JPS5896854A - High toughness steel for pressure vessel - Google Patents

High toughness steel for pressure vessel

Info

Publication number
JPS5896854A
JPS5896854A JP19663781A JP19663781A JPS5896854A JP S5896854 A JPS5896854 A JP S5896854A JP 19663781 A JP19663781 A JP 19663781A JP 19663781 A JP19663781 A JP 19663781A JP S5896854 A JPS5896854 A JP S5896854A
Authority
JP
Japan
Prior art keywords
steel
toughness
rtndt
pressure vessel
aln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19663781A
Other languages
Japanese (ja)
Other versions
JPH024673B2 (en
Inventor
Teiichi Enami
榎並 禎一
Noriaki Koshizuka
腰塚 典明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19663781A priority Critical patent/JPS5896854A/en
Publication of JPS5896854A publication Critical patent/JPS5896854A/en
Publication of JPH024673B2 publication Critical patent/JPH024673B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pressure Vessels And Lids Thereof (AREA)

Abstract

PURPOSE:To obtain a high toughness steel for a pressure vessel by hardening a steel contg. specified amounts of C, Si, Mn, Ni, Cr, Mo acid-sol. Al, N, P and S to specify the amounts of N as AlN, P and S contained in the steel. CONSTITUTION:A steel is refined by normalizing, hardening, tempering and stress relieving annealing to obtain a steel having a composition consisting of, by weight, 0.15-0.23% C, 0.15-0.35% Si, 1.25-1.5% Mn, 0.5-0.7% Ni, 0.01- 0.2% Cr, 0.4-0.6% Mo, 0.008-0.025% acid-sol. Al and the balance Fe with inevitable impurities and further contg. 0.004-0.012% N as AlN, P and S satisfying 2P+S/(N as AlN)<=2.6. The amounts of N as AlN, P and S are specified during the heating of the hardening. The resulting steel is used as a steel for a pressure vessel having >=100mm. thickness.

Description

【発明の詳細な説明】 本発明は高靭性圧力容器用鋼に係り、特に板厚1001
以上の鋼に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to high toughness steel for pressure vessels, and particularly
Regarding the above steel.

近年、化学工業の進歩にともない圧力容器はますます大
型化し、それに使用される鋼板も板厚が増大する傾向に
ある。さらに石油にかわるエネルギー源として原子力が
注目され、発電用原子炉の建設が活発に進められている
。原子炉をはじめとする圧力容器用鋼材の低温靭性に対
する要求性能は安全性の観点からますます厳しくなる傾
向にある。従来からこの種鋼材は、焼入れ、焼もどし処
理をして使用されるが、A/Nを微細分散させることに
より結晶粒の微細化をはかり、ざらに吸収エネルギーの
増加のために、あるいは異方性を少なくするためにSを
極端に低くしたりして靭性の改善を図ってきた。しかし
厚肉化などの理由により靭性の確保がますます困難とな
っている。この種の一板の靭性の評価はシャルピー衝撃
試験と落電試験によって決定される関連適合温度(以下
RTNDTと称する)によって行われている。RT N
DT  とは落電試験によって決定された無延性遷移温
度(以下TNDT と称する)とTNDT + 33℃
以下の試験温度で行ったシャルピー試験の個々の吸収エ
ネルギーが6.91wf−m以上、機影張出率が0.9
 m以上であればTNDT −RTNDTであり、RT
NDTが低いほど靭性は良好である。従って設計上から
は、安全性を考慮してRTNDTが低いことが要求され
ることになる、しかし原子炉の大型化にともない銅板の
板厚が増加し、靭性の確保はますます困難となっている
In recent years, with advances in the chemical industry, pressure vessels have become increasingly larger, and the steel plates used therein have also tended to become thicker. Furthermore, nuclear power is attracting attention as an energy source that can replace oil, and the construction of nuclear power reactors is actively underway. The performance requirements for low-temperature toughness of steel materials for pressure vessels such as nuclear reactors are becoming increasingly strict from a safety perspective. Conventionally, this type of steel is used after being quenched and tempered, but by finely dispersing A/N, the crystal grains are made finer, roughly to increase absorbed energy, or anisotropically. Efforts have been made to improve toughness by lowering S to an extremely low level. However, due to reasons such as increased wall thickness, it is becoming increasingly difficult to ensure toughness. Evaluation of the toughness of this type of plate is carried out by the Charpy impact test and the related compliance temperature (hereinafter referred to as RTNDT) determined by the electric drop test. RT N
DT is the non-ductile transition temperature (hereinafter referred to as TNDT) determined by a current drop test and TNDT + 33℃
The individual absorbed energy of the Charpy test conducted at the following test temperatures is 6.91wf-m or more, and the shadow projection ratio is 0.9
m or more, TNDT −RTNDT, and RT
The lower the NDT, the better the toughness. Therefore, from a design perspective, a low RTNDT is required in consideration of safety.However, as nuclear reactors become larger, the thickness of the copper plate increases, making it increasingly difficult to ensure toughness. There is.

本発明の目的は上記従来技術の問題点を解決し、板厚1
0〇−以上の高靭性圧力容器用鋼を提供するにある。
The purpose of the present invention is to solve the problems of the prior art described above, and to
An object of the present invention is to provide a steel for pressure vessels with a high toughness of 0- or higher.

安全性の観点から原子炉をはじめ圧力容器においては、
鋼板の内質検査が十分行われているため有害な内部欠陥
は皆無であるが、施工時に発生する欠陥が表面に存在す
る場合が想定できる。このような表面欠陥から音大事故
につながる脆性破壊が発生することが考えられ、このた
め板厚中心の靭性も重要であるが、表面層の靭性は特に
重要である。表面近傍の靭性がすぐれていることにより
表面欠陥からの脆性破壊の発生を防止することができる
。本発明者らはRT?[)Tにおよぼす各種要因の影響
を調査研究し、極厚鋼板のRTNDT特に鋼板表層部の
RTNDTを低温化できる知見を得た。
From a safety perspective, in nuclear reactors and other pressure vessels,
The internal quality of the steel plate has been thoroughly inspected, so there are no harmful internal defects, but it is possible that defects that occur during construction may exist on the surface. It is thought that such surface defects can cause brittle fractures that can lead to major music accidents, and for this reason, the toughness at the center of the plate thickness is also important, but the toughness of the surface layer is particularly important. Excellent toughness near the surface makes it possible to prevent brittle fracture from occurring due to surface defects. The inventors are RT? [) We investigated and researched the influence of various factors on T, and obtained knowledge that can lower the RTNDT of extremely thick steel sheets, especially the RTNDT of the surface layer of the steel sheet.

本発明の要旨とするところは次のとおりである。The gist of the present invention is as follows.

すなわち、重量比でCIo、15〜0.23%、Si+
0.15〜0.35%、Mn j  1.25〜1.5
0%、Ni+0.50〜0.70%、Cr : 0.0
1〜0.20%、MoC2,40〜0.60%、酸可溶
紅+o、oos〜0.025%を含有し、更に焼入加熱
時の房としてのN+0.0040〜0.0120%、”
+)/CAthとしてN)<2.60の範囲のPおよび
Sを含み残部がFe  および不可避的不純物より成る
ことを特徴とする高靭性圧力容器用鋼である。
That is, CIo, 15 to 0.23% by weight, Si+
0.15-0.35%, Mn j 1.25-1.5
0%, Ni+0.50-0.70%, Cr: 0.0
1 to 0.20%, MoC2, 40 to 0.60%, acid-soluble red + o, oos ~ 0.025%, and further N + 0.0040 to 0.0120% as a bunch during quenching heating, ”
The steel is a high-toughness steel for pressure vessels, characterized in that it contains P and S in a range of N)<2.60 as +)/CAth, with the remainder consisting of Fe and inevitable impurities.

本発明鋼は調質処理としで焼串(N)−焼入れ(Q)−
焼もどしくT)一応力除去焼鈍(SR)を施して用いら
れる。
The steel of the present invention undergoes heat treatment and skewering (N) - quenching (Q) -
Tempering T) - Used after stress relief annealing (SR).

シャルピー衝撃靭性を高めるには結晶粒度を細かくする
ことがもつとも有効であることはすでに良く知られてい
る事実である。しかし落重特性の改善の手法は、現在ま
で明確にされていなかった。
It is already a well-known fact that making the grain size finer is effective in increasing Charpy impact toughness. However, the method for improving the drop weight characteristics has not been clarified until now.

本発明者らは落首試験のRTNDTにおよぼすオーステ
ナイト粒度の影響を調査し第1図の結果を得た。
The present inventors investigated the influence of austenite grain size on RTNDT in a neck drop test and obtained the results shown in FIG. 1.

第1図は焼串−焼入れ一焼もどし一応力除去焼鈍の調質
処理を行い、その焼入れは35℃/mInの冷却速度の
場合であるが、オーステナイト粒の微細化がRTNDT
を著しく低温とすることを示している。
Figure 1 shows the case where the tempering treatment of skewering, quenching, tempering, and stress relief annealing was performed, and the quenching was performed at a cooling rate of 35°C/mIn, but the austenite grains were refined by RTNDT.
This indicates that the temperature is significantly lower.

図中drはγ相の結晶粒の直径である。In the figure, dr is the diameter of the crystal grain of the γ phase.

次にオーステナイト粒度の微細化の方法としてktNの
利用を考え、A/にとしてのN(以下NAJNと称す)
とRTNDTとの関係を調査した。すなわち第1図と同
一の鋼板のNAo+を変化してそのRTNDTを調査し
、その結果を第2図に示した。第2図からNunが増加
すると共に、RTNDT  が著しく低温となl)、 
AtNの結晶粒微細化効果により落重特性が改善される
ことがわかる。第2図においてRTNDTの低温化に著
しい効果があるのは焼入時のNuNが0.0040%以
上の範囲である。一方NAJNは0.0120%を越し
ても特にRTNDTに悪影響をおよぼさないが、これを
越して含有すると溶製、加工上問題を生じるので上限を
0.0120%とした。
Next, we considered the use of ktN as a method of refining the austenite grain size, and we decided to use ktN (hereinafter referred to as NAJN) as A/N.
We investigated the relationship between this and RTNDT. That is, the RTNDT of the same steel plate as in FIG. 1 was investigated by changing the NAo+, and the results are shown in FIG. From Fig. 2, as Nun increases, RTNDT becomes significantly lower.
It can be seen that the drop weight characteristics are improved due to the crystal grain refining effect of AtN. In FIG. 2, the range in which NuN during quenching is 0.0040% or more has a significant effect on lowering the temperature of RTNDT. On the other hand, even if NAJN exceeds 0.0120%, it does not particularly adversely affect RTNDT, but if it is contained in excess of this, problems will arise in melting and processing, so the upper limit was set at 0.0120%.

上記の理由から焼入加熱時のNAJNを0.0040〜
0.0120%の範囲に限定した。
For the above reasons, the NAJN during quenching heating is 0.0040~
It was limited to a range of 0.0120%.

次に焼入の冷却速度とRTNDTとの関係を調査研究し
、前記の調質処理をした鋼板において、RTNDTは鋼
中に含有されるPおよびSの含有量%から成るxp+d
ux  パラメーターと第3図の如き関係を有すること
を見出した。すなわち800〜400℃の温度範囲で冷
却速度の速い2000℃/m i n  の場合i、=
 4! ” +/NAtNカ2.6 以下1: す6 
トRTNDTが著しく低温となり、冷却速度が遅い35
℃/minの場合においても同様の傾向を示すが、その
影響は速い場合はど顕著ではない。焼入の際、−板の表
層部の冷却速度は速いので、本発明においては、P 、
 S 、 NA4Nの関係をI P + :/’NA絹
く2.60に限定することによって、鋼板の靭性特に表
層部の靭性を著しく改善した。
Next, we investigated and researched the relationship between the cooling rate of quenching and RTNDT, and found that RTNDT is xp+d, which is composed of the content% of P and S contained in the steel, in the steel plate that has undergone the above heat treatment treatment.
It was found that there is a relationship with the ux parameter as shown in FIG. That is, in the case of 2000°C/min with a fast cooling rate in the temperature range of 800 to 400°C, i, =
4! ” +/NAtNka2.6 Below 1: Su6
RTNDT becomes extremely low temperature and cooling rate is slow35
A similar tendency is shown in the case of C/min, but the effect is not as pronounced when the speed is high. During quenching, the cooling rate of the surface layer of the plate is fast, so in the present invention, P,
By limiting the relationship between S and NA4N to I P + :/'NA 2.60, the toughness of the steel sheet, particularly the toughness of the surface layer, was significantly improved.

上記N、PおよびS以外の下記成分は、焼串−焼入れ一
焼もどし、一応力除去焼鈍の調質処理後の強度が0.2
%耐力35 kff/mJ以上、引張強さ55kff/
−以上となる如く次の理由により限定した。
The following components other than the above N, P, and S have a strength of 0.2 after tempering treatment of skewering, quenching, tempering, and stress relief annealing.
% proof stress 35 kff/mJ or more, tensile strength 55 kff/
- As mentioned above, the scope was limited due to the following reasons.

C: Cは0.15%未満では強度確保が困難であり、0.2
3%を越すとRTNDTに悪影響があるので0.15〜
0.23%の範囲に限定した。
C: If C is less than 0.15%, it is difficult to ensure strength;
If it exceeds 3%, it will have a negative effect on RTNDT, so 0.15~
It was limited to a range of 0.23%.

Si I Si  (,0,15%未満では十分の強度が得られず
、0.35%を越すと靭性が低下するので、0.15〜
0.35%の範囲に限定した。
Si I Si (, below 0.15%, sufficient strength cannot be obtained, and when it exceeds 0.35%, toughness decreases, so 0.15~
It was limited to a range of 0.35%.

Mn I Mn は多いほど強度確保に有利であるが、1.50%
を越すと靭性を劣化し%1.25%未満では十分な強度
が得られないので1.25〜1.50%の範囲に限定し
た。
The more Mn I Mn, the more advantageous it is to ensure strength, but 1.50%
If the content exceeds 1.25%, the toughness deteriorates, and if it is less than 1.25%, sufficient strength cannot be obtained, so the content was limited to a range of 1.25 to 1.50%.

I I Ni  は靭性を高める元素であるが、0.50%未満
ではその効果が少なく、かつ高価であるため上限? 0
.70%とし、0.50〜0.70%の範囲に限定した
I I Ni is an element that increases toughness, but if it is less than 0.50%, its effect is small and it is expensive, so is there an upper limit? 0
.. 70% and limited to a range of 0.50 to 0.70%.

r t cr  は強度を高めるために添加されるが、0.01
%未満ではその効果がほとんどなく、0.20%を越す
と応力除去焼鈍割れ性を高めるので、0.01〜0.2
0%の範囲に限定した。
r t cr is added to increase the strength, but 0.01
If it is less than 0.2%, it has almost no effect, and if it exceeds 0.20%, it increases the stress relief annealing cracking property, so it is 0.01 to 0.2%.
It was limited to a range of 0%.

MO= MOは焼入れ性を高め、焼もどし時にMOICとして析
出し強度を増加させる元素であり強化元素として必須で
あるが、高価であるため上限を0.60%とし、0.4
0%未満ではその効果が少ないので。
MO = MO is an element that increases hardenability and precipitates as MOIC during tempering to increase strength, and is essential as a reinforcing element, but because it is expensive, the upper limit is set at 0.60% and 0.4
If it is less than 0%, the effect will be small.

0.40〜0.60%の範囲に限定した。It was limited to a range of 0.40 to 0.60%.

M: A/、は脱酸剤として添加するが、更にAIRとして結
晶粒を微細化するので、前記の幻人としてN10.00
40〜0.0120%が存在するために。
M: A/ is added as a deoxidizing agent, but it also refines the crystal grains as AIR, so it is N10.00 as the above-mentioned phantom.
For the presence of 40-0.0120%.

このN量に相当する量として酸可溶Atを0.008〜
0.025%の範囲に限定添加した。
The amount of acid-soluble At corresponding to this N amount is 0.008~
Addition was limited to 0.025%.

実施例 転炉−説ガスー取鍋精錬−造塊−圧延により製作した1
70■と250■の板厚の第1表に示す如き化学成分を
有する極厚鋼板に第2表に記載の調質処理を施し、JI
SIO号試験片による引張試験、P−3型試験片による
落電試験を行い、その結果を第1表に併わせで示した。
Example 1 produced by converter - gas - ladle refining - ingot making - rolling
Extra-thick steel plates with thicknesses of 70 and 250 cm and having the chemical composition shown in Table 1 are subjected to the heat treatment shown in Table 2, and JI
A tensile test using a SIO test piece and an electric drop test using a P-3 test piece were conducted, and the results are also shown in Table 1.

比較@C、DはいずれもIP+VNAJN  が本発明
の限定外である。
In both comparisons @C and D, IP+VNAJN is outside the scope of the present invention.

第1表において、本発明鋼AおよびBは比較銅Cおよび
Dに比較して表面のRTNDTが特に低温となっている
。また中心部のRTNDTも本発明鋼の方が低温となっ
ている。この結果から本発明−は靭性特に鋼板表層部の
靭性がすぐれていることが分る。
In Table 1, the RTNDT of the surface of the steels A and B of the present invention is particularly lower than that of the comparative coppers C and D. Furthermore, the temperature of RTNDT in the center is lower in the steel of the present invention. This result shows that the steel sheet according to the present invention has excellent toughness, especially the toughness of the surface layer of the steel sheet.

本発明は上記の実施例からも明らかな如く、鋼の化学成
分、特に焼入加熱時のAtNi1を限定することによっ
て、表層部の靭性が特にすぐれた高靭性圧力容器用−を
製造することができた。
As is clear from the above examples, the present invention makes it possible to manufacture a high-toughness pressure vessel with particularly excellent surface layer toughness by limiting the chemical composition of steel, particularly AtNi1 during quenching heating. did it.

【図面の簡単な説明】[Brief explanation of drawings]

第4図はオーステナイト粒度と落電試験ty) RTN
DTとの関係を示す相関図、第2図はktNとしてのN
含有量と落電試験のRTNDTとの関係を示す相関図、
第3図は”−しし’Qhsx  と落電試験のRTND
Tとの関係を示す相関図である。 代理人中路武雄 第1図 第2図 第31.11
Figure 4 shows austenite grain size and electric drop test type) RTN
A correlation diagram showing the relationship with DT, Figure 2 shows N as ktN.
Correlation diagram showing the relationship between the content and RTNDT of the electric drop test,
Figure 3 shows the RTND of “-Shishi’Qhsx” and the current drop test.
It is a correlation diagram showing the relationship with T. Agent Takeo Nakaji Figure 1 Figure 2 Figure 31.11

Claims (1)

【特許請求の範囲】[Claims] (1)  重量比でCIo、15〜0.23%、Si 
: 0.15〜0.35%、h4n 11.25〜1.
50%、 Nl + 0.50〜0.70%、Cr :
 0.01−0.20%、Mo +0.40〜0.60
%、酸可溶A/、10.008〜0.025%を含有し
、更に焼入加熱時のAmとしてのN;0.0040〜0
.0120%、″ムレ1ん(ト)としてN)<、2.6
0の範囲のPおよびSを含膓部がFe  および不可避
的不純物より成ることを特徴とする高靭性圧力容器用鋼
(1) CIo, 15-0.23% by weight, Si
: 0.15-0.35%, h4n 11.25-1.
50%, Nl + 0.50-0.70%, Cr:
0.01-0.20%, Mo +0.40-0.60
%, acid-soluble A/, 10.008 to 0.025%, and further N as Am during quenching heating: 0.0040 to 0
.. 0120%, ``More 1 (T) N) <, 2.6
1. A high toughness steel for pressure vessels, characterized in that the P and S content is in the range of 0, and the portion thereof is made of Fe and inevitable impurities.
JP19663781A 1981-12-07 1981-12-07 High toughness steel for pressure vessel Granted JPS5896854A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19663781A JPS5896854A (en) 1981-12-07 1981-12-07 High toughness steel for pressure vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19663781A JPS5896854A (en) 1981-12-07 1981-12-07 High toughness steel for pressure vessel

Publications (2)

Publication Number Publication Date
JPS5896854A true JPS5896854A (en) 1983-06-09
JPH024673B2 JPH024673B2 (en) 1990-01-30

Family

ID=16361073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19663781A Granted JPS5896854A (en) 1981-12-07 1981-12-07 High toughness steel for pressure vessel

Country Status (1)

Country Link
JP (1) JPS5896854A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277561A (en) * 1988-09-13 1990-03-16 Nippon Steel Corp Nuclear reactor steel plate excellent in electron beam welding characteristic
JPH0277562A (en) * 1988-09-13 1990-03-16 Nippon Steel Corp Nuclear reactor steel excellent in electron beam welding characteristic
JPH0277557A (en) * 1988-09-13 1990-03-16 Nippon Steel Corp Steel for pressure vessel excellent in electron beam welding characteristic

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277561A (en) * 1988-09-13 1990-03-16 Nippon Steel Corp Nuclear reactor steel plate excellent in electron beam welding characteristic
JPH0277562A (en) * 1988-09-13 1990-03-16 Nippon Steel Corp Nuclear reactor steel excellent in electron beam welding characteristic
JPH0277557A (en) * 1988-09-13 1990-03-16 Nippon Steel Corp Steel for pressure vessel excellent in electron beam welding characteristic
JPH0534415B2 (en) * 1988-09-13 1993-05-24 Nippon Steel Corp
JPH0534416B2 (en) * 1988-09-13 1993-05-24 Nippon Steel Corp
JPH0588297B2 (en) * 1988-09-13 1993-12-21 Nippon Steel Corp

Also Published As

Publication number Publication date
JPH024673B2 (en) 1990-01-30

Similar Documents

Publication Publication Date Title
AU2015281542B2 (en) Carburized alloy steel, method for preparing same, and use thereof
EP0236505B1 (en) Case-hardening steel and process for its production
JPS63230851A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
JP2007031749A (en) Steel for welded structure with excellent toughness in weld heat-affected zone, and its manufacturing method
JPS63230847A (en) Low-alloy steel for oil well pipe excellent in corrosion resistance
EP0225425A2 (en) Low alloy steel having good stress corrosion cracking resistance
JPH066771B2 (en) Low alloy steel with excellent creep and hydrogen corrosion resistance
CN112853155A (en) High aluminum austenitic alloy having excellent high temperature corrosion resistance and creep resistance
JPS5896854A (en) High toughness steel for pressure vessel
US4820486A (en) Low alloy steel having good stress corrosion cracking resistance
JPS59170244A (en) Strong and tough co-free maraging steel
JPH0143008B2 (en)
JPS6033340A (en) Extremely thick low carbon steel plate with excellent weldability
JPS5864359A (en) Heat resistant cast steel
JPS58199813A (en) Production of high tensile steel plate having high resistance to hydrogen induced cracking
JPH04333516A (en) Production of thick 80kgf/mm2 class high tensile strength steel excellent in weldability
JPH0192342A (en) Austenitic stainless steel plate having excellent deep drawability
JPS6013060B2 (en) Ferritic heat-resistant steel
JP2001158936A (en) Thin steel sheet excellent in hydrogen induced cracking resistance and producing method therefor
JPS5942744B2 (en) Non-thermal heat working Cr-Mo steel with excellent strength and toughness
JPS61194153A (en) Steel sheet for pressure vessel having high strength and high toughness
JPS592736B2 (en) Cr↓-Mo steel for pressure vessels
JPS62149845A (en) Cu precipitation type steel products having excellent toughness of welded zone and its production
JPH0293045A (en) Steel for nuclear reactor pressure vessel having excellent drop weight characteristics
JPS6364515B2 (en)