JPS5895193A - Method for heat recovery from crude gas produced in coke oven - Google Patents

Method for heat recovery from crude gas produced in coke oven

Info

Publication number
JPS5895193A
JPS5895193A JP19173181A JP19173181A JPS5895193A JP S5895193 A JPS5895193 A JP S5895193A JP 19173181 A JP19173181 A JP 19173181A JP 19173181 A JP19173181 A JP 19173181A JP S5895193 A JPS5895193 A JP S5895193A
Authority
JP
Japan
Prior art keywords
gas
heat
particles
coke oven
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19173181A
Other languages
Japanese (ja)
Inventor
Katsuaki Makino
槙野 勝昭
Ichiro Nishiura
西浦 一朗
Nobuaki Konishi
小西 信明
Tomoo Maeda
前田 友夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
JFE Engineering Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP19173181A priority Critical patent/JPS5895193A/en
Publication of JPS5895193A publication Critical patent/JPS5895193A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium

Abstract

PURPOSE:To improve a heat exchanging efficiency of a jet flow layer cooler by a method wherein the crude gas produced in a coke oven is temporarily gathered in a gas collecting tube and then the apparent heat of the gas is collected only by a heat exchanger with the jet flow layer cooler. CONSTITUTION:The crude gas produced in a coke oven is gathered temporarily in a gas collecting tube and then the apparent heat of the gas is collected only by the heat exchanger with the jet flow layer cooler 7. In the cooler 7, the gas flows in through a gas inlet part 19 of an outer cylinder 18 and ascends within an inner cylinder 21, and flows out through a particle rush-out preventing plate 22 and out of a gas outlet part 20. On the other hand, heat medium particles 28 ascend within the inner cylinder 21 together with the ascending gas, collide the plate 22 and drop down between the inner and outer cylinders 21 and 18, thus recirculating within the inner cylinder 21. By the flow of the gas and circulation of the particles 28, the heat of the gas is transferred from the particles 28 to the heat exchanging water within a tube 25. In a gas-requid separator 23, the steam is separated and the heat is recovered. The substance contained in the gas such as tar is condensed on the surface of the particles 28 and carbonized while the particles 28 descend. The tar drops off from the particles 28 if they collide with each other. Thus, the tar is prevented from attaching to the wall of the tube.

Description

【発明の詳細な説明】 本発明は、コークス炉炭化室、で発生するコークス炉発
生粗ガスの顕熱を回収する方法に関し、特にコーキング
の発生を防止し、熱交換装置を長期間安定し・て運転す
ることのでき、る上記ガスの熱回収方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering sensible heat from coke oven crude gas generated in a coke oven carbonization chamber, and in particular to a method for preventing the occurrence of coking and stabilizing a heat exchange device for a long period of time. The present invention relates to a heat recovery method for the above gas, which can be operated at

従来、コークス炉炭化室で発生する600〜800℃の
コークス炉発生粗ガスは、安水フラフシングにより85
℃前後に冷却された後、ガス精製工程へ吸引、圧送され
ており、このガスの顕熱は有効に利用されていない。
Conventionally, the crude gas generated in a coke oven at a temperature of 600 to 800°C generated in a coke oven carbonization chamber is reduced to 85°C by fluffing with ammonium water.
After being cooled to around 0.9°C, the gas is sucked and pumped into the gas purification process, and the sensible heat of this gas is not effectively utilized.

このガスの顕熱を利用するために、ガスを直接熱交換器
に導き熱交換を行うと、通常の熱交換器では次のような
8題が生じ、長期間安定して操業することができない。
In order to utilize the sensible heat of this gas, when the gas is directly led to a heat exchanger for heat exchange, the following eight problems occur with a normal heat exchanger, making it impossible to operate stably for a long period of time. .

すなわち、コークス炉発生粗ガスには、ペンゾール類、
タール等の高沸点物質、水分、その他の溶解性不純物が
多量に含まれており、450℃以上の環境下ではペンゾ
ール類、タールが高温分解して伝熱管上に炭素が沈着し
、450℃以下の環境下ではタール等の高沸点物質が伝
熱管上に凝縮して、しまう。この結果、カス管、熱交換
器が閉塞されていわゆるコーキングが生じ、圧損が増加
し、更に熱交換効率が低下し、装置を安定して長期間運
転することができないのである。
In other words, the crude gas generated from the coke oven contains pensols,
Contains a large amount of high-boiling substances such as tar, moisture, and other soluble impurities, and in an environment of 450℃ or higher, pensols and tar decompose at high temperatures and carbon is deposited on the heat transfer tube, and if the temperature is lower than 450℃. In this environment, high boiling point substances such as tar condense on the heat exchanger tubes. As a result, the waste tube and the heat exchanger are blocked, so-called coking occurs, pressure loss increases, and heat exchange efficiency decreases, making it impossible to operate the device stably for a long period of time.

そこで本発明者等は、コーキングの発生を防止、し熱交
換装置の長期安定運転により従来利用していなかつ、た
コークス炉発生粗ガスの顕熱を回収して有効に利用すべ
く検討の結果、先に、噴流層ターフと濡壁クーラーとに
よる熱回1[7の技術を確立・し、特願昭55−111
196号と゛Lて出願したが、その後の研究により噴流
層クーラ単独でも有効に熱回収できるとの知見を得て本
発明に到達したものである。
Therefore, the inventors of the present invention have conducted studies to prevent the occurrence of coking and to recover and effectively utilize the sensible heat of the crude gas generated in the coke oven, which has not been used in the past, through long-term stable operation of the heat exchange equipment. First, we established the technology for thermal circulation 1 [7] using a spouted bed turf and a wet wall cooler, and filed a patent application in 1986-111.
No. 196 was filed, but subsequent research led to the discovery that heat can be effectively recovered using a spouted bed cooler alone, leading to the present invention.

すなわち本発明は、コークス炉発件粗ガスを一旦集気管
に集めた後、噴流層クーラによ乙熱交換器のみで該ガス
の顕熱を回2収することを特徴とするコークス炉発生粗
ガスの熱回収方法に関するものである。
That is, the present invention provides a coke oven produced crude gas which is characterized in that after the coke oven produced crude gas is once collected in a collection pipe, the sensible heat of the gas is recovered by a spouted bed cooler using only a heat exchanger. This invention relates to a gas heat recovery method.

以下、添付図面を参照して本発明方法を詳細に説明する
Hereinafter, the method of the present invention will be explained in detail with reference to the accompanying drawings.

第1図は、本発明方法の一実施態様例を示す70−であ
る。
FIG. 1 is a diagram 70- showing an embodiment of the method of the present invention.

第1図において、コークス炉1の炭化室と接続した上昇
管2に2つのガス管路3.4を設け、ガス管路5KVi
辿断弁5、集気管6、噴流層クーラ7、安水クーラ8、
流量制御装置9、ガスブロア10を順炉設け、該管路6
の末端をドライメイン12に接続させる。他方のガス管
路4には、水封弁11、ドライメイン12、圧力f制御
装@13、プライマリクーラ14、圧力制御装置15、
ガスブロア16を順に設け、該管路4の末端を図示省略
のガス精製装置に接続させる。
In FIG. 1, two gas pipes 3.4 are provided in the riser pipe 2 connected to the carbonization chamber of the coke oven 1, and the gas pipes 5KVi
Trace valve 5, air collection pipe 6, spouted bed cooler 7, ammonium water cooler 8,
A flow rate control device 9 and a gas blower 10 are sequentially provided in the furnace, and the pipe line 6
Connect the end of the dry main 12 to the dry main 12. The other gas pipe line 4 includes a water seal valve 11, a dry main 12, a pressure f control device @13, a primary cooler 14, a pressure control device 15,
A gas blower 16 is provided in sequence, and the end of the pipe line 4 is connected to a gas purification device (not shown).

上記の噴流層クーラ7は、第2図に示すようなm成のも
のが使用される。すなわち、外筒18の下端にガス流入
口19、上端にガス流出口2゜を設け、内部に円筒21
を設けると共に該内筒21の上方に粒子飛出防止板22
を設ける。外) 筒18と内筒21の間に熱媒体粒子28を充填し、該粒
子28充填層内に熱交換用水の管路25を設ける。該管
路25は外筒18外に設けた気水分離器25とポンプ2
4を介して循環路とし、熱交換用水を該ポンプ24によ
り循環させる。
The above-mentioned spouted bed cooler 7 is of m configuration as shown in FIG. 2. That is, a gas inlet 19 is provided at the lower end of the outer cylinder 18, a gas outlet 2° is provided at the upper end, and a cylinder 21 is provided inside.
A particle splash prevention plate 22 is provided above the inner cylinder 21.
will be established. (External) Heat medium particles 28 are filled between the cylinder 18 and the inner cylinder 21, and a heat exchange water pipe 25 is provided in the bed filled with particles 28. The pipe line 25 is connected to a steam separator 25 provided outside the outer cylinder 18 and a pump 2.
4 to form a circulation path, and water for heat exchange is circulated by the pump 24.

また、気水分離器23には管路27を接続させ、該管路
27にポンプ26を設けて、蒸気量に見合う、量の水を
該ポンプ26、管路27により気液分離器23へ補給−
し、気水分離器23の液面゛を一定に保つよ□うにする
Further, a pipe line 27 is connected to the steam-water separator 23, and a pump 26 is provided in the pipe line 27, and an amount of water corresponding to the amount of steam is supplied to the gas-liquid separator 23 via the pump 26 and the pipe line 27. Supply-
and keep the liquid level in the steam/water separator 23 constant.

なお、上記の熱媒体粒子28は、耐熱性、耐摩耗性に−
優れ、密度の小さいアルミナポール等が使用される。
Note that the heat medium particles 28 have heat resistance and wear resistance.
High quality, low density alumina pole etc. are used.

以、Eのように構成されたフローにおいて、コークス炉
発生粗ガスは、遮断弁5、集気管6を経て噴流層クーラ
7に入る。噴流層クーラ7では、上記ガスが外筒18の
ガス流入口19から入り、内筒21内を上昇し、粒子飛
出防止板22を経てガス流出口2oから流出する。一方
、熱媒体粒子28は、ガスの上昇に伴って内筒21内を
上昇した後、粒子飛出防止板22に当って内筒21と外
筒18との間に落下し、この間を細工して再び内筒21
内を循環する。上記のガスの流通と粒子28の循環によ
り、ガスの熱(600〜800℃)は粒子28から管路
25内の熱交換用水゛に移動し、気水分離器2ろで蒸気
が分離されて熱回収される。熱交換用水はポンプ24に
より管路25内を循環し、蒸気量に見合う補給水がポン
プ26にて管路27から気水分離器23に補給される。
Hereinafter, in the flow configured as shown in E, the coke oven generated crude gas enters the spouted bed cooler 7 via the shutoff valve 5 and the air collection pipe 6. In the spouted bed cooler 7, the gas enters from the gas inlet 19 of the outer cylinder 18, rises in the inner cylinder 21, passes through the particle splash prevention plate 22, and flows out from the gas outlet 2o. On the other hand, the heat transfer medium particles 28 rise within the inner cylinder 21 as the gas rises, then hit the particle splash prevention plate 22 and fall between the inner cylinder 21 and the outer cylinder 18, and the space between them is manipulated. Inner cylinder 21 again
circulate within. Due to the above-mentioned gas flow and circulation of the particles 28, the heat of the gas (600 to 800°C) is transferred from the particles 28 to the heat exchange water in the pipe 25, and steam is separated in the steam-water separator 2 filter. Heat is recovered. Heat exchange water is circulated through a pipe 25 by a pump 24, and make-up water corresponding to the amount of steam is supplied to the steam-water separator 23 from a pipe 27 by a pump 26.

上記のように噴流層クーラ7で熱回収されて300〜4
00℃程度になったコークス炉ガスは、安水クーラ8に
導かれ、ここで管路81から注入された安水により70
〜80℃VcfM度降下した後、流量制御装置9を組込
んだ圧力補償のためのブロア10を経てドライメイン1
2に入り、七かる後、管路4、プライマリクーラ14、
ブロワ16を経てガス精製工程へ送られる。
As mentioned above, heat is recovered in the spouted bed cooler 7 and
The coke oven gas, which has reached a temperature of about 00°C, is led to an ammonium water cooler 8, where the ammonium water injected from a pipe 81 reaches a temperature of about 70°C.
After dropping by ~80°C VcfM, the dry main 1 passes through a blower 10 for pressure compensation incorporating a flow rate controller 9.
2, after 7 minutes, pipe 4, primary cooler 14,
The gas is sent to the gas purification process via the blower 16.

また、水封弁11Fi、遮断弁5と共に開き、ガス管路
4に設けた圧力制御装置13を用いて上記のガス管路3
へ所定量のガスが流入するように圧力制御することが好
ましく、これにより安定した圧力制御およびガス吸引を
行うことができる。
In addition, the water seal valve 11Fi and the cutoff valve 5 are opened together, and the pressure control device 13 provided in the gas pipe line 4 is used to control the gas pipe line 3.
It is preferable to control the pressure so that a predetermined amount of gas flows into the chamber, thereby enabling stable pressure control and gas suction.

第6図は、本発明方法の他の実施態様例を示すフローで
ある。第6図中、第1.2図と同一符号は第1.2図と
同−機能品を示す。
FIG. 6 is a flowchart showing another embodiment of the method of the present invention. In FIG. 6, the same reference numerals as in FIG. 1.2 indicate products with the same functions as in FIG. 1.2.

第6図のフローは、ガス管路3に遮断弁5、集気管6、
圧力制御装置17、噴流層クーラ7、安水クーラ8、プ
ライマリ−クーラ14、圧力制御装置15、ガスブロア
16を設け、他方のガス管路4に水封弁11、ドライメ
イン12、出力制御袋[13を設け、該ガス管路4の末
端を上記の安水クーラ8とプライマリクーラ140間に
゛接続したものである。
The flow shown in FIG.
A pressure control device 17, a spouted bed cooler 7, an ammonium water cooler 8, a primary cooler 14, a pressure control device 15, and a gas blower 16 are provided, and the other gas pipe 4 is equipped with a water seal valve 11, a dry main 12, and an output control bag [ 13, and the end of the gas pipe line 4 is connected between the ammonium water cooler 8 and the primary cooler 140.

第6図において、ドラインメイン12側に通ガスしない
場合も、該iラインメイン12に安水ジャワを常時行い
、温度降下を防でと共に、故障、検査等で運転を停止す
る場合にも直ちに切替えることができるようにすること
が好ましい。(なお、ドライメイン12の温度降下を防
ぐのは、該ドライメインはコークス炉本体と固定されて
おり、温度変化を−受けると一熱膨張によるヒズミ発生
の危険A籠があり、これを防止するためである。) なお、第1図のフローは、ガス管路4と、該管路4に設
けられている各設備は従来の設備そのままであるので、
既設のコークス炉に本発明方法を適用する場合に好適で
あり、また第3図のフローは、第1図のフロー中ガスブ
dワ10を省略しており、新設のコークス炉に本発明方
法を適用する場合に好適である。
In Fig. 6, even if gas is not passed to the i-line main 12 side, the i-line main 12 is always flushed with ammonium water to prevent a drop in temperature, and if the operation is to be stopped due to a breakdown, inspection, etc., the switch can be switched immediately. It is preferable to make it possible. (The reason for preventing the temperature drop in the dry main 12 is that the dry main is fixed to the coke oven body, and there is a risk of distortion occurring due to thermal expansion when subjected to temperature changes. (This is because the flow shown in Fig. 1 is the same as the gas pipe line 4 and the equipment installed in the pipe line 4 as is the conventional equipment.)
The method of the present invention is suitable for applying to an existing coke oven, and the flow shown in FIG. 3 omits the gas blower 10 in the flow of FIG. It is suitable when applied.

以上説明した本発明方法による効果をまとめると次の通
りである。
The effects of the method of the present invention explained above are summarized as follows.

(1) 高温のコークス炉ガスを噴流層クーラ7にて熱
回収するため、該ガス中のタール、ピンチ等は熱媒体粒
子28の表面に凝縮し、該粒子28が下降する間に炭化
し、更に該粒子2B同志の衝突”により剥離し、熱交換
用水の管路25へ付着するのが防止され、噴流層クーラ
7の熱交換効率を高めることができる(該噴流層クーラ
7では100 kg7cml 0以上の高圧スチームの
回収゛ができることを実験により、確認している)。ま
た熱媒体−粒子28は自己再生し、抜出再生は不要であ
る。
(1) Since heat is recovered from high-temperature coke oven gas in the spouted bed cooler 7, tar, pinch, etc. in the gas condense on the surface of the heat carrier particles 28, and carbonize while the particles 28 descend. Furthermore, the particles 2B are prevented from peeling off due to collisions with each other and adhering to the heat exchange water pipe 25, thereby increasing the heat exchange efficiency of the spouted bed cooler 7 (in the spouted bed cooler 7, the particles 2B are separated from each other and attached to the heat exchange water pipe 25). It has been confirmed through experiments that it is possible to recover high-pressure steam as described above.) Furthermore, the heating medium particles 28 are self-regenerating, and extraction and regeneration are not necessary.

i21  大量の凝縮タールの取扱いが不要である。i21 No need to handle large amounts of condensed tar.

(3)  ガス配管のデコーキングやボイラ検査等でコ
ークス炉ガス導入を中断する際のタール固化防止設備、
あるtは熱回収運転中に増量してくるタールの抜出処理
設備等が不要で、付帯設備を簡略化できる。
(3) Equipment to prevent tar solidification when coke oven gas introduction is interrupted for decoking gas piping or boiler inspection, etc.
For a certain amount of time, there is no need for equipment to remove the tar that increases during heat recovery operation, and the ancillary equipment can be simplified.

(4)運転が簡単で、かつ安全である。濡壁クーラを使
用する場合、起動時の予熱運転やデコーキング時の運転
中に濡壁クーラのバイパスラインに熱風を通すためのラ
イン切替が必要であるが、本発明の場合、予熱、デコー
キング時も通常の熱回収時の運転と同様であり、しかも
デコーキング時にもスチーム回収を行うことができる。
(4) It is easy and safe to drive. When using a wet wall cooler, it is necessary to switch the line to pass hot air through the bypass line of the wet wall cooler during preheating operation at startup or decoking operation, but in the case of the present invention, preheating, decoking The operation time is the same as that during normal heat recovery, and steam recovery can also be performed during decoking.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第3図は本発明方法の一実施態様例を示す
フロー、第2図は本発明方法に使用される噴流層クーラ
の構成を示す図である。 復代理人  内 1)  明 復代理人  萩 原 亮 −
1 and 3 are flows showing one embodiment of the method of the present invention, and FIG. 2 is a diagram showing the configuration of a spouted bed cooler used in the method of the present invention. Sub-agents 1) Meifuku agent Ryo Hagiwara -

Claims (1)

【特許請求の範囲】[Claims] 一コ、−クス炉発生粗ガスを一旦集気管に集めた後、噴
流層ターフによる熱交換器のみで前記ガスの顕熱を回収
することを特徴とするコークス炉発生粗ガスの熱回収方
法。
1. A method for recovering heat from coke oven crude gas, which comprises collecting the coke oven crude gas in a gas collection pipe and then recovering the sensible heat of the gas using only a spouted bed turf heat exchanger.
JP19173181A 1981-12-01 1981-12-01 Method for heat recovery from crude gas produced in coke oven Pending JPS5895193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19173181A JPS5895193A (en) 1981-12-01 1981-12-01 Method for heat recovery from crude gas produced in coke oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19173181A JPS5895193A (en) 1981-12-01 1981-12-01 Method for heat recovery from crude gas produced in coke oven

Publications (1)

Publication Number Publication Date
JPS5895193A true JPS5895193A (en) 1983-06-06

Family

ID=16279549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19173181A Pending JPS5895193A (en) 1981-12-01 1981-12-01 Method for heat recovery from crude gas produced in coke oven

Country Status (1)

Country Link
JP (1) JPS5895193A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4862954A (en) * 1984-12-28 1989-09-05 Institut Francais Du Petrole Exchanger and method for achieving heat transfer from solid particles
US5205350A (en) * 1990-07-20 1993-04-27 Metallgesellschaft Ag Process for cooling a hot process gas
US5226475A (en) * 1991-02-14 1993-07-13 Tampella Power Oy Circulating fluidized bed process for cooling gases
KR100666685B1 (en) 2005-08-18 2007-01-09 주식회사 서원테크 Steam recovery device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137401A (en) * 1979-04-11 1980-10-27 Mitsubishi Heavy Ind Ltd Cooling device for thermallyydecomposed gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137401A (en) * 1979-04-11 1980-10-27 Mitsubishi Heavy Ind Ltd Cooling device for thermallyydecomposed gas

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4862954A (en) * 1984-12-28 1989-09-05 Institut Francais Du Petrole Exchanger and method for achieving heat transfer from solid particles
US5205350A (en) * 1990-07-20 1993-04-27 Metallgesellschaft Ag Process for cooling a hot process gas
US5226475A (en) * 1991-02-14 1993-07-13 Tampella Power Oy Circulating fluidized bed process for cooling gases
US5282506A (en) * 1991-02-14 1994-02-01 Tampella Power Oy Process based on circulating fluidized bed technique for cooling gases, and a circulating fluidized bed cooler used in the process
KR100666685B1 (en) 2005-08-18 2007-01-09 주식회사 서원테크 Steam recovery device

Similar Documents

Publication Publication Date Title
GB2151150A (en) Process for recovering heat of a tar-containing high temperature gas
CN104524908B (en) A kind of film dust arrester and utilize the pyrolytic process of coal of this film dust arrester
CN107033930A (en) A kind of energy-saving oil-based drill cuttings thermal desorption furnace system
CN206828450U (en) A kind of energy-saving oil-based drill cuttings thermal desorption furnace system
JPS5895193A (en) Method for heat recovery from crude gas produced in coke oven
CN205999329U (en) A kind of wet quenching system
CN104312638B (en) Thermal coupling negative pressure benzene removal, regeneration integrated apparatus
JPS6350632B2 (en)
CN204529771U (en) Coal conversion stove flue gas cleaning system
CN104498106B (en) A kind of coal pyrolysis gas tar reclaimer and method
CN106370040A (en) High-efficiency low-resistance heat tube afterheat recycling device
CN206109331U (en) Raw gas dust collection device
JPS6047518B2 (en) Method for recovering heat from crude gas generated in a coke oven
CN207091373U (en) A kind of multistage hold over system
CN108219861A (en) A kind of thick straw fuel gas purification technique and its purifier
CN205953947U (en) Coke oven gas liquid film cooling device
JPS5872895A (en) Decaulking method
CN206955967U (en) A kind of lignite pyrolysis raw coke oven gas purifying and dedusting and high-grade heat recovery system
JPS6313467B2 (en)
CN107338076A (en) A kind of multistage hold over system and its method for removing pyrolysis gas tar
CN208356287U (en) Cyclic ammonia water UTILIZATION OF VESIDUAL HEAT IN refrigeration unit decontamination apparatus
CN204589105U (en) A kind of film cleaning apparatus
JPH02639B2 (en)
JPS6342960B2 (en)
CN205710597U (en) A kind of pyrolysis of coal oil gas dust filtering device