JPS585982B2 - Wear-resistant high-pressure phase boron nitride aggregate and its manufacturing method - Google Patents

Wear-resistant high-pressure phase boron nitride aggregate and its manufacturing method

Info

Publication number
JPS585982B2
JPS585982B2 JP53029809A JP2980978A JPS585982B2 JP S585982 B2 JPS585982 B2 JP S585982B2 JP 53029809 A JP53029809 A JP 53029809A JP 2980978 A JP2980978 A JP 2980978A JP S585982 B2 JPS585982 B2 JP S585982B2
Authority
JP
Japan
Prior art keywords
boron nitride
pressure phase
pressure
phase boron
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53029809A
Other languages
Japanese (ja)
Other versions
JPS54123114A (en
Inventor
勝 小形
敬彦 樺山
豪二 梶浦
哲郎 池澤
智久 添田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP53029809A priority Critical patent/JPS585982B2/en
Publication of JPS54123114A publication Critical patent/JPS54123114A/en
Publication of JPS585982B2 publication Critical patent/JPS585982B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明は、耐摩耗性高圧相窒化硼素塊状体およびその製
造方法で、特に微粒子粉末の高圧相窒化硼素を塊状体と
して得る際に、その塊状体化を促進し、かつ塊状体に靭
性を付与するニッケルとチタンを結合剤として使用した
塊状体およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a wear-resistant high-pressure phase boron nitride agglomerate and a method for producing the same, in particular, when obtaining high-pressure phase boron nitride in the form of a fine particle powder as a agglomerate, promoting the agglomeration of the agglomerate, The present invention also relates to a block using nickel and titanium as a binder, which imparts toughness to the block, and a method for producing the same.

窒化硼素は一般に化学合成された状態では黒鉛型に近い
結晶構造を持った軟質の粉末で、通常六方晶窒化硼素と
呼ばれている。
When boron nitride is chemically synthesized, it is generally a soft powder with a crystal structure similar to graphite, and is usually called hexagonal boron nitride.

こ5では以下に述べる高圧相窒化硼素との混同を避ける
ために黒鉛型窒化硼素C以下これをg−BNという)と
表すことにする。
In this section 5, to avoid confusion with high-pressure phase boron nitride described below, it will be expressed as graphite-type boron nitride (hereinafter referred to as g-BN).

このg−BNは半導体のドープ材、原子炉材料、ルツボ
材料、減摩材等に用いられている。
This g-BN is used as a semiconductor dope material, a nuclear reactor material, a crucible material, an anti-friction material, and the like.

このようなg−BNのもう1つの有効な利用方法は、高
圧相室イ゛し硼素の合成原料とすることである。
Another effective use of such g-BN is to use it as a raw material for the synthesis of boron in a high-pressure phase chamber.

すなわち、g−BNに爆発を利用した超高圧を加えるこ
とによって六方晶のウルツ鉱型窒化硼素(以下これをW
−BNという)が得られ、またg−BNにSiとAIあ
るいはアルカリ金属、アルカリ土類金属などの触媒を添
加し、およそ60Kbの圧力と、およそ1600℃の温
度を同時に加えると立方晶窒化硼素(以下これをC−B
Nという)が得られる。
That is, by applying ultra-high pressure using an explosion to g-BN, hexagonal wurtzite boron nitride (hereinafter referred to as W
-BN) is obtained, and when Si and a catalyst such as AI or an alkali metal or alkaline earth metal are added to g-BN and a pressure of approximately 60 Kb and a temperature of approximately 1600°C are simultaneously applied, cubic boron nitride is obtained. (Hereafter, this will be referred to as C-B
) is obtained.

このようにして得られるW−BN、C−BNの高圧相窒
化硼素を著しく硬い物質であり、ことにC−BNは硬さ
こそダイヤモンドに次ぐもの5耐熱性や鉄族元素材料と
の反応抵抗性ではダイヤモンドよりもすぐれ、これら材
料を研削する砥石の砥粒としてそのすぐれた性能を発揮
している。
The high-pressure phases of W-BN and C-BN obtained in this way boron nitride are extremely hard substances, and in particular, C-BN has a hardness that is second only to diamond.5 Heat resistance and reaction resistance with iron group element materials It has superior properties than diamond in terms of hardness, and exhibits excellent performance as an abrasive grain in whetstones used to grind these materials.

しかしながらこのような高圧相窒化硼素は粉末として得
られ、その特性をさらに有効に活用するためには、粉末
を焼結させた塊状体で得ることが望まれている。
However, such high-pressure phase boron nitride is obtained as a powder, and in order to utilize its properties more effectively, it is desired to obtain it in the form of a lump obtained by sintering the powder.

W−BNもC−BNも強固な共有結合によって結晶が構
成されている。
The crystals of both W-BN and C-BN are composed of strong covalent bonds.

したがってこれらの微結晶を塊状体さして焼結するため
には原子の拡散が容易になる高温が必要である。
Therefore, in order to sinter these microcrystals into a lump, a high temperature is required to facilitate the diffusion of atoms.

しかしながら、例えばC−BNを常圧下で加熱していく
と、およそ1500℃から軟質のg−BNに逆変態して
しまい、焼結に必要な十分高い温度まで安定に持ち来た
すことはできない。
However, for example, when C-BN is heated under normal pressure, it reversely transforms into soft g-BN from about 1500°C, and cannot be stably brought to a sufficiently high temperature required for sintering.

このためW−BNやC−BNの焼結は超高圧、高温条件
下で行なわれるのが普通である。
For this reason, sintering of W-BN and C-BN is usually performed under extremely high pressure and high temperature conditions.

超高圧を加えることは、粉末の充填密度を上昇させ、粒
子相互の密着を促進して焼結を助ける効果もある。
Applying ultra-high pressure also has the effect of increasing the packing density of the powder, promoting adhesion between particles, and aiding sintering.

しかしながら例えばC−BNをおよそ圧力が65Kbで
温度が1700℃の条件下に30分間保持しても粒子間
には気孔が残っており、かつC−BN相互の密着も強度
材料として使用できる程は高くない。
However, for example, even if C-BN is held for 30 minutes at a pressure of 65 Kb and a temperature of 1700°C, pores remain between the particles, and the adhesion between C-BN is not strong enough to be used as a strong material. not high.

このような理由から粒子間に残っている空隙を充填し、
かつ高圧相窒化硼素と十分に「ぬれ」でこれら粒子を保
持する結合剤を深化するのが一般的である。
For this reason, the voids remaining between particles are filled,
And it is common to deepen the binder to hold these particles in sufficient "wet" with the high pressure phase boron nitride.

結合剤に要求される要件としては、(1)高圧相窒化硼
素とよく「ぬれる」こと、(2)高温強度にすぐれるこ
と、(3)室温においても十分な靭性を有することがあ
げられる。
Requirements for the binder include (1) good "wetting" with the high-pressure phase boron nitride, (2) excellent high-temperature strength, and (3) sufficient toughness even at room temperature.

上記(1)に関しては技術上の問題もあって、現在十分
に解明されているとはいえない。
Regarding (1) above, there are technical problems and it cannot be said that it has been fully elucidated at present.

セラミ、ツク系の結合剤は(2)の要件を満たすものが
多いが、(3)の要件を満足しない。
Although many ceramic and wood-based binders satisfy the requirement (2), they do not satisfy the requirement (3).

また金属系の結合剤は逆に(2)の性能が不十分である
On the other hand, metal-based binders have insufficient performance (2).

特に金属系の結合剤では(1)の性能を十分発揮させる
ために、焼結条件下では溶融させていわゆる液相焼結の
形態をとるのが普通である。
In particular, in order to fully exhibit the performance (1), metal-based binders are usually melted under sintering conditions to take the form of so-called liquid phase sintering.

従来この目的で使用されていた金属系結合剤はコバルト
、ニッケルなどであった。
Metallic binders conventionally used for this purpose include cobalt and nickel.

ところが高圧相窒化硼素の塊状体は、例えばバイトなど
切削用工具の刃物として使用してその特性を十分に発揮
させる高速切削を行なうと刃先温度はおよそ1ooo℃
にも達する。
However, when a block of high-pressure phase boron nitride is used as a cutting tool such as a cutting tool and subjected to high-speed cutting to fully utilize its properties, the temperature of the cutting edge will be approximately 100°C.
reach even.

このような高温におけるコバルトやニッケルの強度は不
十分であり1.したがってコバルトやニッケルを結合剤
とした塊状体の強度も低下し、摩耗を早める結果になっ
ていた。
The strength of cobalt and nickel at such high temperatures is insufficient.1. Therefore, the strength of the lumps using cobalt or nickel as a binder was reduced, resulting in accelerated wear.

本発明は上記のことにかんがみなされたもので、ニッケ
ルとチタンの金属間化合物を結合剤とした靭性と耐摩耗
性の大なる高圧相窒化硼素、ことにC−BNの塊状体お
よびその製造方法を提供しようとするものである。
The present invention was conceived in view of the above, and includes a block of high-pressure phase boron nitride, particularly C-BN, with great toughness and wear resistance using an intermetallic compound of nickel and titanium as a binder, and a method for producing the same. This is what we are trying to provide.

金属間化合物NiTiは化学量論的組成を中心に若干の
組成の広がりを持つ金属間化合物、いわゆるベルトライ
ド化合物で一般の金属間化合物が極めて脆弱なものが多
い中で、異例に高い靭性を備えている特異な材料である
The intermetallic compound NiTi is an intermetallic compound with a slight composition spread around the stoichiometric composition, a so-called bertholed compound, and while many general intermetallic compounds are extremely fragile, it has exceptionally high toughness. It is a unique material.

結晶構造はCsC1型の規則格子構造を持ち、また熱弾
性型マルテンサイト変態をすることに起因する形状記憶
効果によりニチノールの名前で知られている。
It has a CsC1 type regular lattice structure and is known as Nitinol due to the shape memory effect caused by thermoelastic martensitic transformation.

NiTiのもう1つの特徴は、その耐摩耗性が犬なるこ
とである。
Another feature of NiTi is its wear resistance.

発明者らは耐摩耗用金属材料の研究過程において、耐摩
耗性は硬さが犬なる程、また加工硬化指数が犬なる程大
きいことを明らかにした。
In the process of researching wear-resistant metal materials, the inventors found that the wear resistance increases as the hardness increases and as the work hardening index increases.

NiTiの硬さはHv230でかなり低いが、その加工
硬化指数は0.43ときわめて大きい。
Although the hardness of NiTi is quite low at Hv230, its work hardening index is extremely high at 0.43.

ニッケル・クロム・モリブデン鋼(SNCM8)の加工
硬化指数は0.038であるからその著しい大きさが理
解される。
Since the work hardening index of nickel-chromium-molybdenum steel (SNCM8) is 0.038, its remarkable magnitude can be understood.

この結果SiC砥石に所定面圧で押しつけて所定距離摩
擦させた場合の摩耗体積を硬さHv700の焼入鋼と比
較すると、NiTiの摩耗量は鋼のl以下、すなわち3
倍以上の耐摩耗性を持つことが明らかになった。
As a result, when comparing the wear volume when pressed against a SiC grindstone with a predetermined surface pressure and rubbed over a predetermined distance with hardened steel with a hardness of Hv700, the wear volume of NiTi is less than 1 of steel, that is, 3
It was revealed that it has more than twice the wear resistance.

こめようにNiTiのすぐれた耐摩耗性はその規則格子
構造に特有な大きな加工硬化に起因している。
The excellent wear resistance of NiTi is due to the large work hardening characteristic of its regular lattice structure.

規則格子構造を持つことは高温強度(硬さ)に関しても
有利である。
Having a regular lattice structure is also advantageous in terms of high temperature strength (hardness).

ことにNiTiは融点まで規則格子を保持しており、塑
性変形に伴う逆位相境界の生成が高温における強度低下
を抑性する。
In particular, NiTi maintains a regular lattice up to its melting point, and the generation of antiphase boundaries accompanying plastic deformation suppresses strength loss at high temperatures.

すなわち、室温における硬さはHv230程度と低く、
また融点も1310℃と低いにもか\わらず1000℃
程度の高温における硬さはコバルトやニッケルよりも大
きい。
In other words, the hardness at room temperature is as low as Hv230,
Also, the melting point is as low as 1310℃, but it is still 1000℃.
Its hardness at high temperatures is greater than that of cobalt and nickel.

さらに結合剤として必要な条件は高圧相窒化硼素との「
ぬれ」が良好なことである。
Furthermore, the necessary conditions for the binder are the high-pressure phase boron nitride and
Good wettability.

この目的でC−BNとNiTiとのぬれ試験を行なった
For this purpose, a wetting test between C-BN and NiTi was conducted.

C−BN粉末の上にボタン型アーク溶解炉で溶製したN
i−50at%Tiを配置し、超高純度のアルゴン雰囲
気中で1400℃に加熱した。
N melted in a button-type arc melting furnace on top of C-BN powder
i-50at%Ti was placed and heated to 1400°C in an ultra-high purity argon atmosphere.

その結果NiTiは溶融してC−BN粉末中に侵透し、
十分な「ぬれ性」があることがわかった。
As a result, NiTi melts and penetrates into the C-BN powder,
It was found that there was sufficient "wettability".

以上のような予備テストの結果、NiTiは靭性、耐摩
耗性、高温強度を有する高圧相窒化硼素との「ぬれ性」
にすぐれ、高圧相窒化硼素の結合剤として有効なことが
明らかになった。
As a result of the preliminary tests mentioned above, NiTi has "wettability" with high-pressure phase boron nitride, which has toughness, wear resistance, and high-temperature strength.
It has been found that it has excellent properties and is effective as a binder for high-pressure phase boron nitride.

そこで以下の実施例に示す、高圧相窒化硼素塊状体の製
造テストを実施した。
Therefore, a manufacturing test of a high-pressure phase boron nitride block was conducted as shown in the following example.

使用した超高圧装置はベルト型で円筒状黒鉛ヒータの内
部に圧力媒体として自己潤滑性の良好なg−BNのスリ
ーブおよび上下のプラグを設け、スリーブとプラグで形
成される空間に厚さ50μのタンタル製カプセルを入れ
試料室とした。
The ultra-high pressure device used is a belt-type cylindrical graphite heater with a g-BN sleeve with good self-lubricating properties as a pressure medium and upper and lower plugs as a pressure medium. A tantalum capsule was placed in the sample chamber.

この試料室の寸法はタンタルカプセルの内法で内径6I
IB、高さ5’mである。
The dimensions of this sample chamber are the internal diameter of the tantalum capsule, which is 6I.
IB, height 5'm.

圧力は常温下において、BiおよびBaをそれぞれ24
.5Kb。
The pressure is 24°C for Bi and Ba, respectively, at room temperature.
.. 5Kb.

59Kbの定点として測定した。It was measured as a fixed point of 59Kb.

しかし高温では一般におよそ3割程度発生圧力が低下す
ることが経験的に知られており、このような観点から高
温下の圧力を補正した。
However, it is empirically known that the generated pressure generally decreases by about 30% at high temperatures, and from this perspective the pressure at high temperatures was corrected.

温度は白金/白金10係ロジウム熱電対で1550℃ま
で測定して加熱電力と温度の関係を求めておき、これよ
り高温は外挿より推定した。
The temperature was measured up to 1550° C. with a platinum/platinum 10 rhodium thermocouple to determine the relationship between heating power and temperature, and higher temperatures than this were estimated by extrapolation.

なお熱起電力の圧力補正は行なっていない。Note that pressure correction for thermoelectromotive force was not performed.

実施例1 タンタルカプセル内にNi−50at%Ti合金の円板
状板と、1〜5μのC−BN粉末を層状に充填し、65
Kb、1700℃の圧力と温度を同時に30分間加えた
Example 1 A disk-like plate of Ni-50 at% Ti alloy and C-BN powder of 1 to 5 μm were filled in a tantalum capsule in a layered manner, and 65
Kb, a pressure and temperature of 1700° C. were simultaneously applied for 30 minutes.

この結果直径およそ6m+1゜高さおよそ2,5IIの
塊状体が得られた。
As a result, a lump having a diameter of approximately 6 m + 1° and a height of approximately 2.5 II was obtained.

この塊状体は超硬合金に傷をつけることができ、またG
C砥石でほとんど研摩できなかった。
These lumps can damage cemented carbide, and
I could hardly polish it with the C whetstone.

実施例2 古河電工製で市販のNiTi合金(FEDIG−NT)
の円板とC−BN粉末を用い55Kb、1600℃で2
0分間保持した。
Example 2 Commercially available NiTi alloy (FEDIG-NT) manufactured by Furukawa Electric
55Kb using a disk and C-BN powder, 2 at 1600℃
It was held for 0 minutes.

この結果実施例1と同様のC−BN塊状体が得られた。As a result, C-BN aggregates similar to those in Example 1 were obtained.

実施例3 325メツシユ以下のN1粉末とTi粉末を1対1の化
学量論組織になるように混合し、C−BN粉末と層状に
充填し、50Kb、1500℃で20分間保持した。
Example 3 N1 powder and Ti powder of 325 mesh or less were mixed to have a 1:1 stoichiometric structure, packed in a layer with C-BN powder, and held at 50 Kb and 1500° C. for 20 minutes.

得られた塊状体をダイヤモンドで研摩し、ヌープ硬さを
測定したところ、3800にf/llI2という高い値
を示した。
The obtained lump was polished with a diamond and the Knoop hardness was measured, and it showed a high value of 3800 f/llI2.

またハンマで破壊して破面を走査型電子顕微鏡で観察し
た結果C−BN同志が良好に結合した骨格をNiTi相
が保持していることがわかった。
Further, the fracture surface was observed with a scanning electron microscope after being broken with a hammer. As a result, it was found that the NiTi phase maintains a skeleton in which C-BN molecules are well bonded to each other.

実施例4 実施例3と同じNiとTiの混合粉末にさらにW−BN
とC−BNを重量で1:5添加し十分混合した。
Example 4 W-BN was added to the same Ni and Ti mixed powder as in Example 3.
and C-BN were added in a ratio of 1:5 by weight and thoroughly mixed.

この粉末を充填し50Kb、1500℃で10分間保持
した。
This powder was filled and held at 50 Kb and 1500° C. for 10 minutes.

この結果実施例1と同様の塊状体が得られた。As a result, a lump similar to that in Example 1 was obtained.

実施例5 化学的蒸着法(CVD)によってTiを蒸着した325
/400メツシユのC−BNに325メツシユ以下のN
i粉末を添加し、45Kb、1350り℃で10分間保
持したところ実施例1と同様の塊状体が得られた≦ このようにして得られる高圧相窒化硼素塊状体は、切削
工具用刃物など高温強度と耐摩耗性の要求される材料に
適し、高圧相窒化硼素のすぐれた性能を発揮するのに有
効である。
Example 5 325 with Ti deposited by chemical vapor deposition (CVD)
/ C-BN of 400 meshes and N of 325 meshes or less
When the i powder was added and held at 45 Kb and 1350 °C for 10 minutes, a lump similar to that in Example 1 was obtained.≦ The high-pressure phase boron nitride lump obtained in this way can be used for high-temperature applications such as blades for cutting tools. It is suitable for materials that require strength and wear resistance, and is effective in demonstrating the excellent performance of high-pressure phase boron nitride.

本発明の実施にあたっては結合剤は必ずしもNi−50
at%Tiに限定されない。
In practicing the present invention, the binder is not necessarily Ni-50.
It is not limited to at%Ti.

例えば前記化学量論的組成より高Ni側、あるいは高T
i側にずれると室温における硬さは増し、また共晶反応
、包晶反応によりNi−50at%Tiより低い温度で
液相を生じるという特徴がある。
For example, higher Ni than the stoichiometric composition, or higher T than the stoichiometric composition.
When shifted to the i side, the hardness at room temperature increases, and a liquid phase is produced at a temperature lower than that of Ni-50at%Ti due to eutectic reaction and peritectic reaction.

低い温度で液相を生じることは、溶浸を容易にする効果
があり、塊状体の使用目的やあるいは製造設備の都合に
より低い温度で製造を行ないたい場合には有利である。
Forming a liquid phase at a low temperature has the effect of facilitating infiltration, and is advantageous when manufacturing at a low temperature is desired due to the intended use of the lump or the convenience of manufacturing equipment.

しかしながら化学量論組成のNiTiは空孔濃度が但く
、低温硬さは低いにもか\わらず、例えば1000℃付
近の高温では高Ni側あるいは高Ti側よりもむしろ強
度が大きい。
However, although NiTi with a stoichiometric composition has a low vacancy concentration and low low temperature hardness, it has higher strength at high temperatures, for example around 1000° C., than the high Ni side or the high Ti side.

したがって高圧相窒化硼素の特性を十分発揮させるため
にItLNi−50at$iのごく近くの組成を選定す
るのが、望ましい。
Therefore, in order to fully exhibit the characteristics of high-pressure phase boron nitride, it is desirable to select a composition very close to ItLNi-50at$i.

但し、焼結中にチタンの一部が窒化硼素と反応して硼化
物、窒化物を生成することがありこの傾向は焼結温度が
高い程著しい。
However, during sintering, a portion of titanium may react with boron nitride to produce borides and nitrides, and this tendency becomes more pronounced as the sintering temperature increases.

したがって添加する結合剤の組成と塊状体中の結合剤の
組成は必ずしも一致しないので焼結条件の選定と添加す
る結合剤の組成を考慮する必要がある。
Therefore, since the composition of the binder added and the composition of the binder in the lump do not necessarily match, it is necessary to consider the selection of sintering conditions and the composition of the binder added.

また、形状記憶効果を防止する目的で若干の鉄やコバル
トなどを添加してもよい。
Further, a small amount of iron, cobalt, etc. may be added for the purpose of preventing the shape memory effect.

NiとTiは合金の形でもあるいは単体Ni、単体Ti
の形で超高圧装置の試料室に充填してもよく、また高圧
相窒化硼素とあらかじめ混合しておいても、あるいは層
状に配置して溶浸させてもよい。
Ni and Ti can be used in the form of an alloy, or in the form of an elemental Ni or elemental Ti.
It may be filled in the sample chamber of an ultra-high-pressure device in the form of , or it may be mixed with the high-pressure phase boron nitride in advance, or it may be arranged in a layer and infiltrated.

高圧相窒化硼素としてはC−BNが望ましい。C-BN is desirable as the high-pressure phase boron nitride.

しかしC−BNの一部ないし全部をW−BNで置換して
もよい。
However, part or all of C-BN may be replaced with W-BN.

添加したW−BNの一部または全てが焼結中にC−BN
に変態してもよい。
Some or all of the added W-BN becomes C-BN during sintering.
You can transform into

高圧相窒化硼素塊状体の高圧相窒化硼素層に含まれるN
i−Ti合合金量量体積で40係を越える場合には塊状
体の硬さが低下しすぎ、また1係以下の場合には結合剤
として靭性改善の効果が少ない。
N contained in the high-pressure phase boron nitride layer of the high-pressure phase boron nitride block
If the amount of i-Ti alloy exceeds 40 modulus in terms of volume, the hardness of the lump will be too low, and if it is less than 1 modulus, the effect of improving toughness as a binder will be small.

一般に5〜15係程度が好ましい。塊状体に各種酸化物
、炭化物、窒化物、硼化物、硅化物を添加してもよい。
Generally, a ratio of about 5 to 15 is preferable. Various oxides, carbides, nitrides, borides, and silicides may be added to the lumps.

焼結はW−BNまたはC−BNが熱力学的に安定な圧力
および温度条件で行なうべきである。
Sintering should be carried out under pressure and temperature conditions in which the W-BN or C-BN is thermodynamically stable.

g−BNが安定な条件下で焼結しW−BNおよびC−B
Nの一部または全部が軟質なg−BNに変態すると、塊
状体の強度を著しく低下させる。
W-BN and C-B are sintered under conditions where g-BN is stable.
When part or all of the N transforms into soft g-BN, the strength of the aggregate is significantly reduced.

W−BNまたはC−BNが安定であると思われる条件で
焼結を行なってもg−BNを少量生成することがしばし
ばみられる。
Even when sintering is performed under conditions where W-BN or C-BN is considered stable, it is often observed that g-BN is produced in small amounts.

これは粉末粒子が相互に接触していない空隙の圧力が低
いことによるものと考えられ、前述した巨視的圧力とは
その意味が若干具なる。
This is thought to be due to the low pressure in the voids where the powder particles are not in contact with each other, and the above-mentioned macroscopic pressure has a somewhat different meaning.

高圧相窒化硼素粒子相互の密着を促進させ、かつ原子の
拡散を活発にするためにも可能な限り高圧、高温でかつ
長時間焼結させることが望ましいが、これらの要求は製
品の価格を高価にする。
It is desirable to sinter at as high a pressure, high temperature, and for a long time as possible in order to promote close contact between high-pressure phase boron nitride particles and to activate atomic diffusion, but these requirements increase the price of the product. Make it.

したがって商業的に、また実質的に効果のある条件とし
ては、少なくともおよそ45Kb以上、少なくともおよ
そ1200℃以上の温;度を同時に1分間以上加えるべ
きである。
Therefore, as a commercially and substantially effective condition, a temperature of at least about 45 Kb or more and a temperature of at least about 1200° C. or more should be simultaneously applied for at least 1 minute.

上記圧力、温度を加える装置としては必ずしもベルト型
装置に限定されるものではなく、立方型装置などでもよ
い。
The device for applying the pressure and temperature is not necessarily limited to a belt-type device, but may be a cubic-type device or the like.

尚高温下における圧力は現在の技術では厳密に測定する
ことは困難であり、若干の誤差を容認すべきことは超高
圧業者のよく知るところである。
It should be noted that it is difficult to accurately measure pressure at high temperatures using current technology, and ultra-high pressure manufacturers are well aware that some errors should be accepted.

Claims (1)

【特許請求の範囲】 1結晶の大きさが200μ以下の高圧相窒化硼素に対し
てニッケル元素とチタン元素の比率が相互に45〜55
原子パーセントの範囲内のニッケル元素とチタン元素の
金属間化合物が、高圧相窒化硼素を含めた全体積の1パ
一セント以上、40パーセント以下含有することを特徴
とする耐摩耗性高圧相窒化硼素塊状体。 2結晶の大きさが209μ以下の高圧相窒化硼素に、ニ
ッケル元素とチタン元素の比率が相互に45〜55原子
パーセントで、かつニッケル元素とチタン元素の合計の
体積が高圧相窒化硼素を含めた全体積の1パ一セント以
上、40パーセント以下となるように添加した混合物に
45Kb以上、1200℃以上の圧力と温度を同時に1
分間以上加えることにより高圧相窒化硼素をニッケル元
素とチタン元素の金属間化合物で結合することを特徴と
する耐摩耗性高圧相窒化硼素塊状体の製造方法。
[Claims] For high-pressure phase boron nitride in which the size of one crystal is 200μ or less, the ratio of nickel element and titanium element is 45 to 55.
A wear-resistant high-pressure phase boron nitride characterized by containing an intermetallic compound of nickel element and titanium element within the range of atomic percent of 1% or more and 40% or less of the total volume including the high-pressure phase boron nitride. Massive body. 2 High-pressure phase boron nitride with a crystal size of 209μ or less, the ratio of nickel element and titanium element to each other is 45 to 55 atomic percent, and the total volume of nickel element and titanium element includes high-pressure phase boron nitride. 45Kb or more, and a pressure and temperature of 1200℃ or more are simultaneously added to the mixture so that the amount is 1% or more and 40% or less of the total volume.
1. A method for producing a wear-resistant high-pressure phase boron nitride mass, which comprises bonding high-pressure phase boron nitride with an intermetallic compound of nickel and titanium elements by adding the boron nitride for a minute or more.
JP53029809A 1978-03-17 1978-03-17 Wear-resistant high-pressure phase boron nitride aggregate and its manufacturing method Expired JPS585982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53029809A JPS585982B2 (en) 1978-03-17 1978-03-17 Wear-resistant high-pressure phase boron nitride aggregate and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53029809A JPS585982B2 (en) 1978-03-17 1978-03-17 Wear-resistant high-pressure phase boron nitride aggregate and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS54123114A JPS54123114A (en) 1979-09-25
JPS585982B2 true JPS585982B2 (en) 1983-02-02

Family

ID=12286343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53029809A Expired JPS585982B2 (en) 1978-03-17 1978-03-17 Wear-resistant high-pressure phase boron nitride aggregate and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS585982B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944015A (en) * 1972-09-01 1974-04-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944015A (en) * 1972-09-01 1974-04-25

Also Published As

Publication number Publication date
JPS54123114A (en) 1979-09-25

Similar Documents

Publication Publication Date Title
Artini et al. Diamond–metal interfaces in cutting tools: a review
JP2607469B2 (en) Diamond compact and manufacturing method thereof
US4985051A (en) Diamond compacts
US3871840A (en) Abrasive particles encapsulated with a metal envelope of allotriomorphic dentrites
JP2907315B2 (en) Production of polycrystalline cubic boron nitride
KR100402986B1 (en) Manufacturing method of compact for polishing with improved properties
JP2004505786A (en) Manufacturing method of polishing products containing diamond
JPH0732985B2 (en) Abrasive grinding tool
JP2010538950A (en) Super hard diamond composite
KR101190963B1 (en) Method of making a cbn compact
JP2004506094A (en) Manufacturing method of polishing products containing cubic boron nitride
EP1341943A2 (en) Abrasive diamond composite and method of making thereof
JPH02160429A (en) Super-abrasive cutting element
TW201016392A (en) Abrasive particles having a unique morphology
US4342595A (en) Cubic boron nitride and metal carbide tool bit
JP2008539155A (en) Cubic boron nitride compact
JPS61201751A (en) High hardness sintered body and its manufacture
JPH0530897B2 (en)
JPS585982B2 (en) Wear-resistant high-pressure phase boron nitride aggregate and its manufacturing method
JP7473149B2 (en) High-hardness diamond-based block tool material and its manufacturing method
JPS6146540B2 (en)
JPS6131354A (en) Manufacture of diamond sintered body
JP2023505968A (en) Polycrystalline diamond with iron-bearing binder
JPS58223661A (en) High hardness material and manufacture
JPS594501B2 (en) High hardness sintered body