JPS588312B2 - Sludge concentration control method in sewage treatment process - Google Patents

Sludge concentration control method in sewage treatment process

Info

Publication number
JPS588312B2
JPS588312B2 JP51083719A JP8371976A JPS588312B2 JP S588312 B2 JPS588312 B2 JP S588312B2 JP 51083719 A JP51083719 A JP 51083719A JP 8371976 A JP8371976 A JP 8371976A JP S588312 B2 JPS588312 B2 JP S588312B2
Authority
JP
Japan
Prior art keywords
sludge
amount
returned
sewage
average value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51083719A
Other languages
Japanese (ja)
Other versions
JPS539059A (en
Inventor
正也 田沼
泰男 諸岡
元浩 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP51083719A priority Critical patent/JPS588312B2/en
Publication of JPS539059A publication Critical patent/JPS539059A/en
Publication of JPS588312B2 publication Critical patent/JPS588312B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

【発明の詳細な説明】 本発明は、下水中の有機物を吸収する能力を持つ活性汚
泥をばつ気槽で下水に混入させることにより、下水の浄
化をはかる活性汚泥処理プロセスにおいて、ばつ気槽の
汚泥濃度(MLSS)を目標値に保つ汚泥濃度制御方法
に関する。
Detailed Description of the Invention The present invention is an activated sludge treatment process that aims to purify sewage by mixing activated sludge, which has the ability to absorb organic matter in sewage, into sewage in an aeration tank. The present invention relates to a sludge concentration control method for maintaining sludge concentration (MLSS) at a target value.

第1図はこの種装置の従来例を示すブロック線図で、1
は下水が流入するばつ気槽、2は最終沈殿池、20はそ
こに沈殿した汚泥、3は汚泥返送ポンプ、4は汚泥引抜
ポンプ、5,6は流量調整弁、7はばつ気槽内の汚泥濃
度計12の計測値Sとその目標値百とを比較する加算器
、8は加算器7の出力ΔSに応じて汚泥返送率または量
を決定するための例えば比例積分計、11は比例積分計
8の出力とばつ気槽1への流入量を測定する流量計10
の出力とから返送汚泥量QR、または流量調整弁5の開
度を算出する掛算器、9は前記掛算器の出力に応じて調
整弁5を制御する流量制御装置である。
FIG. 1 is a block diagram showing a conventional example of this type of device.
2 is the aeration tank into which sewage flows, 2 is the final settling tank, 20 is the sludge that has settled there, 3 is the sludge return pump, 4 is the sludge extraction pump, 5 and 6 are the flow rate adjustment valves, and 7 is the aeration tank inside the aeration tank. An adder for comparing the measured value S of the sludge concentration meter 12 with its target value 100; 8 is, for example, a proportional integrator for determining the sludge return rate or amount according to the output ΔS of the adder 7; 11 is a proportional integrator A flow meter 10 that measures the total output of 8 and the amount of flow into the aeration tank 1
A multiplier 9 calculates the return sludge amount QR or the opening degree of the flow rate adjustment valve 5 from the output of the multiplier 9, and a flow rate control device that controls the adjustment valve 5 according to the output of the multiplier.

このような装置において、下水はばっ気槽1において活
性汚泥によって浄化されるが、その際ばつ気槽の汚泥濃
度(MLSSすなわち混合液浮遊物濃度)は下水浄化に
大きな影響を及ぼすので、その安定化が望まれている。
In such a device, sewage is purified by activated sludge in the aeration tank 1, but at this time, the sludge concentration (MLSS, or mixed liquor suspended solids concentration) in the aeration tank has a large effect on sewage purification, so its stability is important. It is hoped that this will become a reality.

ばつ気槽汚泥濃度は返送汚泥量QRと引抜汚泥量QWに
よって制御調節される。
The aeration tank sludge concentration is controlled and adjusted by the amount of returned sludge QR and the amount of sludge drawn out QW.

一般には、第1図に示したように、汚泥濃度計12によ
るMLSSの検出値Sとその目標値Sとの差ΔSに応じ
て、その時の下水流入量QOも参照して返送汚泥量QR
を決定し、流量調整弁5を制御することにより、MLS
Sを目標値に合致させる方式が採用されている。
Generally, as shown in FIG. 1, according to the difference ΔS between the detected value S of MLSS by the sludge concentration meter 12 and its target value S, the amount of returned sludge QR is determined by also referring to the amount of sewage inflow QO at that time.
By determining and controlling the flow rate adjustment valve 5, MLS
A method is adopted in which S matches a target value.

しかし、このような制御装置は、以下のような欠点をも
っている。
However, such a control device has the following drawbacks.

ばっ気槽1の入口におけるMLSSは、ばっ気槽1での
汚泥の収支から(1)式であらわされる。
The MLSS at the inlet of the aeration tank 1 is expressed by equation (1) from the balance of sludge in the aeration tank 1.

S=Dン上籾tllR (1) QO+QB, SOは流入汚水の汚泥濃度(mg/l) SRは返送汚泥濃度(mg/l) QOは流入下水量(m3/h) QRは返送汚泥量(m3/h) Pはばつ気槽での汚泥増殖量(mg/l)一般に流入下
水量QOが大きくなると、汚泥濃度Sは減少する。
S=Dun-topped paddy tllR (1) QO+QB, SO is sludge concentration of inflow sewage (mg/l) SR is return sludge concentration (mg/l) QO is inflow sewage volume (m3/h) QR is return sludge volume ( m3/h) P is the amount of sludge growth in the aeration tank (mg/l) Generally, as the amount of inflowing sewage QO increases, the sludge concentration S decreases.

したがってMLSSを一定化するには返送汚泥量QRを
増加する必要があるが、その量は返送汚泥濃度SRが小
さいほど大きくする必要がある。
Therefore, in order to keep the MLSS constant, it is necessary to increase the amount of returned sludge QR, and the smaller the returned sludge concentration SR, the larger the amount needs to be.

このため、SRの値によっては流入下水量QOが増減し
た場合、それを補償するために必要なQRの変化幅が上
下限値を越えてしまい、結局MLSSの安定化ができな
い場合がある。
Therefore, depending on the value of SR, when the amount of inflowing sewage QO increases or decreases, the range of change in QR necessary to compensate for it may exceed the upper and lower limits, and the MLSS may not be stabilized after all.

本発明は、流入下水量の変化に対してばっ気槽の汚泥濃
度を常に目標値に保つことができる汚泥濃度制御方法を
提供するものである。
The present invention provides a sludge concentration control method that can always maintain the sludge concentration in an aeration tank at a target value despite changes in the amount of inflowing sewage.

汚泥濃度の1日以上の平均値を考えた場合、ばつ気槽1
および沈殿池2におけるプロセスの汚泥量の収支は、第
2図a,bのようになる。
When considering the average value of sludge concentration over one day, aeration tank 1
The balance of the amount of sludge in the process in the settling tank 2 is as shown in Figure 2 a and b.

すなわち、ばつ気槽1内に流入する汚泥量SOQO、返
送される汚泥量SRQRおよびばつ気槽1内で増殖する
汚泥量PQの総和が、ばつ気槽1における汚泥の増加分
であり、一方、ばっ気槽がら流出して沈殿池2に流入す
る汚泥量はS(QO+QR)で表わされる。
That is, the sum of the sludge amount SOQO flowing into the aeration tank 1, the sludge amount SRQR that is returned, and the sludge amount PQ that grows in the aeration tank 1 is the increase in sludge in the aeration tank 1, and on the other hand, The amount of sludge flowing out of the aeration tank and flowing into the settling tank 2 is expressed as S(QO+QR).

また、沈殿池2における沈殿定数をαとすると、沈殿池
2に溜る汚泥量はαS(QO+QR)であり、一方、沈
殿池2から流出する汚泥量は(1−α)S(QO+QR
)である。
Furthermore, if the settling constant in the settling tank 2 is α, the amount of sludge that accumulates in the settling tank 2 is αS (QO + QR), and on the other hand, the amount of sludge flowing out from the settling tank 2 is (1 - α) S (QO + QR).
).

さらに、沈殿池2から引抜かれる汚泥量はSR(QR+
QW)となる。
Furthermore, the amount of sludge drawn from the settling tank 2 is SR (QR+
QW).

以上の結果から、汚泥濃度の値S,SRは計算式(2)
および(3)で求められる。
From the above results, the sludge concentration values S and SR are calculated using formula (2)
and (3).

SR=αS(QO+QR)/(QR+QW)(3)QW
:引抜汚泥量(m3/h) α:定数(0.9≦α≦1.0) 上式を連立して解くと、汚泥濃度に関する操作量である
返送汚泥量QRと引抜汚泥量QWの関係式(4)が求め
られる。
SR=αS(QO+QR)/(QR+QW)(3)QW
: Amount of sludge drawn (m3/h) α: Constant (0.9≦α≦1.0) When the above equations are solved simultaneously, the relationship between the amount of returned sludge QR, which is a manipulated variable related to sludge concentration, and the amount of sludge drawn QW is obtained. Equation (4) is obtained.

P、SOが与えられた場合、QwとQRとの関係は、汚
泥濃度Sをパラメータとして第3図のように示される。
When P and SO are given, the relationship between Qw and QR is shown as shown in FIG. 3 using sludge concentration S as a parameter.

これから、汚泥濃度Sを一定に保つための返送汚泥量Q
Rは、引抜汚泥量QWによって大きく左右されることが
わかる。
From now on, the amount of returned sludge Q to keep the sludge concentration S constant
It can be seen that R is greatly influenced by the amount of sludge drawn QW.

つまり、QWが大きい時(これはSRが小さいことを意
味する)には、汚泥濃度を一定化するためには、QRも
大きくする必要があり、QWが小さい時には、QRを小
さくしてもよいことになる。
In other words, when QW is large (which means that SR is small), QR must also be made large in order to keep the sludge concentration constant; when QW is small, QR may be made small. It turns out.

本発明においては、この第3図の関係を用いて、汚泥濃
度を目標値にするためQR、QWの値を決定する。
In the present invention, the values of QR and QW are determined using the relationship shown in FIG. 3 in order to set the sludge concentration to the target value.

流入下水量QOの1日内の変動に対して汚泥濃度を一定
に保つには、QRをQOに比例させて変化させればよい
というのは良く知られている。
It is well known that in order to keep the sludge concentration constant despite daily fluctuations in the amount of inflowing sewage QO, QR should be changed in proportion to QO.

QR=β・QO (5)β=
定数(0≦β≦1) この関係を満たせば、QRの1日の平均値QRとQRの
1日の最大値QRmaxの関係は(6)式を満たす。
QR=β・QO (5)β=
Constant (0≦β≦1) If this relationship is satisfied, the relationship between the daily average value QR of QR and the daily maximum value QRmax of QR satisfies equation (6).

QR/QRmax=QO/QOmax(6)QOは1日
の平均流入量(m3/h) QOmaxは1日の最大流入量(m3/h)QRmaX
はQRの最大値 このうち、QRmaxは返送ポンプ3の容量から決まり
、QO、QOmaxは過去のデータから推定でる。
QR/QRmax=QO/QOmax (6) QO is the average daily inflow (m3/h) QOmax is the maximum daily inflow (m3/h) QRmax
is the maximum value of QR. Among these, QRmax is determined from the capacity of the return pump 3, and QO and QOmax can be estimated from past data.

流入下水量QOが1日のうち最大になった時、QRがポ
ンプの容量内に納まるようにするためにはQRの1日の
平均値QRは、(7)式から決定すればよい。
In order to keep QR within the capacity of the pump when the amount of inflowing sewage QO reaches its maximum in a day, the daily average value QR of QR can be determined from equation (7).

QR=QRmax・QO/QOmax(7)返送汚泥量
の1日の平均値QRが決定されれば、第3図の関係を用
いて、第4図のように、1日の平均汚泥濃度を目標値百
にできる引抜汚泥量QWを決定できる。
QR = QRmax・QO/QOmax (7) Once the daily average value QR of the amount of returned sludge is determined, using the relationship shown in Figure 3, the average daily sludge concentration can be set as the target as shown in Figure 4. The amount of drawn sludge QW that can be made into a value of 100 can be determined.

具体的には、QWは(8)式で計算する。Specifically, QW is calculated using equation (8).

第4図は、平均値QR、QWの制御方法であるが、QO
の1日内の変化に対しては、QRの操作可変量(QRm
axとQRの差)を用いて、汚泥濃度の一定化が行なえ
る。
Figure 4 shows the method of controlling the average values QR and QW, and the QO
For changes within a day, the QR operation variable amount (QRm
The sludge concentration can be made constant using the difference between ax and QR).

このように、第4図のQR,QWの決定方法と従来のQ
Rを操作するMLSS制御方法を組合せることにより、
QRを常に操作可能内にとどめながら汚泥濃度を目標値
に保つことができる。
In this way, the method for determining QR and QW in Fig. 4 and the conventional Q
By combining the MLSS control method for operating R,
The sludge concentration can be maintained at the target value while keeping the QR within the operable range.

本発明の実施に適した装置例を第5図に示す。An example of a device suitable for carrying out the invention is shown in FIG.

図において第1図と同一符号は同一または同等部分をあ
らわす。
In the figures, the same reference numerals as in FIG. 1 represent the same or equivalent parts.

13は流入下水の汚泥濃度計、14は流量制御装置、1
5は計算装置、16は掛算器、17は汚泥濃度の目標値
S、最大返送汚泥量QRmaxおよびばつき槽における
汚泥増殖量Pを計算装置15に入力するための操作コン
ソールである。
13 is a sludge concentration meter for inflowing sewage, 14 is a flow rate control device, 1
5 is a calculation device, 16 is a multiplier, and 17 is an operation console for inputting the target value S of sludge concentration, the maximum return sludge amount QRmax, and the sludge growth amount P in the dusting tank into the calculation device 15.

計算装置15は、測定器10,13で測定された流入下
水量QO、汚泥濃度SOおよび運転員により設定される
返送汚泥ポンプ容量QR汚泥増殖量Pを用いて第6図に
示す処理を行ない、流量制御装置14へ引抜汚泥量QW
を、また掛算器16に返送率βを出力する。
The calculation device 15 performs the process shown in FIG. 6 using the inflow sewage amount QO, the sludge concentration SO measured by the measuring devices 10 and 13, and the return sludge pump capacity QR and the sludge growth amount P set by the operator. Sludge amount QW drawn to the flow rate control device 14
It also outputs the return rate β to the multiplier 16.

前記QW、βの計算は第6図のステップ01〜06に示
される手順に従って行なわれる。
The calculation of QW and β is performed according to the procedure shown in steps 01 to 06 of FIG.

ステップ01でQO,SO,QRmax、PおよびSを
入力する。
In step 01, QO, SO, QRmax, P and S are input.

ステップ02ではQOの1時間ごとの値を過去1週間分
記憶する。
In step 02, hourly values of QO are stored for the past week.

それらの記憶データを用いて、平均流量QOおよび1日
ごとのQOmax/QOの1週間の平均値をステップ0
3で求める。
Using those stored data, calculate the average flow rate QO and daily QOmax/QO for one week at step 0.
Find it in 3.

このように、1週間分のデータを用いるのは、雨天など
の場合の特異なデータを除くためである。
The reason why one week's worth of data is used in this way is to remove unusual data such as in the case of rainy weather.

ステップ04では、QRmax,QOmax、QOから
、設定すべき平均返送汚泥量QRを(7)式によって求
める。
In step 04, the average return sludge amount QR to be set is determined from QRmax, QOmax, and QO using equation (7).

ステップ05では、QR、QO,汚泥濃度目標値S,P
、SOを用いて、第6図中にも示す前記(8)式で計算
する。
In step 05, QR, QO, sludge concentration target values S, P
, SO, and is calculated using the above-mentioned equation (8) also shown in FIG.

ステップ06ではQRとQOから、汚泥濃度を目標値に
できる返送率β(=QR/QO)を求める。
In step 06, the return rate β (=QR/QO) that allows the sludge concentration to reach the target value is determined from QR and QO.

ステップ07では、ステップ05で求められたQWを流
量制御装置14に、ステップ06で求められた返送率β
を掛算器16に出力する。
In step 07, the QW obtained in step 05 is sent to the flow rate control device 14, and the return rate β obtained in step 06 is
is output to the multiplier 16.

流量制御装置14では流量調整弁6の開度を調節して引
抜汚泥量をQWに一致させ、返送汚泥量QRの日平均値
がQRとなった時、汚泥濃度の日平均値が目標と一致す
るようにする。
The flow rate control device 14 adjusts the opening degree of the flow rate adjustment valve 6 to make the amount of sludge drawn match QW, and when the daily average value of the returned sludge amount QR reaches QR, the daily average value of the sludge concentration matches the target. I'll do what I do.

また、掛算器16では、返送率がβとなるように返送汚
泥量QRを調節することにより、反送汚泥量の日平均値
をQRに一致させ、かつQOの日内変動に対して汚泥濃
度の一定化をはかる。
In addition, the multiplier 16 adjusts the amount of returned sludge QR so that the return rate becomes β, thereby making the daily average value of the amount of returned sludge coincide with QR, and adjusting the sludge concentration against daily fluctuations in QO. Aim for constantization.

このように、引抜汚泥量QWおよび返送率βを制御する
ことにより汚泥濃度の日平均値を目標値に制御でき、か
つ返送汚泥量の許容操作範囲内でMLSSの一定化がは
かれるので、MLSSを常に目標値に保つことができ、
それにより水質の安定化がはかれる。
In this way, by controlling the drawn sludge amount QW and the return rate β, the daily average value of sludge concentration can be controlled to the target value, and the MLSS can be kept constant within the allowable operating range of the returned sludge amount. can always be maintained at the target value,
This helps stabilize water quality.

本発明の他の実施例を第7図に示す。Another embodiment of the invention is shown in FIG.

図において第1図、第5図と同一の符号は同一または同
等部分をあらわす。
In the figures, the same reference numerals as in FIGS. 1 and 5 represent the same or equivalent parts.

第5図と異なるのは、計算装置15からは引抜汚泥量Q
Wのみを出力し、QRの操作制御は、第1図に示した従
来の制御装置に任せるものである。
The difference from Fig. 5 is that the calculation device 15 calculates the amount of sludge Q
Only W is output, and the operation control of QR is left to the conventional control device shown in FIG.

この装置は、第5図の実施例に比べ、装置は複雑になる
が、15の数式モデルに誤差があっても、汚泥濃度を目
標値に近づけることができるという利点を持つ。
Although this device is more complex than the embodiment shown in FIG. 5, it has the advantage that even if there are errors in the 15 mathematical models, the sludge concentration can be brought closer to the target value.

本発明によれば、返送汚泥濃度が小さい場合でも、汚泥
濃度を一定に保つために必要な返送汚泥量QRがポンプ
容量を越えてしまい、そのため汚泥濃度の一定化が達成
できなくなるという従来技術の欠点を除くことができ、
汚泥濃度一定化に必要なQRを常に操作可能範囲の中に
とどめておける。
According to the present invention, even when the concentration of returned sludge is small, the amount of returned sludge QR necessary to keep the sludge concentration constant exceeds the pump capacity, which makes it impossible to achieve a constant sludge concentration. defects can be removed,
The QR required for constant sludge concentration can always be kept within the operable range.

このため、汚泥濃度を常に目標値に保つことができ、プ
ロセスの安定化をはかれる。
Therefore, the sludge concentration can always be kept at the target value, and the process can be stabilized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例を説明するブロック線図、第2図は水処
理プロセス内の汚泥収支の説明図、第3図は返送汚泥量
、引抜汚泥量およびばっ気槽汚泥濃度間の関係を示す図
、第4図は本発明の原理の説明図、第5図は本発明の実
施に適した装置の1例のブロック図、第6図は本発明方
法を示す流れ図、第7図は他の実施例装置のブロック図
である。 1・・・・・・ばつ気槽、2・・・・・・最終沈殿池、
3・・・・・・汚泥返送ポンプ、4・・・・・・汚泥引
抜ポンプ、5,6・・・・・・流量調整弁、9,14・
・・・・・流量制御装置、10・・・・・・流量計、1
2,13・・・・・・汚泥濃度計、15・・・計算装置
、16・・・・・・掛算器、17・・・・・・操作卓。
Figure 1 is a block diagram explaining a conventional example, Figure 2 is an illustration of sludge balance in the water treatment process, and Figure 3 shows the relationship between the amount of returned sludge, the amount of extracted sludge, and the aeration tank sludge concentration. 4 is an explanatory diagram of the principle of the present invention, FIG. 5 is a block diagram of an example of an apparatus suitable for carrying out the present invention, FIG. 6 is a flow chart showing the method of the present invention, and FIG. FIG. 2 is a block diagram of an example device. 1...Aeration tank, 2...Final sedimentation tank,
3... Sludge return pump, 4... Sludge extraction pump, 5, 6... Flow rate adjustment valve, 9, 14.
...Flow rate control device, 10...Flow rate meter, 1
2, 13...Sludge concentration meter, 15...Calculation device, 16...Multiplier, 17...Operation console.

Claims (1)

【特許請求の範囲】 1 ばつ気槽に流入する下水に返送汚泥を混合し、得ら
れた混合汚水を沈殿池に移送し、そこで沈殿させられた
汚泥の一部を再びばつ気槽に返送すると共に、他の一部
を引抜き排出する下水処理プロセスにおいて、返送汚泥
量の最大値とその平均値との比が流入下水量の最大値と
その平均値との比に等しくなるような返送汚泥量の平均
値を設定し、返送汚泥量の平均値と引抜汚泥量との関係
からばつ気槽内の目標汚泥濃度に対する引抜汚泥量の平
均値を算出設定し、前記引抜汚泥量平均値と返送汚泥量
平均値に基づいて引抜汚泥量および返送汚泥量を制御し
、これによってばつ気槽内汚泥濃度を目標値に保持する
ことを特徴とする下水処理プロセスにおける汚泥濃度制
御方法。 2 ばつ気槽に流入する下水に返送汚泥を混合し、得ら
れた混合汚水を沈殿池に移送し、そこで沈殿させられた
汚泥の一部を再びばつ気槽に返送すると共に、他の一部
を引抜き排出する下水処理プロセスにおいて、返送汚泥
量の最大値とその平均値との比が流入下水量の最大値と
その平均値との比に等しくなるような返送汚泥量の平均
値を設定し、返送汚泥量と引抜汚泥量との関係からばつ
気槽内の目標汚泥濃度に対する引抜汚泥量の平均値を算
出設定し、これに基づいて引抜汚泥量を制御すると共に
、平均返送汚泥量と平均流入下水量の比から返送率を設
定し、これに基づいて返送汚泥量を制御することを特徴
とする下水処理プロセスにおける汚泥濃度制御方法。
[Claims] 1. Return sludge is mixed with sewage flowing into the aeration tank, the resulting mixed sewage is transferred to a settling tank, and a portion of the sludge settled there is returned to the aeration tank again. At the same time, in the sewage treatment process in which another part is extracted and discharged, the amount of returned sludge is such that the ratio between the maximum amount of returned sludge and its average value is equal to the ratio between the maximum amount of inflow sewage and its average value. The average value of the drawn sludge amount for the target sludge concentration in the aeration tank is calculated and set from the relationship between the average value of the returned sludge amount and the drawn sludge amount, and the average value of the drawn sludge amount and the returned sludge amount are calculated and set. A method for controlling sludge concentration in a sewage treatment process, which comprises controlling the amount of sludge drawn and the amount of returned sludge based on the average amount of sludge, thereby maintaining the sludge concentration in an aeration tank at a target value. 2 Mix return sludge with sewage flowing into the aeration tank, transfer the resulting mixed sewage to a settling tank, return part of the sludge settled there, and return the other part to the aeration tank. In the sewage treatment process where sludge is extracted and discharged, the average value of the amount of returned sludge is set so that the ratio between the maximum amount of returned sludge and its average value is equal to the ratio between the maximum amount of inflowing sewage and its average value. , From the relationship between the amount of returned sludge and the amount of drawn sludge, calculate and set the average value of the amount of drawn sludge for the target sludge concentration in the aeration tank, control the amount of drawn sludge based on this, and calculate the average amount of returned sludge and the average amount of drawn sludge. A method for controlling sludge concentration in a sewage treatment process, characterized by setting a return rate from a ratio of the amount of inflowing sewage and controlling the amount of returned sludge based on this.
JP51083719A 1976-07-14 1976-07-14 Sludge concentration control method in sewage treatment process Expired JPS588312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51083719A JPS588312B2 (en) 1976-07-14 1976-07-14 Sludge concentration control method in sewage treatment process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51083719A JPS588312B2 (en) 1976-07-14 1976-07-14 Sludge concentration control method in sewage treatment process

Publications (2)

Publication Number Publication Date
JPS539059A JPS539059A (en) 1978-01-27
JPS588312B2 true JPS588312B2 (en) 1983-02-15

Family

ID=13810311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51083719A Expired JPS588312B2 (en) 1976-07-14 1976-07-14 Sludge concentration control method in sewage treatment process

Country Status (1)

Country Link
JP (1) JPS588312B2 (en)

Also Published As

Publication number Publication date
JPS539059A (en) 1978-01-27

Similar Documents

Publication Publication Date Title
CN107601632B (en) Automatic dosing control method and system for coagulation
KR20050074327A (en) Apparatus for controlling aeration air volume used in the sewage treatment plant
JPS588312B2 (en) Sludge concentration control method in sewage treatment process
Stamou et al. Modelling of an alternating oxidation ditch system
JP2002177980A (en) Fuzzy controller for activated sludge treatment and method for the same
JPH0679717B2 (en) Return sludge amount control device
JP4248043B2 (en) Biological phosphorus removal equipment
JPS63197506A (en) Control system for injection of flocculating agent in purification plant
JPS63812B2 (en)
JPS63200897A (en) Controller for amount of returned sludge
JPS5898191A (en) Controller for purification of water in activated sludge process
JPS60220114A (en) Treatment of water
JP3104764B2 (en) Excess sludge flow control device
JPH0365297A (en) Control apparatus of aeration tank
JPS58159895A (en) Method for controlling sewage treatment plant
JPS5861889A (en) Controlling method for sewage treatment
JPH04166295A (en) Activated sludge process by srt control
JPS5962393A (en) Sewage treating device
JPS5947331B2 (en) flow control device
JPS626880B2 (en)
JPH05123689A (en) Controlling device in water treatment plant
SU761988A1 (en) Apparatus for controlling the level and content ration of the mixture of two flows
JPH0440080B2 (en)
JPS5556895A (en) Predictive controlling method for concentration of mixed liquor suspended solid in active sludge method
JPS61111193A (en) Method for controlling concentration of dissolved oxygen in aereation tank