JPS5889945A - Selective oxidatative catalyst for hydrogen in dehydrogenated product of ethyl benzene - Google Patents

Selective oxidatative catalyst for hydrogen in dehydrogenated product of ethyl benzene

Info

Publication number
JPS5889945A
JPS5889945A JP56189622A JP18962281A JPS5889945A JP S5889945 A JPS5889945 A JP S5889945A JP 56189622 A JP56189622 A JP 56189622A JP 18962281 A JP18962281 A JP 18962281A JP S5889945 A JPS5889945 A JP S5889945A
Authority
JP
Japan
Prior art keywords
catalyst
tin
reaction
hydrogen
dehydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56189622A
Other languages
Japanese (ja)
Inventor
Makoto Imanari
今成 真
Tomoatsu Iwakura
岩倉 具敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP56189622A priority Critical patent/JPS5889945A/en
Publication of JPS5889945A publication Critical patent/JPS5889945A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To enable oxidation of hydrogen with high selectivity under the temp. for oxidizing hydrogen by using catalyst contg. tin oxide. CONSTITUTION:In adding gas contg. oxygen to the dehydrogenated product to oxidiz hydrogen in the dehydrogenated product selectively and catalytically at 500-700 deg.C in the stage of producing styrene by dehydrogenating ethyl benzene, a tin compd. containing >=50wt% in terms of tin oxide is used as a catalyst. The tin compd. is exemplified by tin halide, tin oxyhalide, halogenated ammonium tin, tin sulfate, tin hydroxide, etc.

Description

【発明の詳細な説明】 本発明は、スチレンの製造に用いる触媒に関するもので
ある@ さらに詳しくは、エチルベンゼンを脱水素反応せしめて
スチレンを製造する際の脱水素反応生成物中の水素を選
択的に酸化する触媒に関するものである。
Detailed Description of the Invention The present invention relates to a catalyst used in the production of styrene. More specifically, the present invention relates to a catalyst used in the production of styrene. It relates to a catalyst that oxidizes to

本発明の触媒を用いると、エチルベンゼン脱水素反応生
成物中の水素を選択的に酸化することができ、経済的に
有利にスチレンを製造することができる。
By using the catalyst of the present invention, hydrogen in the ethylbenzene dehydrogenation reaction product can be selectively oxidized, and styrene can be produced economically.

本発明の触媒(佳、アルキル芳香族化合物の脱水素によ
り対応するスチレン置換体を得る場合の脱水素反応生成
物または、ブタン ブテン、インペンタンおよびイソペ
ンテン等の脱水素により対応するオレフィンまたはジオ
レフィンの製造の場合にも応用することができる。殊に
、エチルベンゼン脱水素反応生成物中の水素を選択的に
酸化するのに適する。
The catalyst of the present invention (optionally, the dehydrogenation reaction product when the corresponding styrene substituted product is obtained by dehydrogenation of an alkyl aromatic compound, or the dehydrogenation reaction product of the corresponding olefin or diolefin by dehydrogenation of butane butene, impentane, isopentene, etc.) It can also be applied in production, and is particularly suitable for selectively oxidizing hydrogen in the ethylbenzene dehydrogenation reaction product.

一般に、脱水素反応は吸熱反応であるので、骸反応系を
加熱しなければ、反応は自動的に減速さレル。エチルベ
ンゼンの脱水素反応においても、その工業的実施に当っ
ては、脱水素反応を最大限に進行させる為に、十分に経
済的な熱設備を持つ必要があるが、これは容易なことで
はない。
Generally, the dehydrogenation reaction is an endothermic reaction, so if the reaction system is not heated, the reaction will automatically slow down. In the dehydrogenation reaction of ethylbenzene, in order to carry out the dehydrogenation reaction industrially, it is necessary to have sufficient economical heat equipment to allow the dehydrogenation reaction to proceed to the maximum extent possible, but this is not an easy task. .

従来、該熱設備として、二次的に水蒸気を導入すること
が行われている。また、温度が低下した反応混合物を、
次の反応部に入る前に適当な方法により再加熱する咎の
方法が行われている。しかし、これらの方法は、経済的
に有利なものでもなく、技術的傾線さを伴う。これらの
点を解決する示された装置で、エチルベンゼンの脱水素
反応生成ガス中の水素を、該反応生成ガスに酸素を導入
することにより選択的に酸化・燃焼させ、温度の低下し
た核反応生成ガスの温度を上昇させると共に、エチルベ
ンゼンの脱水素反応でスチレンを生成する化学平衡を、
脱水素反応生成ガス中の水素を選択的に酸化・燃焼させ
ることで、前記化学平衡をスチレンが製造される方向に
移動せしめることが開示されている・ この脱水素反応生成ガス中の水素の選択的酸化ハ、原料
エチルベンゼンおよび目的物のスチレン ′郷の有機物
の酸化反応を起こすことなく、該反応生成ガス中の水素
のみを選択的に酸化することが要求される。さらに、エ
チルベンゼンの脱水素反応は、500〜700℃、好ま
しくは、600〜での発熱も考慮すると、触媒には十分
な耐熱性も必要とされる。実用に際しては、スチレンの
単流収率を高く保つ為には、脱水素反応の温度を650
℃附近の、比較的高温に維持することが望ましい・さら
に、酸素含有ガスは、脱水素触媒層を除く酸化触媒層の
みに供給される。酸素が次の脱水素触媒層まで残ると、
脱水素触媒が劣化することは公知なので、酸素は全て、
酸化触媒層中で消費されることが必要である。また、脱
水素触媒は通常カリウム促進酸化鉄触媒であるので、こ
のカリウムが少しづつ飛散し、下流にある物体に付着す
ることは公知なので、酸化触媒は、このカリウム化合物
による化学的・物理的被毒にも耐えなければな・らない
。いうまでもなく、酸化触媒は、スチレンなどの大量生
産化学品に使用されるので、安価であることも要求され
る。
Conventionally, water vapor has been introduced secondarily as the heat equipment. Also, the reaction mixture whose temperature has been reduced is
A method is used in which the material is reheated by an appropriate method before entering the next reaction section. However, these methods are not economically advantageous and involve technical inclinations. The proposed device that solves these problems selectively oxidizes and burns the hydrogen in the gas produced by the dehydrogenation reaction of ethylbenzene by introducing oxygen into the reaction product gas, thereby reducing the temperature of the nuclear reaction product. As the temperature of the gas increases, the chemical equilibrium that produces styrene through the dehydrogenation reaction of ethylbenzene is
It is disclosed that by selectively oxidizing and burning hydrogen in the dehydrogenation reaction product gas, the chemical equilibrium is shifted in the direction in which styrene is produced. Selection of hydrogen in the dehydrogenation reaction product gas For the target oxidation, it is required to selectively oxidize only the hydrogen in the reaction product gas without causing an oxidation reaction of the organic substances in the raw material ethylbenzene and the target styrene. Furthermore, considering that the dehydrogenation reaction of ethylbenzene generates heat at 500 to 700° C., preferably 600° C., the catalyst must also have sufficient heat resistance. In practice, in order to maintain a high single-stream yield of styrene, the temperature of the dehydrogenation reaction must be set at 650°C.
It is desirable to maintain the temperature at a relatively high temperature around °C. Further, the oxygen-containing gas is supplied only to the oxidation catalyst layer excluding the dehydrogenation catalyst layer. When oxygen remains until the next dehydrogenation catalyst layer,
It is known that dehydrogenation catalysts deteriorate, so all oxygen is
It needs to be consumed in the oxidation catalyst layer. In addition, since the dehydrogenation catalyst is usually a potassium-promoted iron oxide catalyst, it is known that this potassium scatters little by little and adheres to downstream objects, so the oxidation catalyst is not exposed to chemical or physical damage caused by this potassium compound. You have to endure poison. Needless to say, since oxidation catalysts are used in mass-produced chemicals such as styrene, they are also required to be inexpensive.

水素の選択的酸化触媒として公知の、前記特開昭49−
56930号公報に示された還元白金担持ゼオライト触
媒−は、次の欠点を有するものと推定される。すなわち
、該ゼオライト触媒は、650℃程度の比較的高温時の
水素の酸化の選択性に劣るものがある。また、ゼオライ
ト触媒は一般的に、耐熱性が悪いことが知られており、
650℃程度の高温で、長時間使用した場合、触媒性能
の低下が考えられる。さらに、孔径の小さいゼオライト
触媒では、カリウム化合物やカーボンの飛散により、細
孔が閉基される可能性が大きく、実用的に行われる一年
以上もの長期間にわたる使用においては特に前記問題点
が重要となる。そして、白金を使用する点で触媒価格が
高いという、工業的には重大な欠点をもつ。
The above-mentioned Japanese Patent Application Laid-Open No. 1989-1999, which is known as a selective hydrogen oxidation catalyst,
The reduced platinum-supported zeolite catalyst disclosed in Japanese Patent No. 56930 is presumed to have the following drawbacks. That is, some of the zeolite catalysts have poor hydrogen oxidation selectivity at relatively high temperatures of about 650°C. Additionally, zeolite catalysts are generally known to have poor heat resistance.
If used for a long time at a high temperature of about 650°C, the catalyst performance may deteriorate. Furthermore, in zeolite catalysts with small pore diameters, there is a high possibility that the pores will be closed due to the scattering of potassium compounds and carbon, and this problem is particularly important when used for a long period of one year or more. becomes. Furthermore, since platinum is used, the catalyst is expensive, which is a serious drawback from an industrial perspective.

本発明者らは、上記欠点を有しない触媒を求めて、広範
囲にわたって鋭意検討した結果、酸化錫を含有する触媒
を用いた場合にのみ、比較的高温な650℃の水素の酸
化反応温度条件においても、水素の酸化が選択性優れて
行われ、耐熱性・耐被毒性に優れかつ安価な、エチルペ
くイン脱水素反応中の水素の選択的酸化触媒を見い出し
、本発明を完成した。
The present inventors conducted extensive studies in search of a catalyst that does not have the above-mentioned drawbacks, and found that only when using a catalyst containing tin oxide, the hydrogen oxidation reaction temperature condition of a relatively high temperature of 650 ° C. They also discovered a catalyst for the selective oxidation of hydrogen during the ethylpequine dehydrogenation reaction, which oxidizes hydrogen with excellent selectivity, has excellent heat resistance and toxicity resistance, and is inexpensive, and completed the present invention.

す表わち、本発明は、エチルベンゼンを脱水素反応せし
めてスチレンを製造する際に、該脱水素反応生成物に酸
素含有ガスを添加し、500〜700℃の温度範囲で、
該脱水素反応生成物中の水素を選択的に接触酸化する触
媒でちって、該触媒が酸化錫を含有することを特徴とす
るエチルベンゼン脱水素反応生成物中の水素の選択的酸
化触媒を提供するものである。
In other words, in the present invention, when styrene is produced by dehydrogenating ethylbenzene, an oxygen-containing gas is added to the dehydrogenation product, and the process is carried out at a temperature in the range of 500 to 700°C.
Provided is a catalyst for selective catalytic oxidation of hydrogen in an ethylbenzene dehydrogenation reaction product, characterized in that the catalyst contains tin oxide. It is something to do.

本発明に用いられる酸化錫触媒は、通常の調製方法で調
製することができる。原料としては、焼成することによ
り酸化錫となる各種の錫化合物が用いられる。例えば、
ハロゲン化錫、オキシハロゲン化錫、ハロゲン化アンモ
ニウム娼、硫酸錫、硫化錫、硝酸部、炭酸部、過塩素酸
部、水酸化錫、酸化錫等の水に可溶なまたは不溶な無機
錫化合物、しゆう酸部、酢酸湯、ぎ酸部等の有機湯化合
物を用いることができる。塩化錫等の錫の無機塩を水に
溶解させ、アンモニア水やアルカリ含有水にょ抄沈殿さ
せ水酸化物とし、次いで焼成して酸化物とすることは好
ましい方法である。
The tin oxide catalyst used in the present invention can be prepared by a conventional method. As raw materials, various tin compounds that become tin oxide by firing are used. for example,
Water-soluble or insoluble inorganic tin compounds such as tin halide, tin oxyhalide, ammonium halide, tin sulfate, tin sulfide, nitric acid, carbonic acid, perchloric acid, tin hydroxide, tin oxide, etc. Organic water compounds such as , oxalic acid moiety, acetic acid moiety, and formic acid moiety can be used. A preferred method is to dissolve an inorganic salt of tin such as tin chloride in water, precipitate it in aqueous ammonia or alkali-containing water to form a hydroxide, and then calcinate it to form an oxide.

一度、水酸化物および/または酸化物とした後、造粒成
型し、焼成することが望ましい。焼成温度は、650〜
1,100℃以下、好ましくは、700〜1,000℃
がよい。
It is desirable that the hydroxide and/or oxide be formed into a hydroxide and/or oxide, then granulated and calcined. Firing temperature is 650~
1,100℃ or less, preferably 700 to 1,000℃
Good.

本発明の触媒には、その性能に余り影響を与えない範囲
でなら他の元素の化合物を添加しても差し支えない。添
加可能な元素としては、Na、K、Rb5Cs%Be%
Mg、Ca s Sr %Ba %B s Al−sQ
a 、・、Tt、P、Sbt Bi%S% Se%Te
%Y1Ti 、 Zr、 Hfs 、V、、Nb、’=
 ・Ta 、 Cr 、 No、W1市、Fe%Cos
 Nts Cut Znq^g、Cd%Rn。
Compounds of other elements may be added to the catalyst of the present invention as long as they do not significantly affect its performance. Elements that can be added include Na, K, Rb5Cs%Be%
Mg, Ca s Sr %Ba %B s Al-sQ
a,・,Tt,P,Sbt Bi%S% Se%Te
%Y1Ti, Zr, Hfs, V,, Nb,'=
・Ta, Cr, No, W1 City, Fe%Cos
Nts Cut Znq^g, Cd%Rn.

肋、rRll、Ir、 Pt%Re、Stが挙げられる
0殊に、4.Ca%5r1Ba、8% ht、Si% 
Ti。
In particular, 4. ribs, rRll, Ir, Pt%Re, St. Ca%5r1Ba, 8% ht, Si%
Ti.

Zr%Na%に、 Fe、 Wjn、Zn などは、1
0重量%以下ならば含有しても差し支えなく、触媒強度
の向上表どの目的で役立つことがある。さらに1、Si
 、 At%Mg、Ca、 Ti %Zrなどは、50
重量%以下ならば含有して差し支えない一 本発明の酸化錫触媒は、主成分として酸化錫が含有され
ているのがよく、通常、酸化錫として50重量%以上、
好ましくは70重1%以上、殊に好ましくは80重量%
以上含まれているものがよいO本発明の酸化錫触媒は、
酸化錫を担体に担持した形の触媒も勿論用いることがで
き、担体として通常用いられるT’+ 1Zr 、 8
1 s A乙、職、Caなどの酸化物、これらの混合物
および複合物が用いられる。担体への担持法は、通常の
含浸法、コーディング法などが用いられる。この場合の
酸化錫の含量は触媒当抄50重量シ以下となるが、先に
掲げた触媒組成は、担持される活性体中の酸化錫の含量
を意味するものでめる0 本発明の触媒の有利性を示す為に、触媒上に500〜6
50℃の温度範囲でエチルベンゼン、スチレン、水蒸気
、水素および空気を供給し、酸化反応を行わしめ、この
反応生成ガスの分析を行った・エチルベンゼン、スチレ
ン、水素等の混合割合は、工業的な反応装置内において
、エチルベンゼンが20〜50%スチレンに転化した場
合を悲定して選定した。
Zr%Na%, Fe, Wjn, Zn, etc. are 1
It may be contained in an amount of 0% by weight or less, and may be useful for purposes such as improving catalyst strength. Furthermore, 1, Si
, At%Mg, Ca, Ti%Zr, etc. are 50
The tin oxide catalyst of the present invention, which may contain up to 50% by weight, preferably contains tin oxide as a main component, and usually 50% by weight or more as tin oxide,
Preferably 70% by weight or more, particularly preferably 80% by weight
The tin oxide catalyst of the present invention preferably contains the following:
Of course, a catalyst in which tin oxide is supported on a carrier can also be used, and T'+ 1Zr, 8, which is commonly used as a carrier, can also be used.
Oxides of 1sA, Ca, Ca, etc., and mixtures and composites thereof are used. As a method for supporting the carrier, a conventional impregnation method, a coating method, etc. can be used. In this case, the content of tin oxide is 50% by weight or less per catalyst, but the catalyst composition listed above refers to the content of tin oxide in the supported active material. 500-6 on the catalyst to show the advantage of
Ethylbenzene, styrene, water vapor, hydrogen, and air were supplied in a temperature range of 50°C to carry out an oxidation reaction, and the gas produced by this reaction was analyzed. - The mixing ratio of ethylbenzene, styrene, hydrogen, etc. A case in which 20 to 50% of ethylbenzene was converted to styrene in the apparatus was selected based on assumption.

実施例、比較例の反応に使用された反応器は、内径20
謹、有効容積SOW/の石英製反応管で、反応管内の中
央部に触媒2dを5 N/の希釈剤(ラシツヒリングを
触媒と同じ大きさに整粒したもの)により希釈して配置
した。反応器に供給されるエチルベンゼン(EBと略記
することもある)、スチレン(SMと略記することもあ
る)、水素、空気および水蒸気の混合割合は、以下に示
す例のとム おり1宜選定され丸。供給ガス中には、COおよびCo
tは全く含まれていないので、反応管出口ガス中のCO
およびCotを分析することにより、エチルベンゼンお
よびスチレンの燃焼量を算出した。
The reactor used in the reactions of Examples and Comparative Examples had an inner diameter of 20
A quartz reaction tube with an effective volume of SOW/ was used, and the catalyst 2d was diluted with a 5 N/ diluent (Raschchig ring sized to the same size as the catalyst) and placed in the center of the reaction tube. The mixing ratio of ethylbenzene (sometimes abbreviated as EB), styrene (sometimes abbreviated as SM), hydrogen, air and steam supplied to the reactor is selected as per the example shown below. Circle. In the feed gas, CO and Co
Since t is not included at all, CO in the reaction tube outlet gas
The amounts of ethylbenzene and styrene burned were calculated by analyzing the amounts of ethylbenzene and styrene.

分析は、ガスクロマトグラフ法を用いた。なお、反応結
果は次の如く計算して求めた。
The analysis used gas chromatography. The reaction results were calculated as follows.

実施例1 塩化第1錫(5nC1*・2HzO) 90.24 t
を水1000−に溶解し、これを攪拌しながら、3規定
のアンモニア水を加え水酸化錫の沈殿を得た( pHが
7をこえたところでアンモニア水の添加を停止した)。
Example 1 Stannous chloride (5nC1*2HzO) 90.24 t
was dissolved in 1,000 ml of water, and while stirring, 3N ammonia water was added to precipitate tin hydroxide (the addition of ammonia water was stopped when the pH exceeded 7).

得られ九沈殿をテ過洗浄し、120℃で3時間乾燥した
。その後、マツフル炉中で800℃で3時間焼成し、得
られた粉末を少量の水と共に禰潰機中で混練して押出し
可能なペースト状にし、直径3■φの大きさに押出し成
型した。
The nine precipitates obtained were filter-washed and dried at 120°C for 3 hours. Thereafter, it was baked in a Matsufuru furnace at 800°C for 3 hours, and the resulting powder was kneaded with a small amount of water in a crusher to form an extrudable paste, which was then extruded to a size of 3 mm in diameter.

これを再びマツフル炉中で800℃で3時間焼成した・
得られた触媒な砕き、10〜20メツシユの大きさに整
粒した。これを前述の反応管に前述の様に充填したO 反応器に入る物質の割合が第1表の如くである混合物を
、空間速度24.000 Hr”−’で供給し、第2表
の如き結果を得た。反応時間はそれぞれ6時間であった
0 (以下余白) 第  l  表 第2表 本 供給し九SM−EB のうち燃焼によ抄消失した割
合。
This was fired again in the Matsufuru furnace at 800°C for 3 hours.
The obtained catalyst was crushed and sized to a size of 10 to 20 meshes. This was filled into the aforementioned reaction tube as described above. A mixture whose ratio of substances entering the reactor was as shown in Table 1 was supplied at a space velocity of 24.000 Hr"-', and the mixture was as shown in Table 2. The results were obtained.The reaction time was 6 hours for each.0 (The following margins are blank) Table 1 Table 2 Proportion of the supplied 9 SM-EB that was lost by combustion.

反応器に入る物質が、第3表の如くであり、空間速度を
25500 Hr−’とした他は実施例1と同様にして
反応を行った。結果を第4表に示す。
The reaction was carried out in the same manner as in Example 1, except that the materials entering the reactor were as shown in Table 3, and the space velocity was 25,500 Hr-'. The results are shown in Table 4.

第3表 第4表 実施例3 反応器に入る物質が、第5表の如くであや、空間速度を
15,652 Hr−’とした他は実施例1と同様に反
応を行った(本反応条件は、特開昭49−56930号
公報の実施例4の■と同じでろる)口結果を第6表に示
した。
Table 3 Table 4 Example 3 The reaction was carried out in the same manner as in Example 1 except that the substances entering the reactor were as shown in Table 5 and the space velocity was 15,652 Hr-' (this reaction The conditions were the same as in Example 4 of JP-A No. 49-56930, and the results are shown in Table 6.

第5表 第6表 比較例1 反応管内にラシツヒリングのみを充填し、反応温度を6
00℃とした他は実施例1と同様に反応させた。結果を
第7表に示した。
Table 5 Table 6 Comparative Example 1 Fill the reaction tube with only Laschich ring and set the reaction temperature to 6.
The reaction was carried out in the same manner as in Example 1 except that the temperature was 00°C. The results are shown in Table 7.

比較例2 脱水素触媒として市販されている5heu−1o s触
媒を用いた他は比較例1と同様に反応させた。
Comparative Example 2 A reaction was carried out in the same manner as in Comparative Example 1, except that a commercially available 5heu-1os catalyst was used as a dehydrogenation catalyst.

結果を第7表に示した。The results are shown in Table 7.

比較例3 硝酸亜鉛(Zn(Nus)z・6H20) 118.9
6 fを用いた他は実施例1と同様にして酸化亜鉛触媒
を得た・この触媒を用い比較例1と同様に反応させた。
Comparative example 3 Zinc nitrate (Zn(Nus)z・6H20) 118.9
A zinc oxide catalyst was obtained in the same manner as in Example 1 except that 6f was used. A reaction was carried out in the same manner as in Comparative Example 1 using this catalyst.

結果を第7表に示した。The results are shown in Table 7.

比較例4 硝酸クロム[Cr(NOx) −9a2o 〕−s o
、o 4 fを用いた他は実施例1と同様にして酸化ク
ロム触媒を得た。この触媒を用いて、比較例1と同様に
反応させた。結束を第7表に示した口 比較例5 硝酸第二鉄((Fe(NOx)31”9HzO) ・8
0−80 fを用いた他は実施例1と同様にしてFe 
20a触媒を得た。これを500℃、’HxO/ H2
= 12 (モル比)の混合ガスで1時間還元処理を行
いFe5Oa触媒を得た。これを用い比較例1と同様に
反応させた。
Comparative Example 4 Chromium nitrate [Cr(NOx)-9a2o]-so
A chromium oxide catalyst was obtained in the same manner as in Example 1 except that , o 4 f was used. A reaction was carried out in the same manner as in Comparative Example 1 using this catalyst. Comparative example 5 with binding shown in Table 7 Ferric nitrate ((Fe(NOx)31"9HzO) ・8
Fe was prepared in the same manner as in Example 1 except that 0-80 f was used.
A 20a catalyst was obtained. This was heated to 500℃, 'HxO/H2
Reduction treatment was performed for 1 hour with a mixed gas of = 12 (molar ratio) to obtain a Fe5Oa catalyst. This was used to react in the same manner as in Comparative Example 1.

結果を第7表に示した。The results are shown in Table 7.

比較例6 TiCl2をアンモニア水で沈殿させて得られた水酸化
チタンとパラタングステン酸アンモンとを混練し、押出
し成型したものを800℃で3時間焼成してTiO2:
 WO3= 9 : 1の組成比の酸化物混合物触媒を
得た。この触媒を用い比較例1と同様に反応させた・結
果を第7表に示した。
Comparative Example 6 Titanium hydroxide obtained by precipitating TiCl2 with aqueous ammonia and ammonium paratungstate were kneaded, extruded, and fired at 800°C for 3 hours to obtain TiO2:
An oxide mixture catalyst having a composition ratio of WO3=9:1 was obtained. Using this catalyst, a reaction was carried out in the same manner as in Comparative Example 1. The results are shown in Table 7.

比較例7 水酸化カルシウムとモリブデン酸(H2Mo 04・I
(zO)とに少量の水を加えて混練し、成型後マツフル
炉中で800℃で3時間焼成し、CaO−Mova(モ
ル比1:1)触媒を得た。この触媒を用い比較例1と同
様に反応させた。結果を第7表に示し九0 比較例8 α−At20.上に10 ppmの白金を担持した触媒
を用い、比較例1と同様に反応させた。結果を第7表に
示す。
Comparative Example 7 Calcium hydroxide and molybdic acid (H2Mo 04・I
A small amount of water was added to (zO) and kneaded, and after molding, it was calcined in a Matsufuru furnace at 800°C for 3 hours to obtain a CaO-Mova (molar ratio 1:1) catalyst. A reaction was carried out in the same manner as in Comparative Example 1 using this catalyst. The results are shown in Table 7.90 Comparative Example 8 α-At20. A reaction was carried out in the same manner as in Comparative Example 1 using a catalyst on which 10 ppm of platinum was supported. The results are shown in Table 7.

比較例9 パラジウムを用いた他は比較例8と同様に触媒を調製し
、反応を行った。結果を第7表に示し九口第7表 比較例10 特開昭49−56930号公報の実施例8と同様の分子
篩(ゼオライト4A型のものでナトリウムの一部が白金
とカリウムで陽イオン交換されたものを焼成して5.9
重量シのNa、9.5  重量うのに、0.08重量%
のPtを含有するものでめった)を調製して使用した他
は実施例1および実施例3と同様に反応させた。結果を
第8表に示した。
Comparative Example 9 A catalyst was prepared and a reaction was carried out in the same manner as in Comparative Example 8, except that palladium was used. The results are shown in Table 7. Table 7 Comparative Example 10 Molecular sieve similar to Example 8 of JP-A-49-56930 (zeolite 4A type, part of the sodium was cation exchanged with platinum and potassium) 5.9
Weight: Na, 9.5 Weight: Sea urchin, 0.08% by weight
The reaction was carried out in the same manner as in Example 1 and Example 3, except that Pt-containing Pt-containing material was prepared and used. The results are shown in Table 8.

第8表 実施例4 実施例1の触媒を用い、実施例1と同じ条件で長時間使
用した結果を第9表に示した。
Table 8 Example 4 Table 9 shows the results of using the catalyst of Example 1 for a long time under the same conditions as Example 1.

第 9 表 (反応温度650℃) 実施例512 tm 脱水素触媒と本発明の酸化触媒とを、書=4に示したよ
うに直列に組合せた触媒層を製作した。
Table 9 (Reaction temperature: 650° C.) Example 512 tm A catalyst layer was prepared in which a dehydrogenation catalyst and an oxidation catalyst of the present invention were combined in series as shown in Book 4.

反応管lは、内径27■のステンレス鋼製で、内部に4
1φのステンレス製の熱電対保嚢管2を有するものであ
る。反応管lは、w1気炉3で加熱され所定の温度−に
保たれた。外勇3■、内径2■のステンレス製管4より
空気を脱水素触媒層(5hell 105、粒径8〜1
2メツシユ、3QI/)5と酸化触媒層(S002触媒
1.lO〜20メツシュ、2mlをラシツヒリングで希
釈し全体で5.7dとした)6との間に供給した。脱水
素触媒層5を通過した脱水素反応生成ガス組成は、管7
により採集17ガスクロマトグラフ法によ1分析した。
The reaction tube l is made of stainless steel with an inner diameter of 27 cm, and there are 4
It has a thermocouple storage tube 2 made of stainless steel with a diameter of 1φ. The reaction tube 1 was heated in the w1 air furnace 3 and maintained at a predetermined temperature. Air is transferred to a dehydrogenation catalyst layer (5 hell 105, particle size 8-1
2 meshes, 3QI/) 5 and an oxidation catalyst layer 6 (S002 catalyst 1.10 to 20 meshes, 2 ml was diluted with Raschchilling to give a total of 5.7 d). The composition of the dehydrogenation reaction product gas that has passed through the dehydrogenation catalyst layer 5 is
17 were collected and analyzed by gas chromatography.

管8からエチルベンゼンを、管9からは水をH20/E
B = 6.05、LH8H(EB)=1.02、送入
E B = 250.7 m moL / hr 送入
H20= 1516.7m mot/ hr  で導入
する。脱水素触媒層5の温度は、600℃に保たれた。
Ethylbenzene from tube 8, water from tube 9 H20/E
B = 6.05, LH8H(EB) = 1.02, feed E B = 250.7 m moL/hr, feed H20 = 1516.7 m moL/hr. The temperature of the dehydrogenation catalyst layer 5 was maintained at 600°C.

脱水素触媒層5を通過した原料ガスは、脱水素反応生成
ガスとしてP点では次の組成であることが管7から採集
した該反応生成ガスのガスクロマトグラフ分析で確認し
た。
It was confirmed by gas chromatographic analysis of the reaction product gas collected from the tube 7 that the raw material gas that passed through the dehydrogenation catalyst layer 5 had the following composition as a dehydrogenation reaction product gas at point P.

P点組成 未反応EB  :  104  mmot/hrSM 
 :  136     # トルエン :    5.9    Iベンゼン : 
    3.2    #水素 :  188    
 # メタン :    5.6    # −酸化炭素     1.4    #二酸化炭素 :
   14.3    #エチレン  :      
0.4 m mat / hrエタン  :0.2 H,O:   1440 管4を通して空気を224 m mo/、/hrの速度
で供給した。酸化触媒層6の反応温度は、610〜62
0℃に保たれ、反応時間は9時間であった。
P point composition unreacted EB: 104 mmot/hrSM
: 136 # Toluene : 5.9 Ibenzene :
3.2 #Hydrogen: 188
# Methane: 5.6 # - Carbon oxide 1.4 # Carbon dioxide:
14.3 #Ethylene:
0.4 m mat/hr Ethane: 0.2 H,O: 1440 Air was fed through tube 4 at a rate of 224 m mo/,/hr. The reaction temperature of the oxidation catalyst layer 6 is 610 to 62
The temperature was kept at 0°C and the reaction time was 9 hours.

酸化触媒層6を通過したガスを反応管出口1oで採集し
、分析した結果次の結果を第10表に示した。
The gas that passed through the oxidation catalyst layer 6 was collected at the reaction tube outlet 1o and analyzed. The following results are shown in Table 10.

第10表Table 10

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の説明図、第2図は、反応
装置の断面図である。 第1図 1・・・スチーム供給管 2・・・(EB+スチーム)供給管 3・・・酸素含有ガス供給管 A□、A2、A3、A4・・・脱水素触媒層B1、B2
、B2   ・・・ 酸化触媒層第2図 1・・・ 反応管 2・−・ 熱電対保護管 3・・・ 電気炉 4・・・ 空気供給管 5・・・ 脱水素触媒層 6・・・ 酸化触媒層 7・・・ 分析用ガス採集管 8・・・ EB供給管 9・・・ H20供給管 10・・・ 出口
FIG. 1 is an explanatory diagram of one embodiment of the present invention, and FIG. 2 is a sectional view of a reaction apparatus. Fig. 1 1...Steam supply pipe 2...(EB+Steam) supply pipe 3...Oxygen-containing gas supply pipe A□, A2, A3, A4...Dehydrogenation catalyst layer B1, B2
, B2... Oxidation catalyst layer Fig. 2 1... Reaction tube 2... Thermocouple protection tube 3... Electric furnace 4... Air supply pipe 5... Dehydrogenation catalyst layer 6... Oxidation catalyst layer 7... Analysis gas collection tube 8... EB supply pipe 9... H20 supply pipe 10... Outlet

Claims (1)

【特許請求の範囲】[Claims] エチルベンゼンを脱水素反応せしめてスチレンを製造す
る際に、該脱水素反応生成物に酸素含有ガスを添加し、
500〜700℃の温度範囲で、骸脱水素反応生成物中
の水素を選択的に接触酸化する触媒であって、該触媒が
酸化錫を含有することを特徴とするエチルベンゼン脱水
素反応生成物中の水素の選択的酸化触媒。
When producing styrene by dehydrogenating ethylbenzene, adding an oxygen-containing gas to the dehydrogenation reaction product,
A catalyst for selectively catalytically oxidizing hydrogen in a skeleton dehydrogenation reaction product in a temperature range of 500 to 700°C, the catalyst containing tin oxide in an ethylbenzene dehydrogenation reaction product. selective hydrogen oxidation catalyst.
JP56189622A 1981-11-26 1981-11-26 Selective oxidatative catalyst for hydrogen in dehydrogenated product of ethyl benzene Pending JPS5889945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56189622A JPS5889945A (en) 1981-11-26 1981-11-26 Selective oxidatative catalyst for hydrogen in dehydrogenated product of ethyl benzene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56189622A JPS5889945A (en) 1981-11-26 1981-11-26 Selective oxidatative catalyst for hydrogen in dehydrogenated product of ethyl benzene

Publications (1)

Publication Number Publication Date
JPS5889945A true JPS5889945A (en) 1983-05-28

Family

ID=16244373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56189622A Pending JPS5889945A (en) 1981-11-26 1981-11-26 Selective oxidatative catalyst for hydrogen in dehydrogenated product of ethyl benzene

Country Status (1)

Country Link
JP (1) JPS5889945A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225140A (en) * 1985-03-06 1986-10-06 ユ−オ−ピ− インコ−ポレイテツド Selective oxidation of hydrogen
WO2002016292A1 (en) * 2000-08-18 2002-02-28 Mitsubishi Chemical Corporation Process for producing styrene

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225140A (en) * 1985-03-06 1986-10-06 ユ−オ−ピ− インコ−ポレイテツド Selective oxidation of hydrogen
JPH0433769B2 (en) * 1985-03-06 1992-06-04 Uop Inc
WO2002016292A1 (en) * 2000-08-18 2002-02-28 Mitsubishi Chemical Corporation Process for producing styrene
US6884915B2 (en) 2000-08-18 2005-04-26 Mitsubishi Chemical Corporation Process for producing styrene

Similar Documents

Publication Publication Date Title
US4857498A (en) Dehydrogenation catalyst
US6559085B1 (en) Method for regenerating molybdenum-containing oxide fluidized-bed catalyst
Dooley et al. Stable nickel-containing catalysts for the oxidative coupling of methane
US3953370A (en) Method of activating zinc ferrite oxidative dehydrogenation catalysts
JPS61242913A (en) Aluminum copper borate
JPH0420419B2 (en)
JPH0587299B2 (en)
US4276196A (en) Attrition resistant catalysts
DE2744136A1 (en) PROCESS FOR THE PRODUCTION OF ALKENYL-SUBSTITUTED AROMATIC COMPOUNDS AND A CATALYST TO BE USED THEREFORE
US6037305A (en) Use of Ce/Zr mixed oxide phase for the manufacture of styrene by dehydrogenation of ethylbenzene
JPH0441454A (en) Production of methacrolein
Yao The oxidation of hydrocarbons and CO over metal oxides: II. α-Cr2O3
GB1578994A (en) Metal- and oxygen-containing compositions
US4400568A (en) Process for preparing styrene, and an appropriate agent
US4620035A (en) Production of acrylic acid by oxidation of acrolein
JPS5889945A (en) Selective oxidatative catalyst for hydrogen in dehydrogenated product of ethyl benzene
JPS61234943A (en) Catalyst for producing conjugated diolefin
JPS6354942A (en) Production of composite oxide catalyst
US3935126A (en) Catalyst and method of oxydehydrogenation of alkyl aromatic compounds
JPH0239297B2 (en)
Krenzke et al. The study of selective oxidation of propylene on complex oxides by means of temperature-programmed desorption
JPH0587300B2 (en)
JPS6335298B2 (en)
JPS6354941A (en) Production of composite oxide catalyst
JPH02196733A (en) Production of ethylbenzene and styrene