JPS585802A - Controlling system for kinetic mechanism with multifreedom - Google Patents

Controlling system for kinetic mechanism with multifreedom

Info

Publication number
JPS585802A
JPS585802A JP10222781A JP10222781A JPS585802A JP S585802 A JPS585802 A JP S585802A JP 10222781 A JP10222781 A JP 10222781A JP 10222781 A JP10222781 A JP 10222781A JP S585802 A JPS585802 A JP S585802A
Authority
JP
Japan
Prior art keywords
signal
speed
multifreedom
command
centrifugal force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10222781A
Other languages
Japanese (ja)
Inventor
Haruhisa Kawasaki
晴久 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10222781A priority Critical patent/JPS585802A/en
Publication of JPS585802A publication Critical patent/JPS585802A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37313Derive speed from position

Abstract

PURPOSE:To change the speed of the titled mechanism and to improve its accuracy by feeding back the fluctuation torque generated by the influence of mutual interference, centrifugal force, Coriois force, gravity, etc. of working shafts on the basis of signals relating to the position and speed corresponding to each working shaft. CONSTITUTION:A positional signal (x) of each working shaft of a multifreedom kinetic mechanism is obtained by passing a signal outputted from a position detector 1 fitted to the working shaft through a waveform shaping element 2 and a speed signal (x') is obtained by passing the positioned signal (x) through a speed operation element 3. A main operating element 4 operates a torque command U on the basis of these positional signal (x), speed signal (x') and the value of a command from a storing element 5. The torque command U is amplified by an amplifier 6 and applied to a servomotor of a multifreedom kinetic mechanism 7. Namely, a fluctuating torque component influenced by centrifugal force and Coriolis's signal (x) and the speed signal (x') and these are fed back.

Description

【発明の詳細な説明】 本発明紘、産業用Wdfットの如く複数の動作軸を結合
して表ゐ多自由度運動機構を1.高速且つ高精度に連続
軌道制御するものに関する。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, a multi-degree-of-freedom motion mechanism is realized by connecting a plurality of motion axes, such as an industrial WDF. It relates to continuous orbit control at high speed and with high precision.

一般に、サーーモータで駆動されるn自幽度運動機構の
運動方程式は、第1喬目の動作軸の変位量(位置)を#
lとしてz wz (1,’l*−・、#鳳〕1とおく
と、 ムi”i+B(x、i)+C(x4)mu   ・・・
式(1)%式% 一) ムロc)axO値で変化するnX鳳の慣性行列、
伽)  B (x、i)はXと速度を表わすi0値によ
って変化する鳳ベクトルであ〕、違心力中:Ivオリ0
力の影譬によって生じる変動トルク、 (c)  C(x、g)は重力加速度gとXO値によっ
て変化するnベクトルであ〕、重力の影譬によ〕生じる
変動トルク、 (A:)*は各動作軸を駆動するためのす一一篭一タが
発生するトルクを示すnベクトル、である。
In general, the equation of motion of a self-centered motion mechanism driven by a thermomotor is the displacement (position) of the first motion axis.
If we set z wz (1,'l*-・,#鳳)1 as l, then mu"i+B(x,i)+C(x4)mu...
Formula (1)% Formula% 1) Muro c) Inertia matrix of nX Otori that changes with axO value,
伽) B (x, i) is a vector that changes depending on X and the i0 value that represents the speed], during the eccentric force: Iv ori 0
(c) C(x, g) is an n vector that changes depending on the gravitational acceleration g and the XO value, and the variable torque caused by the gravitational influence, (A:) * is an n-vector indicating the torque generated by the shutter for driving each operating axis.

90種の多自由度運動機構を制御する方式は大別して2
通〉ある。
There are two main ways to control 90 types of multi-degree-of-freedom motion mechanisms:
There is.

その1つは、簡単な制御装置で実現で龜るものであ〕、
予め記憶されている指令値に基づいてナーが4−夕を駆
動し、各動作軸01A在位置と指令値との偏差を減少さ
せるように舎動作軸毎に速度と位置のフィードバック制
御を行うことによシ、運動機構先端を目的軌跡に沿って
連続的に制御していくものである。ζO制御方式は各動
作軸毎に制御系を構成するので制御装置は簡単になる、
という利点がある。しかし、高速度で大変位量の移動を
伴う動仰をさせる際には、各動作軸相互間の干渉によっ
て負荷変動が生じた〕、あるいは遠心力、コリオリカや
重力の影響で、蛇行したル行き過ぎが生じ、高速度且つ
高精度な連続軌道制御が困難である。
One of them is something that can be easily realized with a simple control device.
The driver drives the motor 4 based on pre-stored command values, and performs speed and position feedback control for each shaft operation axis so as to reduce the deviation between the position of each operation axis 01A and the command value. In other words, the tip of the motion mechanism is continuously controlled along the desired trajectory. Since the ζO control method configures a control system for each operating axis, the control device becomes simple.
There is an advantage. However, when performing movement and elevation that involves movement of a large amount of displacement at high speeds, load fluctuations occur due to interference between the operating axes], or due to the effects of centrifugal force, Coriolis, and gravity, meandering or overshooting occurs. occurs, making it difficult to perform high-speed and highly accurate continuous trajectory control.

もうx′)o方式は、各動作軸相互間の干渉、遠心力や
コリオリカ及び重力の影響によって生じ為変動トルクを
、各動作軸に対応ずゐ位置、速度及び加速度の各信号か
ら求め、求まった値をフィードバックすることによシ変
動トルクを打消し、その上で加速度、速度及び位置のフ
ィードバック制御を行って運動機構先端を目的軌跡に沿
って連続制御してい<4ht)である。
The x')o method calculates the fluctuating torque caused by interference between each operating axis and the effects of centrifugal force, Coriolis, and gravity from the position, velocity, and acceleration signals without corresponding to each operating axis. The variable torque is canceled by feeding back the calculated value, and then the acceleration, velocity, and position are feedback-controlled to continuously control the tip of the motion mechanism along the target trajectory (<4h).

すなわち、 前叡(1)の慣性行列ムωを、壺動作軸0位置によって
変化する項八ωと変化しない項んとに分離(ムω−鳥ω
十入)シ、Alωを用いて式(11のUを 1に=ム、ωaM十B(cei)十〇(xmg)−Ka
 x −Ks ’x −K@ x+v     =式(
2)と設定する。ここで、 4は加速度フィードバック行列(nXm)。
In other words, the inertia matrix Mω in the previous equation (1) is separated into a term 8ω that changes depending on the 0 position of the pot motion axis and a term that does not change (Mω − birdω).
Using the formula (U of 11 to 1 = Mu, ωaM 10B (cei) 10 (xmg) - Ka
x −Ks 'x −K@ x+v = formula (
2). Here, 4 is an acceleration feedback matrix (nXm).

民は速度フィードΔツタ行n (n X n )、へは
位置フィードバック行列(nX亀)。
The velocity feed Δ ivy row n (n x n ), and the position feedback matrix (n x tortoise).

マは指令値である。Ma is the command value.

この場合、指令値マと各状態黛、″X s Xとの関係
は (Ke +Av ) ・x+に1 i+に1 z xm
 yとなシ、ヒれの特性機を左半平面にあるように各フ
ィードバックゲイン行列を選定するととKよって、安定
で且つ指◆値マに追従すゐ系が構成される。斯様にこの
制御方式は変動トルクを打消す作用゛を持ち、前者の方
式と比較して高精度な連続軌道制御が実現できる利点を
有する。
In this case, the relationship between the command value Ma and each state, ``X s
If each feedback gain matrix is selected so that the characteristic machine of y, Nashi, and Fin is on the left half plane, a system that is stable and follows the specified value ma is constructed. In this way, this control method has the effect of canceling out the fluctuating torque, and has the advantage of realizing highly accurate continuous trajectory control compared to the former method.

しかし、この制御には各動作軸に対応する加速度信号を
必要とするため、次のような問題点がある。
However, since this control requires acceleration signals corresponding to each axis of motion, there are the following problems.

一般に加速度信号は、加速度検出器から得るか、tえは
位置信号の2回微分あるいは速度信号Q1ml黴分によ
って求めるのであるが、加速度検出器で得る場合は、検
出器自体が非常に高価であシ、また小形な多自由度運動
機構では加速度検出器が大きな負荷となって運動の高速
化がm1IIKtkる。一方、位置信号や速度信号の微
分によって加速度を求める場合Fi、元の信号である位
置信号中速度信号が雑音を含まず非常に高精度な信号で
あることが要求され、そうでない場合には微分の結果加
速度信号が著しく不正確と表って高精[1連続軌籠制御
が困難と亀る。
Generally, the acceleration signal is obtained from an acceleration detector, or it is obtained by twice differentiating the position signal or dividing the velocity signal Q1ml, but when obtaining it with an acceleration detector, the detector itself is very expensive. In addition, in a small multi-degree-of-freedom motion mechanism, the acceleration detector becomes a large load, which increases the speed of motion. On the other hand, when determining acceleration by differentiating a position signal or a speed signal, Fi requires that the original signal, the position signal and speed signal, be a highly accurate signal that does not contain noise. As a result, the acceleration signal appears to be extremely inaccurate, making it difficult to perform high-precision continuous cage control.

本発明は、上述した従来技術の欠点に鑑み高速で高精物
連続軌道制御を実現することを目的とし、本発明の制御
方式〇4I黴は、各動作軸に対応する位置及び速度の各
信号から、動作軸の相互干渉、遠心力、コリオリカ、重
力などの影響によって生じる変動トルク分をフィードバ
ックするととKある。
The purpose of the present invention is to realize high-speed, high-precision continuous trajectory control in view of the drawbacks of the prior art described above. From this, we can feedback the variable torque component caused by mutual interference of the operating axes, centrifugal force, Coriolis, gravity, etc.

図線本発明の一実施例の制御fvsツク図である。図を
参照して説明すると、多自由度運動機構の動作軸の位置
信号Xa各動作軸に装着しである位置検出器1からの信
号を波形整形要素冨に通して得られ、速度信号量はこの
位置信勺冨を速度演算要素3に通して得られる。これら
位置4M 1 xと速度信号量は主演算要素4に通され
るが、この主演算要素番では配憶要素5に予め記憶させ
ておいた指令値04N号マ(nX1ベクトル)、変位の
フィードバックゲイン行列K。
FIG. 3 is a control FVS diagram of an embodiment of the present invention. To explain with reference to the figure, the position signal Xa of the operating axis of the multi-degree-of-freedom motion mechanism is obtained by passing the signal from the position detector 1 attached to each operating axis through a waveform shaping element, and the speed signal amount is This position information value is passed through the speed calculation element 3 to obtain it. These position 4M 1 Gain matrix K.

(nXn行列)及び速度のフィードバックダイン行列K
l(mXn行列)並びに上記の位置信号X及び速度信号
量から、各動作軸を駆動するサーカモータに与えるトル
ク指*U(nベクトル)を次式(3)Kよ〕演算する。
(nXn matrix) and velocity feedback dyne matrix K
1 (mXn matrix), the position signal X and the speed signal amount described above, the torque finger *U (n vector) given to the circa motor that drives each operating axis is calculated according to the following equation (3)K.

U=B Cx g x ) +C’Cx t t ) 
+ Aer)”(−K(X’−K2x + v )この
トルク指令υを増幅器6で増幅して多自由度運動機構7
のデーlモータに印加する。すなわち、位置信号X及び
速度信号iから遠心力や;リオリの力の影響による変動
トルク分B(!。
U=B Cx g x ) +C'Cx t t )
+ Aer)” (-K(X'-K2x + v) This torque command υ is amplified by the amplifier 6 and the multi-degree-of-freedom motion mechanism 7
data is applied to the motor. That is, from the position signal X and the speed signal i, there is a variable torque B (!

i)と重力の影響によみ変動トルク分C(x、g)を演
算してこれらをフィード/4ツクし、具り、位置信号X
から舎動作軸の位置’fs’l*・−、#nKよって変
化す為慣性行列ム(ロ)を演算してζO行列ムωに予め
設定しである指令信号マと速度フィードバック信号−K
liと位置フィードバック信号−に、xとの加算値を乗
算して得た信号ム(ロ)・(−KHz−KBc+マ)ラ
フイードパックするのである。このようなフィードバラ
フルーグを構成することによシ、予め定めた指令信号マ
と各状態X、X、菫との間に次の関係式(4)が成立す
る。
i) and calculate the variable torque C(x, g) due to the influence of gravity, feed/4-tsect these, and generate the position signal X.
Since the position of the shaft motion axis 'fs'l*・-, #nK changes, the inertia matrix M(b) is calculated and the command signal M and speed feedback signal -K are preset in the ζO matrix Mω.
The signal obtained by multiplying li and the position feedback signal - by the addition value of x is packed. By configuring such a feed barrier flow, the following relational expression (4) is established between the predetermined command signal M and each state X, X, and Violet.

筐+に1i+に寓X謬マ        ・一式(4)
そこで、式(4)の特性機を左半平面にあ、るように選
定するととにより、従来の加電加速度信号を用いること
なく、遠心力、;リオリの力及び重力による非線形特性
を打消すことができ、安定で且つ予め定めた指令信号V
に追従する系が構成される。
Case + 1i + Fable
Therefore, by selecting the characteristic machine of equation (4) to be located on the left half plane, the nonlinear characteristics due to centrifugal force, Rioli's force, and gravity can be canceled without using the conventional applied acceleration signal. A stable and predetermined command signal V
A system that follows is constructed.

本実施例では、各フィードバック247行列に、 、 
K、を次式(5)の如く、対角要素以外は全て零とする
ように選んでいる1、 このため、指令信漫マ諺(vs e Vs @・・・、
−〕の第第***の要素71は、第ill目の動作軸を
駆動するデーがモータへの指命となシ、他の動作軸に対
しては何ら影響を与えない。
In this embodiment, in each feedback 247 matrix,
As shown in the following equation (5), K is selected so that all elements other than the diagonal elements are zero1. Therefore, the command belief proverb (vs e Vs @...,
The ***-th element 71 of [-] does not have any influence on the other operating axes since the data for driving the ill-th operating axis is an instruction to the motor.

以上説明したように、本発明の制御方式によれば、加速
度信号を用いゐことなく多自由度運動機構特有の遠心力
、;リオリの力及び重力によシ生じる非線形性と動作軸
相互間の干渉とが著しく低減し、指令値に高速度且つ高
精1KK追従する制御系が構成できる。
As explained above, according to the control method of the present invention, the centrifugal force peculiar to a multi-degree-of-freedom motion mechanism; Interference is significantly reduced, and a control system can be constructed that follows the command value at high speed and with high precision 1KK.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示す制御ブーツタ図である。 図面中、 lは位置検出器、 2は波形整形要素、 3は速度演算要素、 4は主演算要素、 5は記憶要素、 6は増幅器、 7は多自由度運動機構、 Iは位置信号、 iは速度信号、 K1はm*フィーyAツクrイン行列、4は蕪!フィー
ドバックダイン行列、 U#iサーが4−タへのトルク指令、。 マは指令値の信号である。
The figure is a control boot diagram showing one embodiment of the present invention. In the drawing, l is a position detector, 2 is a waveform shaping element, 3 is a speed calculation element, 4 is a main calculation element, 5 is a storage element, 6 is an amplifier, 7 is a multi-degree-of-freedom movement mechanism, I is a position signal, i is the speed signal, K1 is the m*fee y A t ck r in matrix, and 4 is the turn! Feedback dyne matrix, U#i torque command to the 4-torer. is a command value signal.

Claims (1)

【特許請求の範囲】[Claims] 複数の動作軸を結合すると共に各動作軸に対応する位置
信号と速度信号とをフィードバックして各動作軸をチー
11f令−タによ)駆動する構成の多自由度運動機構を
制御する方式において、重力と=リオリの力と遠心力と
の影譬による変動トルク分を上記位置信号と速度信号か
ら′演算してツイーpdツクす為と共に、各動作軸の位
置によって定まる慣性行列を上記位置信号から演算して
求、め、との慣性行列に指令備考と速度フィードバッタ
信号と位置フィードパック信号との加算値を乗算してフ
ィードバックすることを特徴とすゐ多自由度運動機構の
制御方式。
In a method for controlling a multi-degree-of-freedom motion mechanism configured to connect a plurality of motion axes and drive each motion axis by feeding back a position signal and a speed signal corresponding to each motion axis , the fluctuation torque due to the influence of gravity, Rioli's force, and centrifugal force is calculated from the above position signal and speed signal, and the inertia matrix determined by the position of each operating axis is calculated from the above position signal. A control method for a multi-degree-of-freedom motion mechanism, which is characterized in that the inertia matrix calculated from , , and is multiplied by the addition value of the command note, the speed feed batter signal, and the position feed pack signal, and then fed back.
JP10222781A 1981-07-02 1981-07-02 Controlling system for kinetic mechanism with multifreedom Pending JPS585802A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10222781A JPS585802A (en) 1981-07-02 1981-07-02 Controlling system for kinetic mechanism with multifreedom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10222781A JPS585802A (en) 1981-07-02 1981-07-02 Controlling system for kinetic mechanism with multifreedom

Publications (1)

Publication Number Publication Date
JPS585802A true JPS585802A (en) 1983-01-13

Family

ID=14321762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10222781A Pending JPS585802A (en) 1981-07-02 1981-07-02 Controlling system for kinetic mechanism with multifreedom

Country Status (1)

Country Link
JP (1) JPS585802A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0196417A2 (en) * 1985-03-30 1986-10-08 Kabushiki Kaisha Toshiba Controller for multidegree of freedom nonlinear mechanical system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0196417A2 (en) * 1985-03-30 1986-10-08 Kabushiki Kaisha Toshiba Controller for multidegree of freedom nonlinear mechanical system

Similar Documents

Publication Publication Date Title
JP3215067B2 (en) Position correction method when moving direction is reversed
US4243923A (en) Servo-controlled mobility device
CN105404150B (en) The Vibrations of A Flexible Robot Arm Active Control Method of piezoelectric ceramic piece is used under a kind of hard measurement
JPH08179831A (en) Quadrant projection correcting method for full-closed loop system
CN103869748B (en) Non-round surface XY directly drives processing profile error cross-coupling control system and method
CN106426163A (en) Control apparatus of motor
WO1992014195A1 (en) Oscillation damper
US9046887B2 (en) Actuating apparatus
CN110794878A (en) Servo system pitch angle tracking control method
JP2000148210A (en) Gain calculating device
JP4269150B2 (en) Robot controller
JPS585802A (en) Controlling system for kinetic mechanism with multifreedom
JP2000131000A (en) Mixed missile automatic pilot
JPH0413108B2 (en)
JPS61201304A (en) Method for controlling position of robot
JP2003071760A (en) Assembly robot
JP4576530B2 (en) Servo gain calculation method, servo gain calculation program, and servo gain calculation device
JPS63273115A (en) Servo control circuit
JP2580502B2 (en) Force / torque control method for motor with reduction gear
JPH0724886B2 (en) Positioning control method for turnover device
JPH0475113A (en) Controller
JPH02297612A (en) Sliding mode controlling system with integrability
JPS61163406A (en) Robot control device
JPS59220806A (en) Controlling method of industrial robot
JP6400538B2 (en) Robot control device for controlling a robot driven by a motor