Documents

Publication Publication Date Title
Danninger et al. Degassing and deoxidation processes during sintering of unalloyed and alloyed PM steels
JP6093405B2 (en) Nitrogen-containing low nickel sintered stainless steel
US8808468B2 (en) Fe—Si—La alloy having excellent magneto-caloric properties
RU2414327C2 (en) Method of producing metal powder with reduced oxygen content
JPS5810962B2 (en) Alloy steel powder with excellent compressibility, formability and heat treatment properties
US3966454A (en) Method for producing iron or iron alloy powders having a low oxygen content
EP0038558B1 (en) Process for producing sintered ferrous alloys
CN111206172B (en) Nitrided ferrocolumbium alloy and preparation method and application thereof
JPS589801B2 (en) Method for producing low oxygen, low carbon iron powder
JPS58481B2 (en) Method and apparatus for producing low-oxygen iron-based metal powder
JP2016526099A (en) Method for producing steel parts by powder metallurgy and the resulting steel parts
WO2017043091A1 (en) Method for producing alloyed steel powder for sintered member starting material
WO2006098238A1 (en) Method for producing rare earth magnet and impregnation apparatus
JPH02274801A (en) Finishing reduction method for alloy steel powder
JPS6358897B2 (en)
JPS6249345B2 (en)
JPS5935602A (en) Production of low oxygen low carbon alloy steel powder
Danninger et al. Sintering 1: Asymmetry Effects in Ferrite-Austenite Transformation During Sintering of Carbon-Free Ferrous Alloys
Alava Waeckerle et a
JPS6257703B2 (en)
JPS5922761B2 (en) Method for producing water atomized raw steel powder
JPH06184608A (en) Method of reducing oxide in iron powder without decarburization
Dudrová et al. Direct vacuum sintering behaviour of M2 high speed steel powder with copper and graphite additions
JPS6358896B2 (en)
JPH0772281B2 (en) Method for reducing atomized alloy steel powder through primary reduction and secondary finish reduction