JPS5868480A - Submerged arc welding method for ultralow carbon steel - Google Patents

Submerged arc welding method for ultralow carbon steel

Info

Publication number
JPS5868480A
JPS5868480A JP16634081A JP16634081A JPS5868480A JP S5868480 A JPS5868480 A JP S5868480A JP 16634081 A JP16634081 A JP 16634081A JP 16634081 A JP16634081 A JP 16634081A JP S5868480 A JPS5868480 A JP S5868480A
Authority
JP
Japan
Prior art keywords
welding
submerged arc
groove
arc welding
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16634081A
Other languages
Japanese (ja)
Other versions
JPH025513B2 (en
Inventor
Naomichi Mori
直道 森
Hiroyuki Honma
弘之 本間
Masakuni Wakabayashi
若林 正邦
Takeshi Takino
多喜乃 雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16634081A priority Critical patent/JPS5868480A/en
Publication of JPS5868480A publication Critical patent/JPS5868480A/en
Publication of JPH025513B2 publication Critical patent/JPH025513B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To prevent the generation of cracking and to obtain good impact toughness in submerged arc welding by adding C which satisfies the specific equation per unit length of a groove. CONSTITUTION:In submerged arc welding to be executed for steel contg. 0.005- 0.06wt% C by using a wire of 0.06-0.14% content of C, a recarburizer is disposed in the bottom part of a groove to add the C satisfying the equation I per unit length of the groove. Here, M is the rate of melting of the metal components in the wire and the recarburizer per unit time, melt sticking speed g/min, and S is a welding speed cm/min.

Description

【発明の詳細な説明】 本発明は極低炭素鋼のサブマージアーク溶接方法(以下
潜弧溶接法という)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a submerged arc welding method (hereinafter referred to as submerged arc welding method) for ultra-low carbon steel.

近年鋼材は制御圧延の進歩と同時に溶接性の向上あるい
はコスト低減を計るため、ラインパイプ材を含め低C化
の傾向にある。これら低C鋼溶接金属の高温割れ感受性
は従来一般に低いと考えられてきた。
In recent years, there has been a trend toward lower C steel materials, including line pipe materials, in order to improve weldability or reduce costs as well as advances in controlled rolling. The hot cracking susceptibility of these low C steel weld metals has been generally considered to be low.

即ち溶接金属の高温割れおよび低温割れ感受性と靭性の
向上のため溶接金属のC量は母材と同程度もしくは低い
値に設定することが従来の定説であり、例えば構造用高
張力鋼、低温用鋼が、0.08%くC<、0.18%の
とき、溶接金属は0.07くC<、0.15%を目標値
とされるのが通常である。
In other words, in order to improve the hot cracking and cold cracking susceptibility and toughness of the weld metal, it is conventional wisdom to set the C content of the weld metal to a value similar to or lower than that of the base metal. When steel is 0.08% C<, 0.18%, the target value for weld metal is usually 0.07% C<, 0.15%.

ところが本発明者らの検討によると極低C鋼を、従来常
用される溶接ワイヤを用いて潜弧溶接を行って得た溶接
金属の高温割れ感受性はむしろ高壕ることを知った。
However, the inventors' studies have revealed that the weld metal obtained by performing submerged arc welding on ultra-low C steel using conventional welding wires has a rather high high-temperature cracking susceptibility.

即ち極低C域ではデンドライト衝合部がδ凝固するため
と考えられ、割れ低減にはγ安定化元素であるC量の増
加が必要であることを確認した。
That is, it is thought that in the extremely low C region, the dendrite abutting portion undergoes δ solidification, and it was confirmed that an increase in the amount of C, which is a γ stabilizing element, is necessary to reduce cracking.

而して本発明は極低C鋼の浴接金属の高温割れに対し、
適正な溶接金属C含有量があることを見出し、この適正
範囲を得るための極低C鋼の潜弧溶接法を提供するもの
である。
Therefore, the present invention can prevent hot cracking of bath welded metal of ultra-low C steel.
It has been discovered that there is an appropriate weld metal C content, and a submerged arc welding method for ultra-low C steel is provided to obtain this appropriate range.

即ち本発明の要旨はCを0.005−0.06重量%含
有する鋼をC含有量0.06−0.14%の溶接ワイヤ
を用いて行なうサブマージアーク溶接において、開先底
部に加炭素材を配置することにより開先単位長さ当り、 Cを添加する事にある。
That is, the gist of the present invention is to carburize the bottom of the groove in submerged arc welding of steel containing 0.005-0.06% by weight of C using a welding wire with a C content of 0.06-0.14%. By arranging the material, C is added per unit length of the groove.

但しMはワイヤおよび加炭素材中金属分の単位時間当り
の溶融量、すなわち溶着 速度(Vz4)、Sは溶接速度(―−)とする。
However, M is the melting amount of the wire and the metal in the carbonized material per unit time, that is, the welding speed (Vz4), and S is the welding speed (--).

以下本発明を詳述する。The present invention will be explained in detail below.

本発明の対象鋼ばC0,06重量%以下で、鋼としての
強度を有するとみられるC0.005%以上を含む一般
構造用鋼、低温用低合金鋼等の極低C鋼とするが、Ni
等のγフォーマ元素を含む例えばステンレス鋼等は除外
される。
The target steels of the present invention are ultra-low C steels such as general structural steels and low-alloy steels for low temperature use, which contain 0.06% by weight or less of C and 0.005% or more of C, which is considered to have the strength of steel. Ni
For example, stainless steel and the like containing gamma former elements such as the like are excluded.

現在常用される潜弧溶接における溶接ワイヤのC含有量
は、006〜0.14%の範囲のものであることが知ら
れている。ところで本発明者らの検討によると、C含有
量0.06%のワイヤで0.005%Cの鋼板を溶接す
る場合の溶接金属中のC含有量は0.03%以下となり
、第1層目の溶接金属はδ単相凝固となって、2次プン
ト9ライトの生成が抑制されるため凝固われが発生し易
くナル。従って適正な溶接金属C量にするには、少くと
も0.04%〜0.14%程度のC添加が必要である。
It is known that the C content of the welding wire in currently commonly used submerged arc welding is in the range of 0.06 to 0.14%. By the way, according to the studies conducted by the present inventors, when welding a 0.005% C steel plate with a C content wire of 0.06%, the C content in the weld metal is 0.03% or less, and the first layer The weld metal in the eye becomes δ single-phase solidification, and the formation of secondary Punt 9 light is suppressed, so solidification cracks are likely to occur. Therefore, in order to obtain an appropriate amount of C in the weld metal, it is necessary to add at least about 0.04% to 0.14% of C.

又たとえ、ワイヤC量の高い014%のものを用いても
、ワイヤ中ΩCが酸化してCOガスとなるため1.0.
061C鋼を用いた場合でも、0.07%C程度の溶接
金属となり、健全な溶接金属を確実に得るには、若干量
のCを添加しておく事が必要となる。即ち、少くとも0
.01%〜0.09%のCを添加する事が必要である。
Even if a wire with a high C content of 014% is used, the ΩC in the wire will oxidize and become CO gas, so the wire will have a wire content of 1.0%.
Even when 061C steel is used, the weld metal will contain about 0.07% C, and it is necessary to add a small amount of C to ensure a sound weld metal. i.e. at least 0
.. It is necessary to add 0.01% to 0.09% of C.

以上の通り0.005〜0.064Cの鋼を通常のワイ
ヤを用いて溶接する場合には、溶接金属に対し0.01
〜014チのCを別途に補なう事が必要であるという事
を意味する。
As mentioned above, when welding steel of 0.005 to 0.064C using normal wire, 0.01
This means that it is necessary to separately supplement C of ~014chi.

実験によると上述の目的達成のためには予め  −a 開先単位長す当す2.5 X−X 10 (r4)〜5
.OX”X10−3S (り、4)のCを添加することが実技に適している。
According to experiments, in order to achieve the above objective, -a groove unit length is 2.5 X-X 10 (r4) ~ 5
.. Adding C of OX"X10-3S (Ri, 4) is suitable for practical training.

このため本発明においては、初層溶接時に開先内にCを
含有する物質、即ち鋳鉄粉、高Cカットワイヤ、クラフ
ァイト含有フラックス等を配置しておくものであるが、
開先内に配置するこれら物質の量は以下のように考える
ものである。
Therefore, in the present invention, a substance containing C, such as cast iron powder, high C cut wire, graphite-containing flux, etc., is placed in the groove during first layer welding.
The amount of these substances to be placed within the groove is considered as follows.

即ち、本発明法において適用する潜弧溶接用フラックス
および溶接条件によって決定される溶着速度および溶接
速度を、それぞれM 17mおよびS tB//IiR
とすると、単位開先長さ当りの溶着量はMン′S(1/
□)となる。通常、サブマージアーク溶接の初層におけ
る母材希釈率は60チ程度であり、これを考慮すると初
層溶接における単位開先長さ当りの溶接金属生成量は2
.5XM/S(f/□)である。
That is, the welding speed and welding speed determined by the submerged arc welding flux and welding conditions applied in the method of the present invention are M 17m and S tB//IiR, respectively.
Then, the amount of welding per unit groove length is M'S (1/
□). Normally, the base metal dilution rate in the first layer of submerged arc welding is about 60 inches, and considering this, the amount of weld metal generated per unit groove length in first layer welding is 2
.. 5XM/S (f/□).

この溶接金属に対し、前述のC不足量0.01〜014
チを補なうためには、 (r/cyi)のCを配置する事を必要とする。
For this weld metal, the above-mentioned C deficiency is 0.01 to 0.014
In order to compensate for this, it is necessary to place C of (r/cyi).

実除には開先内に配置したCが、すべて溶接金属中に添
加されるものではなく、一部は酸素と反応してCOガス
となり放散する。この消費C量は、Cの添加状態によっ
て異なり、結局本発明者らの検討結果によれば、単位開
先長あたが必要である事が判明した。
During actual removal, not all of the carbon placed in the groove is added to the weld metal, but a portion reacts with oxygen to become CO gas and dissipate. The amount of consumed C varies depending on the state of addition of C, and according to the study results of the present inventors, it was found that the unit groove length is required.

なお、こ〜で母材の希釈率を60%としたが、開先内に
加炭用金属物を配置した場合、その分だけ母材の溶融量
が減少するものと考えろ事が出来る。従って、開先に加
炭用金属物をおいた場合でも、溶接金属生成量は2.5
M/S (r/cm ’)である。
Although the dilution rate of the base material was set at 60% here, it can be assumed that when a metal object for carburization is placed within the groove, the amount of melting of the base material decreases by that amount. Therefore, even if a metal object for carburization is placed in the groove, the amount of weld metal produced is 2.5
M/S (r/cm').

本発明において予め開先内に配設する加炭素材としては
次のようなものが用いられる。
In the present invention, the following materials are used as the carbonaceous material to be placed in the groove in advance.

高C金属粉:鋳鉄粉、高C鉄粉、 高CFe−Mn、高CFe−Cr 金属カーバイト’ 5i−C% Cr −C高C含有ワ
イヤ:(ワイヤの場合は開先に横置する) 高Cカットワイヤ:カットワイヤとは細径のワイヤ(1
,2〜1.696)を1〜1.696程度に細断したも
の Cを多量に添加して造粒したフラックスC含有物質は溶
接金属中にCを添加するためのものであり、通常用いら
れるワイヤよりCを多量に含有している事が必要で、少
くとも02チ以上が必要である。又、開先内で溶融され
るものであり、溶接金属にとって水分等有害なものを多
量に含んでいるものは避けられるべきである。
High C metal powder: Cast iron powder, high C iron powder, high CFe-Mn, high CFe-Cr Metal carbide' 5i-C% Cr -C High C-containing wire: (In the case of wire, place it horizontally on the groove) High C cut wire: Cut wire is a small diameter wire (1
, 2 to 1.696) shredded into pieces of about 1 to 1.696. The flux C-containing material is granulated by adding a large amount of C. The C-containing material is for adding C to the weld metal, and is usually used. It is necessary to contain a larger amount of C than that of the wire, and at least 0.2 C or more is required. Also, materials that are melted within the groove and contain large amounts of moisture and other substances harmful to the weld metal should be avoided.

本発明は主に両面1層、多層又は片面溶接に適用するも
のであり、S(溶接速度)としては20〜200為ん、
M(溶着速度)は100〜2000 r/順程度である
The present invention is mainly applied to double-sided single-layer, multi-layer, or single-sided welding, and the S (welding speed) is 20 to 200.
M (welding speed) is approximately 100 to 2000 r/.

以下実施例について本発明を説明する。The present invention will be explained below with reference to Examples.

実施例 表1に示すような6種類の低C含有鋼を溶接するにあた
り、表2(W1〜W3)および表3(Fl〜F3)に示
すワイヤおよびフラックスを用いた。表3中のFlは両
面溶接用のメルト型フラックス、F2.3はボンド型フ
ラックスで前者は両面溶接用、後者は片面溶接用のフラ
ックスである。
Example In welding six types of low C content steels as shown in Table 1, wires and fluxes shown in Table 2 (W1 to W3) and Table 3 (Fl to F3) were used. In Table 3, Fl is a melt-type flux for double-sided welding, and F2.3 is a bond-type flux, where the former is a double-sided welding flux and the latter is a single-sided welding flux.

これらの材料を用いて12種類の溶接を行なったが、鋼
板、ワイヤおよびフラックスの組み合わせならびに溶接
要領は表4に示す通りである。Cを添加するのに用いた
C含有物質の種類および配置量も表4に示した通りであ
る。
Twelve types of welding were performed using these materials, and the combinations of steel plates, wires and fluxes and welding procedures are as shown in Table 4. The type and amount of the C-containing substance used to add C are also shown in Table 4.

表中のA1〜9は本発明例で、屋10〜12は本発明例
の効果をより明確にするための比較例である。又、両面
溶接における場合の実施例はBP側に関するものを示し
ている。
In the table, A1 to A9 are examples of the present invention, and A1 to A12 are comparative examples for clarifying the effects of the examples of the present invention. Furthermore, the embodiments in which double-sided welding is performed relate to the BP side.

溶接はA3.9については2電極溶接、A8および12
の片面1層溶接については3電極溶接で実施した。その
他については、1電極溶接である。
Welding is 2 electrode welding for A3.9, A8 and 12
Single-sided, single-layer welding was performed using three-electrode welding. For others, one-electrode welding is used.

表中に示した溶着速度はBP側側層層目片面溶接の場合
は1層目)に関するものである。
The welding speed shown in the table relates to the first layer in the case of single-sided welding of the BP side layer.

又、両面多層溶接の場合は、BP側およびEP側の初層
のみについて本発明を実施し、2層目についてはC含有
物質を配置する事なく通常のサブマージアーク溶接を行
なった。
In the case of double-sided multilayer welding, the present invention was applied only to the first layer on the BP side and the EP side, and the second layer was subjected to normal submerged arc welding without disposing any C-containing material.

片面溶接の場合の裏当法としては、銅当金上に裏フラッ
クスを層状に散布し、これを鋼板裏面に押し当てて行う
フラックス−鋼バッキング法を用いた。裏フラックスと
してはCaO−MgO−8iOz系の専用裏フラックス
を用いた。
As a backing method in the case of single-sided welding, a flux-steel backing method was used in which backing flux was spread in a layer on a copper pad and pressed against the back surface of the steel plate. As the back flux, a CaO-MgO-8iOz-based special back flux was used.

以上の溶接の結果、屋1〜9については本発明の効果に
基づき、表中の溶接結果に示した通り、適正C含有量の
初層溶接金属を得る事が出来、割れの発生もなく、又良
好な衝撃靭性が得られた。
As a result of the above welding, based on the effects of the present invention for Yas. 1 to 9, as shown in the welding results in the table, it was possible to obtain the first layer weld metal with an appropriate C content, and no cracking occurred. Also, good impact toughness was obtained.

一方、比較例のAll、12は初層溶接金属中のC含有
量が過小で、又l612は過多のためいずれも割れが発
生した。
On the other hand, in Comparative Examples All and No. 12, the C content in the first layer weld metal was too low, and in All and No. 1612, there was too much, so cracks occurred in both cases.

表2 51     化  学 成  分  (チー>−−−
1表3
Table 2 51 Chemical components (Chi>---
1 table 3

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は開先形状の説明図である。 竿1図 箒2図 手続補正書(方式) 昭和57年2Jt6  日 特許庁長官島 1)春 樹 殿 1事件の表示 昭和56 年特許願第 166340号
2発明の名称 極低炭素鋼のサブマージアーク溶接方法
3補正をする者 事件との関係 特許出願人性 所  
東京都千代田区大手町2丁目6番3号名 称  (66
5)  新日本製鐵株式食紅代表者  武 1)  豊 4代 理 人 住 所  東京都中央区日本橋3丁目3番3号5補正命
令の日付 昭和57年2 月n 日(発送日)6補正に
より増加する発明の数
FIG. 1 and FIG. 2 are explanatory diagrams of the groove shape. Rod 1 figure Broom 2 figure Procedure amendment (method) 1985 2Jt6 Japan Patent Office Commissioner Island 1) Haruki Tono 1 Indication of case Patent application No. 166340 of 1981 2 Title of invention Submerged arc welding of ultra-low carbon steel Person making Method 3 amendment Relationship to the case Patent applicant Location
2-6-3 Otemachi, Chiyoda-ku, Tokyo Name (66)
5) Nippon Steel Stock Food Coloring Representative Takeshi 1) Yutaka 4th generation Masashi Address 3-3-3 Nihonbashi, Chuo-ku, Tokyo Date of 5th amendment order February n, 1981 (shipment date) 6th amendment increasing number of inventions

Claims (1)

【特許請求の範囲】 Cを0.005−0.06重量%含有する鋼をC含有量
0.06−0.14%の溶接ワイヤを用いて行なうサブ
マージアーク溶接において、開先底部に予め加炭素材を
配置することにより開先単位長のCを添加して行なうこ
とを特徴とする極低炭素鋼のサブマージアーク溶接方法
。 但しMは溶着速度(f/m)、Sは溶接速度0V−)と
する。
[Claims] In submerged arc welding of steel containing 0.005-0.06% by weight of C using a welding wire with a C content of 0.06-0.14%, the bottom of the groove is pre-formed. A submerged arc welding method for ultra-low carbon steel, characterized in that carbon is added to the groove unit length by arranging a carbon material. However, M is the welding speed (f/m), and S is the welding speed (0V-).
JP16634081A 1981-10-20 1981-10-20 Submerged arc welding method for ultralow carbon steel Granted JPS5868480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16634081A JPS5868480A (en) 1981-10-20 1981-10-20 Submerged arc welding method for ultralow carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16634081A JPS5868480A (en) 1981-10-20 1981-10-20 Submerged arc welding method for ultralow carbon steel

Publications (2)

Publication Number Publication Date
JPS5868480A true JPS5868480A (en) 1983-04-23
JPH025513B2 JPH025513B2 (en) 1990-02-02

Family

ID=15829547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16634081A Granted JPS5868480A (en) 1981-10-20 1981-10-20 Submerged arc welding method for ultralow carbon steel

Country Status (1)

Country Link
JP (1) JPS5868480A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50131640A (en) * 1974-04-03 1975-10-17
JPS5122383A (en) * 1974-08-19 1976-02-23 Omron Tateisi Electronics Co Handotaikanatsusochi
JPS5460242A (en) * 1977-10-21 1979-05-15 Mitsubishi Heavy Ind Ltd Submerged arc welding method
JPS5626675A (en) * 1979-08-10 1981-03-14 Sumitomo Metal Ind Ltd Submerged welding method
JPS5668591A (en) * 1979-11-09 1981-06-09 Mitsubishi Heavy Ind Ltd Thick-walled material welding method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50131640A (en) * 1974-04-03 1975-10-17
JPS5122383A (en) * 1974-08-19 1976-02-23 Omron Tateisi Electronics Co Handotaikanatsusochi
JPS5460242A (en) * 1977-10-21 1979-05-15 Mitsubishi Heavy Ind Ltd Submerged arc welding method
JPS5626675A (en) * 1979-08-10 1981-03-14 Sumitomo Metal Ind Ltd Submerged welding method
JPS5668591A (en) * 1979-11-09 1981-06-09 Mitsubishi Heavy Ind Ltd Thick-walled material welding method

Also Published As

Publication number Publication date
JPH025513B2 (en) 1990-02-02

Similar Documents

Publication Publication Date Title
JP2011131243A (en) Arc welding method and arc weld joint of galvanized steel plate
JP5450260B2 (en) Weld metal with excellent hot crack resistance
JP4864506B2 (en) Submerged arc weld metal of high strength steel
CN112388202B (en) Welding wire flux core, welding wire, preparation method of welding wire and welding method
JPH05375A (en) Submerged arc welding method and equipment for steel pipe
JPS61283489A (en) Composite wire for build-up welding
US3466422A (en) Welding material for austenitic ductile iron
JP3686545B2 (en) A groove filler for simple single-sided submerged arc welding and a welding method using the same.
US2011706A (en) Arc welding electrode
JPS5868480A (en) Submerged arc welding method for ultralow carbon steel
JP2524774B2 (en) Submerged arc welding method for stainless steel
JP3208556B2 (en) Flux-cored wire for arc welding
JP2005219062A (en) Yag-laser and arc hybrid welding method
JP3791771B2 (en) Flux-cored wire for gas shielded arc welding
JPS6045996B2 (en) Flux-cored wire for self-shield arc welding
JP2711007B2 (en) Laser welding method
JPS6045992B2 (en) Automatic welding wire used for welding spheroidal graphite cast iron
JPS594237B2 (en) Steel wire for gas shield arc welding
JP3735195B2 (en) Metal cored filler wire for hot laser welding of steel
JPS63115696A (en) Flux-cored wire for hard overlay
JPS5853377A (en) Submerged arc welding method
JPS59125294A (en) Submerged arc welding method of heat resisting low alloy steel
JP2003103399A (en) Flux-filled wire for welding weather resistant steel
JPH0225708B2 (en)
JPH0455797B2 (en)