JPS5850486A - Radiation detector - Google Patents

Radiation detector

Info

Publication number
JPS5850486A
JPS5850486A JP56149861A JP14986181A JPS5850486A JP S5850486 A JPS5850486 A JP S5850486A JP 56149861 A JP56149861 A JP 56149861A JP 14986181 A JP14986181 A JP 14986181A JP S5850486 A JPS5850486 A JP S5850486A
Authority
JP
Japan
Prior art keywords
electrode
electrode plate
detection
electrode plates
signal detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56149861A
Other languages
Japanese (ja)
Inventor
Moriyoshi Murata
村田 守義
Yuzo Yoshida
吉田 祐三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56149861A priority Critical patent/JPS5850486A/en
Publication of JPS5850486A publication Critical patent/JPS5850486A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J47/00Tubes for determining the presence, intensity, density or energy of radiation or particles
    • H01J47/02Ionisation chambers

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To increase a space resolving power and to obtain detection data of excellent quality by forming a conductive layer on electrode plates for detecting signals by a suspension substrate method utilizing plasma polymerization, and by earthing the conductive layer thus formed to use the same as guard electrodes. CONSTITUTION:Electrode plates 6 and 7 for high voltage and for detection of signals are arranged in plural at prescribed intervals by using the grooves of insulating supports 18. On the electrode plates 7 for detection of signals, insulating layers 7c and conductive layers 7d are formed at the parts of the plates inserted into the grooves of the supports 18, by a suspension substrate method utilizing plasma polymerization. The conductive layers 7d are earthed and used as guard electrodes.

Description

【発明の詳細な説明】 本発明は放射線断層撮影装置に用いる放射線検出器の改
良に関するものである。1 放射線断層撮影装置の一つとしてコンビ5.−タートモ
グラフ4 (Computerized Tomogr
aphy:以下、CT装置と略称する)と呼ばする装置
Uがある。この装置は第1図に示す如く例えば扁平なフ
ァンビームX線FXをパルス的に曝射するXk源Jと、
このX線を検出する被数の放射線検出セルを並設して成
る放射線検出器2とを被写体3を介して対峙させ、且つ
これらX&!源1及び放射線検出器2を前記被写体3を
中心に互いに同方向に同一角速度で回転移動させ、被写
体3の断面の種々の方向に対するX線吸収データを収集
する。そして、十分なデータを収集し7た後、このデー
タを電子計算機で解析し、被写体断面個々の位置に対す
るX線吸収率を舞出してその吸収率に応じた階調度で前
記被写体断面を再構成するようにしたもので、組成に応
じて2000段階にも及ぶ階調度で分析できく)ので、
軟質組織から硬質組織に至る1で明確な断層像が得られ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a radiation detector used in a radiation tomography apparatus. 1 Combi 5. as one of the radiation tomography devices. -Computerized Tomogr4
There is a device U called aphy (hereinafter abbreviated as CT device). As shown in FIG. 1, this device includes, for example, an Xk source J that emits flat fan beam X-rays FX in a pulsed manner;
The X&! The source 1 and the radiation detector 2 are rotated around the subject 3 in the same direction and at the same angular velocity to collect X-ray absorption data in various directions of the cross section of the subject 3. After collecting sufficient data, this data is analyzed by a computer, the X-ray absorption rate for each position of the object cross section is calculated, and the object cross section is reconstructed with a gradation level corresponding to the absorption rate. (This allows analysis to be performed in as many as 2,000 gradations depending on the composition.)
Clear tomographic images can be obtained with 1 ranging from soft tissues to hard tissues.

ところで、前記放射線検出器2は被写体3の断面を透過
したX線のエネ/I/ギを電離電流とj7て検出し、こ
れをX線吸収データとして出力する。
Incidentally, the radiation detector 2 detects the energy/I/g of the X-rays transmitted through the cross section of the subject 3 as an ionizing current, and outputs this as X-ray absorption data.

即ち、このX線吸収j′−夕の収集にあたっては電離槽
を構成する各放射線検出セルとX@源とを結ぶ線上(こ
れをX線ノクスと云う)を透過して来たX線のエネルギ
を電離′低流として検出してこれを所定の時間、積分し
、その積分値を所定の時定数の放電回路にて放電し、そ
の放電時間値をX線吸収データとするものである。
In other words, in collecting this X-ray absorption j'-wave, the energy of the X-rays that have passed through the line connecting each radiation detection cell making up the ionization tank and the X source (this is called an X-ray nox) is collected. is detected as a low ionization current, this is integrated for a predetermined time, the integrated value is discharged in a discharge circuit with a predetermined time constant, and the discharge time value is used as X-ray absorption data.

一つの方向からのX線パスに対するデータ収集が終ると
次の方向に対するX線・ぐスのデータ収集に移ってゆく
が、この間に前回のX線・9スによる電離電流や積分値
の放電等が完全に消滅。
Once the data collection for the X-ray path from one direction is completed, the data collection for the next direction begins. completely disappeared.

終了していなければ次のデータ収集に誤差となって表わ
れてくる。
If it is not completed, errors will appear in the next data collection.

即ち、X線ビームの曝射繰り返し周期は一般に放射線検
出器のこれら回復時間によシ制限を受けることになる。
That is, the repetition period of X-ray beam exposure is generally limited by the recovery time of the radiation detector.

これは断層面一枚当シのデータ収集時間(即ち、撮影時
間)に大きな影響を及ばず要因であり、撮影時間の短縮
を求められる今日、出来る限シこれを短縮し7なけれt
すならない。
This is a factor that does not have a major impact on the data collection time (i.e., imaging time) per tomographic plane, and in today's world where shortening imaging time is required, it is necessary to shorten this as much as possible7.
That's right.

また、杓構成画像の分解能は放射1v横出器の持つ感度
、分解能で定゛二・るため、侵れたC 1’装置を傅る
ためには速い回復時間、高感度、高分解能の放射線検出
器を使用し力けれし]々らない。
In addition, the resolution of the ladle-composed image is determined by the sensitivity and resolution of the radiation 1V transverse extractor, so in order to repair the damaged C1' device, it is necessary to use radiation that has a fast recovery time, high sensitivity, and high resolution. There is no strain when using the detector.

優れた空間分解能を南するためには、各々の放射線検出
セルを構成する箪椿徐が於1・1線検出セル列の全長V
(=わたって互いに近接し、[1つ一様に自己設される
ことが望ましい。捷だ、CT装置に使用される放射&I
検出器はナノアンペア(nA)  オーダと云う非常に
微弱な電流を信号として検出するものであるから□ti
k間の漏洩電流には十分注意する必要がlしる。
In order to obtain excellent spatial resolution, the total length of each radiation detection cell row must be set to 1.
(It is desirable that they be placed close to each other and uniformly self-installed.)
The detector detects a very weak current on the order of nanoamperes (nA) as a signal, so □ti
It is necessary to pay sufficient attention to the leakage current between the terminals.

本発明は上記事情に鋲みてなされたもので、高圧用及び
イ=号検出用の′電極板を所定間隔をおいて多数枚、交
互に配設し、信号検出用電極板よシそれぞれ検出信号を
得ることにより、空間位置分解能を持たせた放射線検出
器において、前記電極板の端部を挿入する溝を複数本形
成1−た絶縁性のサポ゛−トを用い、この溝に前記電極
板を挿入し、保持させると共に前記信号検出用の電極板
には前記サポート側1i4i部分にプラズマ重合法(・
′こよ#)極めて薄く精度の良いミクロンオーダの絶縁
薄膜及び、その上に同様に導電性物質の薄膜を形成し、
この導体を接地して用いるようにすることによシ漏洩電
流による検出信号への影響を防ぎ、また前記加工法によ
シ極めて高い均一性の薄膜を構成できることによる高精
度で品質の良い検出素子群が形成できるため検出器特性
として重要な素子間のエネルギ特性の揃った、また感度
偏差等の小さい高感度、高分解能化を図った放射線検出
器を提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and a large number of electrode plates for high voltage and for I= detection are arranged alternately at predetermined intervals, and the electrode plates for signal detection and the electrode plates for detecting the signal are respectively In a radiation detector with spatial position resolution, an insulating support with a plurality of grooves into which the ends of the electrode plate are inserted is used, and the electrode plate is inserted into the grooves. is inserted and held, and the electrode plate for signal detection is coated with plasma polymerization (.
``Kyo#) An extremely thin and precise insulating thin film on the order of microns, and a similarly thin film of conductive material formed on top of it,
By using this conductor while grounded, the influence of leakage current on the detection signal can be prevented, and the processing method described above can form a thin film with extremely high uniformity, resulting in a highly accurate and high quality detection element. It is an object of the present invention to provide a radiation detector which has uniform energy characteristics between elements, which are important as detector characteristics because groups can be formed, and which has high sensitivity and high resolution with small sensitivity deviations.

以下、本発明の一実施例について第2図〜第14図を参
照しながら説明する。
An embodiment of the present invention will be described below with reference to FIGS. 2 to 14.

前述したように放射線検出器は被写体を介してX線源に
対峙させて配置されている。
As described above, the radiation detector is placed facing the X-ray source through the subject.

5− この対峙されて配置されたXi源、放射線検出器は被写
体を中心にその周囲を任意時間で回転させなからX、@
ビームをパルス状に陽射させる。X線ビームは拡がシ角
θの扇形を成して拡がシながら、被写体断面を透過する
。そして、このXtj!ビームは放射線検出セル列に入
射し、そのエネルギに対応してINL離する。これによ
シxHビームの最先端における光子強度が入射した放射
線検出セルの電極板によって電離電流と云う形で検出さ
れ、且つ空間的に識別される。
5- Since the Xi sources and radiation detectors placed facing each other rotate around the subject at arbitrary times,
The beam is emitted in a pulsed manner. The X-ray beam passes through the cross section of the object while expanding in a fan shape with an angle of expansion θ. And this Xtj! The beam is incident on the radiation detection cell array and is separated from INL in accordance with its energy. Thereby, the photon intensity at the leading edge of the xH beam is detected in the form of an ionization current by the electrode plate of the radiation detection cell into which it is incident, and is spatially identified.

前述の通シ、優れた空間分解能を得るためには各々の放
射線検出セル列を構成する電極板を互いに近接させてX
i−パス数を増大させ・ (−7:かも、このX線A’
スの幅が一様となるようピッチを一定にして配置させる
ことが望ましい。
As mentioned above, in order to obtain excellent spatial resolution, the electrode plates constituting each radiation detection cell row should be placed close to each other.
Increase the i-pass number (-7: Maybe this X-ray A'
It is desirable to arrange them at a constant pitch so that the width of the space is uniform.

この状態を得るために本発明においては絶縁物質(例え
ばセラミック、がラス叫)の上に微小ピッチの溝を形成
し、その溝に沿って高圧電極板及び側部に絶縁体物質と
導電体物質の二層の重合被膜を有する信号電極板を挿入
すること=6− によシミ極板の配設ピッチ精度を出し易くしである。
In order to achieve this state, in the present invention, grooves with a minute pitch are formed on an insulating material (for example, ceramic, etc.), and along the grooves, an insulating material and a conductive material are formed on the high voltage electrode plate and the sides. Inserting a signal electrode plate having two layers of polymeric coating = 6- makes it easier to maintain the pitch accuracy of the stain electrode plates.

以下 順を追って本発明の一実施例を説明する。An embodiment of the present invention will be described below in order.

第2図は本装置の構成を示す斜視図であり、図中4は電
極群その他を情う円弧状箱形のケース、5はこのケース
4の開口面側を閉塞し、電極群その他を搭載する蓋であ
る。
FIG. 2 is a perspective view showing the configuration of this device. In the figure, 4 is an arcuate box-shaped case that houses the electrode group and others, and 5 closes the opening side of this case 4 and mounts the electrode group and others. It is a lid.

これらケース4及び蓋5は内部に充填される高圧ガスに
対して十分の強度及び気密を保持するため、ボルト締め
される。この放射線検出器はファンビームX線FXの拡
がシ角θに対応してその入射面側4aの入射部4bを薄
くして十分にX線の入射が行なわれるようにしである。
These case 4 and lid 5 are bolted together to maintain sufficient strength and airtightness against the high pressure gas filled inside. In this radiation detector, the incidence portion 4b on the entrance surface side 4a is made thin in accordance with the spread angle θ of the fan beam X-rays FX, so that sufficient X-rays can be incident thereon.

第3図はこの放射線検出器の平面図、第4図はその正面
図であり、ファンアングル(ファンビームX線の拡がシ
角)θのX線は紙面に垂直に上側から入射することにな
る。
Figure 3 is a plan view of this radiation detector, and Figure 4 is its front view. Become.

第5図は第3図A−A矢示断面図である。FIG. 5 is a sectional view taken along the line AA in FIG. 3.

図かられかるように本体4内は空洞となっておシ、最終
的にはここに電極素子群が配設されることになる。また
、X線の入射部4bは肉厚を薄くして透過X線量が多く
なるようにしである。
As can be seen from the figure, the inside of the main body 4 is hollow, and eventually a group of electrode elements will be disposed therein. Furthermore, the X-ray incident portion 4b is made thin so that the amount of transmitted X-rays is increased.

第6図はケース4内に市;枯ッ板6,7がいかに配置さ
れるかを示す図であシ、対向する一対の電極板6から7
部分にて つの放射線検出セルを構成している。
FIG. 6 is a diagram showing how the electrode plates 6 and 7 are arranged in the case 4, and a pair of electrode plates 6 to 7 facing each other.
Each part consists of two radiation detection cells.

実際には電極群はケース4を閉塞する蓋側に取シ付けら
tする。
Actually, the electrode group is attached to the lid side that closes the case 4.

第7図はほぼ方形に形成された金入などの抑型材料によ
る板状の高圧印加用(例えば!i 00〜1oooV)
の’it &板6であシ、6aは一辺に突設されたタブ
である。このタブGaFiJ際に高圧電圧を導く高圧線
に接続するためのものである。
Fig. 7 shows a plate-like high voltage application using a suppressing material such as a gold case formed into an approximately rectangular shape (for example, !i 00 to 1oooV).
'it & plate 6, 6a is a tab protruding from one side. This tab is for connecting to a high voltage line that guides high voltage when using GaFiJ.

第8図は電離′電流を検出する信号検出用の電極板7の
素板を示すものである。図に示す如く素板は金属などの
導電制料による方形板状のもので、−側辺には三つのタ
ブ7a、7b、7a’が突設されている。これらの内タ
ブ7 a 、 7 a’は両端にまた7bはその中間部
に設けられておシ、タブ7bは電離電流を抽出し、それ
をデータ処理系に送シ出すだめの配線タブ、7m、7a
’は高圧用の電極板6から信号検出用の′1し極板7に
流れ込む漏洩電流をアースに流し込むために利用するタ
ブである。尚タブ側が背面、タブのある側辺に対向する
辺が放射線の入射側即ち正面となシ、また残る二辺が溝
挿入部となる。
FIG. 8 shows a blank plate of the electrode plate 7 for signal detection for detecting ionizing current. As shown in the figure, the base plate is a rectangular plate made of a conductive material such as metal, and has three tabs 7a, 7b, and 7a' protruding from the negative side. Among these, the tabs 7a and 7a' are provided at both ends, and the tab 7b is provided in the middle, and the tab 7b is a wiring tab for extracting the ionizing current and transmitting it to the data processing system. ,7a
'' is a tab used to cause leakage current flowing from the high-voltage electrode plate 6 to the signal detection electrode plate 7 to earth. The tab side is the back surface, the side opposite to the side with the tab is the radiation incident side, that is, the front side, and the remaining two sides are the groove insertion portions.

第9図は第8図の電極素板の両端の工ツノ(溝挿入部)
部分に所定幅でプラズマ重合法によシ絶縁性の物質によ
る絶縁薄膜7cを短冊状に生成させ、更にその上面に前
記絶縁薄膜7c狭 の幅よシやや幅fにプラズマ重合法により導電物質によ
る薄膜7dを生成させて形成した信号検出用の電極板で
ある。電極板7におけるこれら薄膜はミクロンオーダの
厚みであり、その幅は電極板を保持するためのサポート
の溝の深さよ杉やや幅広としである。
Figure 9 shows the prongs (groove insertion part) at both ends of the electrode blank shown in Figure 8.
A strip-shaped insulating thin film 7c made of an insulating material is formed on the portion with a predetermined width using a plasma polymerization method, and further a conductive material is formed on the upper surface of the insulating thin film 7c with a narrower width f or a conductive material using a plasma polymerization method. This is an electrode plate for signal detection formed by producing a thin film 7d. These thin films on the electrode plate 7 have a thickness on the order of microns, and their width is slightly wider than the depth of the groove of the support for holding the electrode plate.

導電物質による薄膜7dは絶縁薄膜7c上に9− あp1素板よシ絶縁されている。この薄膜7dはす、1
?−1の表面を通って高圧用の電極板6よシ流れ込む漏
洩電流の素板への流入を防止するガード電極としての役
割を果す。
A thin film 7d made of a conductive material is insulated from the base plate 9-Ap1 on the insulating thin film 7c. This thin film 7d is 1
? -1 and serves as a guard electrode to prevent leakage current flowing into the high-voltage electrode plate 6 from flowing into the blank plate.

ここで、第1θ図、第11図を用いて前記ガードを極の
生成法につhて説明する。
Here, the method of generating the guard pole will be explained using FIG. 1θ and FIG. 11.

この方法は基板を電気的に浮かせておき、プラズマと基
板との相互作用により被膜を生成させる浮遊基板法と呼
ばれる方法である。この方法によると被膜を形成する基
板の材質は何でも良い。たたly 、被膜を付着させる
基板を電極として使用する場合にはその材質は導体に限
られる。
This method is called a floating substrate method in which the substrate is electrically suspended and a film is generated by interaction between plasma and the substrate. According to this method, the substrate on which the film is formed can be made of any material. However, when the substrate to which the coating is attached is used as an electrode, its material is limited to a conductor.

以下、ゾラズマ、■膚1合法について説明する。Below, Zolazma, ■Skin 1 legal will be explained.

第10図、第11図において10は反応室であシ、この
反応室10は排気71?ン7°1ノが接続されていて、
この排気ボンダ11によシ反応室IQ内は10〜In 
 torr 程度まで排気され内部の不純ガスは取り除
かれる。このような反応室10内の後述するプラズマ発
生領域A内に10− 基板12が配設はれるが、基板12における被膜生成の
不要な部分には適宜な方法によりマスクし、被膜が付着
しないようにする。
In FIGS. 10 and 11, 10 is a reaction chamber, and this reaction chamber 10 is an exhaust gas 71? 7°1 is connected,
Due to this exhaust bonder 11, the inside of the reaction chamber IQ is 10~In.
It is evacuated to about torr and the impurity gas inside is removed. A 10-substrate 12 is disposed within a plasma generation region A described later in the reaction chamber 10, but portions of the substrate 12 where film formation is not required are masked by an appropriate method to prevent the film from adhering. Make it.

マスクされた基板12は反応室10内に電気的に浮かせ
た状態でセツティングされる。反応室10には蒸発器1
3が接続きれており、この蒸発器13によシ付着物質(
モノマー)が蒸気化されて排気された反応室10内に送
り込まれる。また、反応室10には一対の電%14 、
15が設けられており、この電極14.15間に交流電
源16より高周波電圧(kHz = MHzオー〆)を
印加するとこれら電極14.15間で放電が開始式れる
。すると反応室10内の電極14.15間の空間Aはプ
ラズマ状態となる。プラズマ内では電子の温度がイオン
の温度よりも2〜3桁高いため、電子はイオンにくらべ
て極めて早い速度で飛び回っている。
The masked substrate 12 is set in the reaction chamber 10 in an electrically floating state. The reaction chamber 10 has an evaporator 1
3 is not connected, and this evaporator 13 has deposited substances (
monomer) is vaporized and sent into the evacuated reaction chamber 10. In addition, in the reaction chamber 10, a pair of electric currents %14,
15 are provided, and when a high frequency voltage (kHz = MHz) is applied between these electrodes 14 and 15 from an AC power source 16, a discharge is started between these electrodes 14 and 15. Then, the space A between the electrodes 14 and 15 in the reaction chamber 10 becomes in a plasma state. In plasma, the temperature of electrons is two to three orders of magnitude higher than that of ions, so electrons fly around at an extremely high speed compared to ions.

そこで、電気的に浮遊状態におる基板12がプラズマに
接すると基板12は主として電子の衝突を受けて負に帯
電し、プラズマよ9負電位になる。
Therefore, when the electrically floating substrate 12 comes into contact with the plasma, the substrate 12 is mainly bombarded with electrons and becomes negatively charged, reaching a potential 9 negative compared to the plasma.

故にプラズマ中に置かれた基板12の近傍においては電
子は反発されて電子密度か下がり、イオンで包囲される
ことになる。これをイオン・シース(Ion 5eat
h)と呼ぶ。
Therefore, in the vicinity of the substrate 12 placed in plasma, electrons are repelled, the electron density decreases, and the substrate 12 is surrounded by ions. Ion sheath (Ion 5eat)
h).

プラズマ内では熱拡散により運動していたイオンがイオ
ン・シースに加わり、次いで基板表面に達し、電子と再
結合して単址体にン′?シ、更に高分子(モノマー)化
する。
In the plasma, ions moving due to thermal diffusion join the ion sheath, then reach the substrate surface, where they recombine with electrons and form a single body. Then, it is further made into a polymer (monomer).

例えば付着物質、即ちモノマーとしてI′i、誘電体絶
縁性物質では塩化アルミニ1゛ツム、スチし/ン。
For example, the deposited material, i.e., I'i as a monomer, and dielectric insulating materials such as aluminum chloride and styrene.

テトラートキシシラン、塩化ビニルなどがあシ、生成ポ
リマーとしては酸化アルミニウム、スチレン、酸化シリ
コンなどがある。酸化シリコン等は酸素との反応である
からO101mHg程度の酸素分圧を考慮しなければな
らない。
Examples include tetratoxysilane and vinyl chloride, and generated polymers include aluminum oxide, styrene, and silicon oxide. Since silicon oxide and the like react with oxygen, an oxygen partial pressure of about 101 mHg must be taken into consideration.

また、導電物質では銅、モリブデン、ニッケルなどによ
る薄膜生成が考えられる。この導電性物質の薄膜生成は
上述した方法と全く同様の手法により行なわれるが、か
かる方法のみならず、真空蒸着法によっても可能である
Furthermore, as for conductive materials, thin films of copper, molybdenum, nickel, etc. may be formed. Formation of this thin film of conductive material is carried out by a method completely similar to the method described above, but it is also possible to use not only this method but also a vacuum evaporation method.

ポリマーの生成被膜速度は、種々の因子、例えば反応室
10内の圧力(真空度)、温度、交流電源周波数、電流
密度等により左右されるが、一般的には′vrn1 n
レベルでアル。
The rate of polymer formation depends on various factors, such as the pressure (degree of vacuum), temperature, AC power frequency, current density, etc. in the reaction chamber 10, but generally 'vrn1 n
Al on the level.

尚、第1θ図、第11図におけるノアは反応室1θ内の
真空度を測定するための真空計である。
Note that the noah in FIGS. 1θ and 11 is a vacuum gauge for measuring the degree of vacuum within the reaction chamber 1θ.

第9図に示した信号検出用の電極板7はこのようにして
作られたものであり、導電性物質によ多形成された薄膜
7dに対し、前記タブ7a。
The electrode plate 7 for signal detection shown in FIG. 9 is made in this way, and the tab 7a is formed on the thin film 7d made of a conductive material.

7 a/の位置にてリード線を接続し、これを接地する
ことで高電圧用の電極板6からの漏洩電流の電極板7に
対する流入を抑制することができる。
By connecting the lead wire at the position 7a/ and grounding it, it is possible to suppress leakage current from the high voltage electrode plate 6 from flowing into the electrode plate 7.

尚、第10図のものが基板1個に対する生成を示すもの
であるのに対し、第11図は複数個の生成の場合を示し
ている。
It should be noted that while the diagram in FIG. 10 shows the generation of one substrate, FIG. 11 shows the generation of a plurality of substrates.

このようにして形成した信号検出用の電極板7と前述の
面圧用の電極板6を複数枚用意し、第12図〜第14図
に示すように電極挿入用の13− 溝1B&を複数本設けである一対のサポート18にこの
溝18hに端部を保持させる形で電極板6.7を交互に
挿入させ、配列させる。
A plurality of electrode plates 7 for signal detection formed in this manner and electrode plates 6 for surface pressure described above are prepared, and a plurality of grooves 13-1B& for electrode insertion are formed as shown in FIGS. 12 to 14. The electrode plates 6.7 are alternately inserted and arranged in a pair of provided supports 18 with their ends held in the grooves 18h.

即ち、第12図は放射線40−゛出器をその背面から見
た部分図でアリ、第13図はそのB−B矢示図、第14
図は斜視図を示すもので、4は前述のケース、5は前述
の蓋である。サポート18は絶縁材で形成された板状の
もので、溝18aは電極板I】、7の配設ピッチでこ〜
1−1ら電極板6,7の配列方間に向けて形成しである
That is, Fig. 12 is a partial view of the radiation 40-emitter seen from the back, Fig. 13 is a view indicated by the B-B arrow, and Fig. 14
The figure shows a perspective view, where 4 is the aforementioned case and 5 is the aforementioned lid. The support 18 is a plate-shaped member made of an insulating material, and the groove 18a is arranged at a pitch of the electrode plate I], 7.
1-1 are formed in the direction in which the electrode plates 6 and 7 are arranged.

このサポート18は溝18aを互いに対向させてケース
4内に設けてあり、電極板6,7はタブを背面側にして
これら溝18h間に挿入しである。信号検出用の電極板
7は溝18aの深さよりもやや大きい幅でガ゛−ド電極
即ち導電性の薄膜7dが絶縁薄膜zc上に形成されてお
シ、従って電極板7はこの薄膜7d部分が溝18aよシ
ややはみ出すような状態でこの溝18a内に挿入保持さ
れる。そして、電極板6,7のこの溝18a挿入部分は
エポキシ樹脂などのよう14− な絶縁性の接着剤19にて接着され、固定される。また
、各高圧用の電極板6はそのタブ6aをリード線20に
より互いに接続され、このリード線20を介して高圧電
圧(500パ−1 o o o v )が供給される。
This support 18 is provided in the case 4 with the grooves 18a facing each other, and the electrode plates 6 and 7 are inserted between these grooves 18h with their tabs on the back side. The electrode plate 7 for signal detection has a guide electrode, that is, a conductive thin film 7d formed on the insulating thin film zc, with a width slightly larger than the depth of the groove 18a. is inserted and held in the groove 18a in such a manner that it protrudes beyond the groove 18a. The groove 18a insertion portion of the electrode plates 6, 7 is bonded and fixed with an insulating adhesive 19 such as epoxy resin. Further, the tabs 6a of each high-voltage electrode plate 6 are connected to each other by a lead wire 20, and a high voltage (500 per 1 o o ov) is supplied through this lead wire 20.

捷だ、各r4号検出用の電極板7はそのカード電極部即
ち導’+H性の一膜7d部分をリード線2ノにより互い
に接続され、このリード線2ノを介して接地される。
In fact, the card electrode portions of each R4 detection electrode plate 7, that is, the conductive +H film 7d portion are connected to each other by a lead wire 2, and are grounded via this lead wire 2.

また、蓋5には信号検出用の電極板7に対応する位置に
信号外部抽出用の端子22がそれぞれ設けられておシ、
これら各端子22はそれぞれ対応する電極板7のタブ7
bとリード線23によシ接続されている3゜ このような装置は接地されたガード電極が絶縁薄膜7C
を介して電極板7のサポート支持端側に形成されてしる
ため、表皮効果によ9高圧用の電極板6からサポート1
8及び接着剤19による層を通って信号検出用の電極板
7に流入する漏洩電流はこのガード電極部分により阻止
される。従って、信号検出用の電極板7には漏洩電流が
Ml−人せず、′電離により生じたイトf号成分のみが
検出される。
Further, the lid 5 is provided with terminals 22 for external signal extraction at positions corresponding to the electrode plates 7 for signal detection.
Each of these terminals 22 is connected to a tab 7 of a corresponding electrode plate 7.
3° connected to the lead wire 23 by the lead wire 23. In such a device, the grounded guard electrode is connected to the insulating thin film 7C.
The support 1 is formed on the supporting end side of the electrode plate 7 through the 9 high voltage electrode plate 6 due to the skin effect.
Leakage current flowing into the signal detection electrode plate 7 through the layer 8 and adhesive 19 is blocked by this guard electrode portion. Therefore, there is no leakage current in the electrode plate 7 for signal detection, and only the component f caused by ionization is detected.

また、本装置は前記ガード電極部分を薄膜を高い均一度
でしかも薄く形成し得るプラズマ重合の浮遊基板法によ
り形成させるようにしにノとめ、高精度でしかも均一な
品質の信号検出用電極板が得られ、数値制御工作機等に
よシ高鞘度に加工可能な一!I−r15−)と相俟って
品い品質で且つ検出特性の揃った多チヤンネル型の放射
lA1検出器が伯られる。
In addition, this device is designed to form the guard electrode portion using a plasma polymerization floating substrate method that can form a thin film with high uniformity and thinness. It can be processed to a high degree of precision using numerically controlled machine tools, etc. In combination with I-r15-), a multi-channel radiation IA1 detector with high quality and uniform detection characteristics can be created.

以上詳述したように本発明は高電圧用及び信号検出用の
両電極板をこれら′由;憧板の端部を挿入して保持させ
る電極板保持用の溝をH「定間隔で形成して成る絶縁性
のす;j;’ −)の該篩を利用して複数枚交互に所定
間隔を存して配設すると共に前記信号検出用の電極板よ
りそれぞれ入射放射線に対応する検出信号をイ44るこ
とにより空間分解能を持たせた多チヤンネル型の放射線
検出器において、前記信号検出用の電極板には前記ツポ
ートの溝に挿入する部分に絶縁層と導電層をプラズマ重
合による浮遊基板法により生成させたものを用い、その
導電層を接地してガード電極として利用するように構成
したので、高電圧用の電極板からの漏洩電流はこのガー
ド電極にて阻止され、従って、信号検出用の電極板への
流入は防止されるので1.精度、高感度で信号検出が行
なえる他、絶縁層及び導電層は電極板を電気的に浮かし
、これをプラズマ中に配設すると共に前記各々の層を生
成する物質の蒸気を供給することによって各々の層を形
成するプラズマ重合による浮遊基板法により行なうよう
にしたので、絶縁層及び導電層は厚みが均一でしかも薄
く形成でき、従って加工精度を保つことができるから、
狭い電極配列ピッチで寸法精度の高い検出器が得られ、
従って高空間分解能で良質の検出データが得られる放射
線検出器を提供することができる。
As described in detail above, the present invention has two electrode plates for high voltage and signal detection; A plurality of the insulating sieves are arranged alternately at a predetermined interval, and a detection signal corresponding to the incident radiation is detected from each of the signal detection electrode plates. In a multi-channel radiation detector that has spatial resolution by using A44, the electrode plate for signal detection is coated with an insulating layer and a conductive layer in the portion to be inserted into the groove of the tube using a floating substrate method using plasma polymerization. Since the conductive layer is grounded and used as a guard electrode, the leakage current from the high voltage electrode plate is blocked by this guard electrode, and therefore it is used for signal detection. 1. Signal detection can be performed with high accuracy and sensitivity, and the insulating layer and conductive layer electrically float the electrode plate, which is disposed in the plasma, and each of the above Since each layer is formed by a floating substrate method using plasma polymerization by supplying the vapor of a substance that generates the layers, the insulating layer and conductive layer can be formed thinly and uniformly in thickness, and therefore the processing accuracy can be improved. Because you can keep
A detector with high dimensional accuracy can be obtained with a narrow electrode arrangement pitch,
Therefore, it is possible to provide a radiation detector that can obtain high quality detection data with high spatial resolution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCT装置の原理を説明するための図、第2図は
従来の放射線検出器の一例を示す斜視17− 図、第31はその平面図、第4図は第2図の正面図、第
5図は第3図のA−A矢示断面図、第6図は放射線検出
器における検出素子群の配列状態を示す図、第7図は高
圧用の電極板を示す図、第8図は信−号検出用の電極板
の床板を示す図、第9図(a) (b)は力゛−ド電極
を形成した信号検出用の′「「極板を示す側面図及び正
(川口、第1O図、第11図は信号検出用の′電極板に
おけるガード電極部分の形成を行なうために用いるプラ
ズマ重合による浮遊基板法を説明するだめの図、第12
図、第13図、第14図VJ本発明による電極板を用い
て組み立てられた検出諒子群の状態を示す背面図及びそ
のH−11矢示断1III図及び斜視図である。 4・・・ケース、5・・・蓋、6・・・高圧用の電極板
、6a、7a、7a′、7b・・・タブ、7・・・信号
検出用の電極板、7C・・絶縁薄膜、7d・・導電物質
による薄膜、18・・・サポート、18a・・・溝、1
9・・・接着剤の層。 =18− 第3図 第4図 第6図 498− 第7図 第8図
Fig. 1 is a diagram for explaining the principle of a CT device, Fig. 2 is a perspective 17- view showing an example of a conventional radiation detector, Fig. 31 is a plan view thereof, and Fig. 4 is a front view of Fig. 2. , FIG. 5 is a sectional view taken along the line A-A in FIG. 3, FIG. 6 is a diagram showing the arrangement of the detection element group in the radiation detector, FIG. The figure shows the floor plate of the electrode plate for signal detection, and FIGS. Kawaguchi, Figures 1O and 11 are diagrams for explaining the floating substrate method using plasma polymerization used to form the guard electrode portion of the electrode plate for signal detection, and Figure 12.
FIGS. 13 and 14 are a rear view, a view taken along the H-11 arrow 1III, and a perspective view thereof, showing the state of a detection string assembly assembled using the electrode plate according to the present invention. 4... Case, 5... Lid, 6... Electrode plate for high voltage, 6a, 7a, 7a', 7b... Tab, 7... Electrode plate for signal detection, 7C... Insulation Thin film, 7d... Thin film made of conductive material, 18... Support, 18a... Groove, 1
9...Adhesive layer. =18- Figure 3 Figure 4 Figure 6 498- Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 高電圧用及び信号検出用の両電極板をこれら電極板の端
部を挿入して保持させる電極板保持用の溝を所定間隔で
形成して成る絶縁性のサポートの該溝を利用して複数枚
交互に配設し検出素子群を形成すると共に前記各々の信
号検出用電極板よシ入射放射線に対応する検出信号を得
るようにした多チヤンネル型の放射線検出器において、
前記信号検出用電極板は少なくとも前記サポートの溝に
挿入する部分にプラズマ重合による浮遊基板法により絶
縁層及びその上にプラズマ重合による浮遊基板法またに
真空蒸着法によp導電層を生成させたものを用い、この
導電層を接地してガード電極として利用する構成とした
ことを特徴とする放射線検出器。
A plurality of electrode plates for high voltage and signal detection are inserted and held by using the grooves of an insulating support formed with electrode plate holding grooves formed at predetermined intervals. In a multi-channel radiation detector, the electrode plates are arranged alternately to form a group of detection elements, and a detection signal corresponding to incident radiation is obtained from each of the signal detection electrode plates,
The signal detection electrode plate has an insulating layer formed by a floating substrate method using plasma polymerization at least in the portion to be inserted into the groove of the support, and a p-conducting layer formed thereon by a floating substrate method using plasma polymerization or a vacuum evaporation method. A radiation detector characterized in that the conductive layer is grounded and used as a guard electrode.
JP56149861A 1981-09-22 1981-09-22 Radiation detector Pending JPS5850486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56149861A JPS5850486A (en) 1981-09-22 1981-09-22 Radiation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56149861A JPS5850486A (en) 1981-09-22 1981-09-22 Radiation detector

Publications (1)

Publication Number Publication Date
JPS5850486A true JPS5850486A (en) 1983-03-24

Family

ID=15484250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56149861A Pending JPS5850486A (en) 1981-09-22 1981-09-22 Radiation detector

Country Status (1)

Country Link
JP (1) JPS5850486A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2585137A1 (en) * 1985-07-18 1987-01-23 Thomson Cgr Ionising radiation detector, in particular X-ray detector for a scanograph
CN103430049A (en) * 2012-03-07 2013-12-04 松下电器产业株式会社 Radiation detection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5267465A (en) * 1975-12-02 1977-06-03 Tadayoshi Nakayama Apparatus for prevention of vibration pollution caused by external forces

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5267465A (en) * 1975-12-02 1977-06-03 Tadayoshi Nakayama Apparatus for prevention of vibration pollution caused by external forces

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2585137A1 (en) * 1985-07-18 1987-01-23 Thomson Cgr Ionising radiation detector, in particular X-ray detector for a scanograph
CN103430049A (en) * 2012-03-07 2013-12-04 松下电器产业株式会社 Radiation detection device

Similar Documents

Publication Publication Date Title
US4031396A (en) X-ray detector
Bouclier et al. New observations with the gas electron multiplier (GEM)
EP0948803B1 (en) Radiation detector of very high performance.
US4831260A (en) Beam equalization method and apparatus for a kinestatic charge detector
KR20010031710A (en) A method and a device for planar beam radiography and a radiation detector
EP0198659B1 (en) Kinestatic charge detection using synchronous displacement of detecting device
SE514475C2 (en) Radiation detector, a device for use in flat beam radiography and a method for detecting ionizing radiation
JPS5947272B2 (en) multicell radiation detector
GB1575849A (en) X-ray detector array
CA2393534C (en) A method and an apparatus for radiography and a radiation detector
US4047039A (en) Two-dimensional x-ray detector array
US4785168A (en) Device for detecting and localizing neutral particles, and application thereof
JPS5853471B2 (en) Radiation detector and its manufacturing method
US4956557A (en) Dosimeter for ionizing radiation
SE516333C2 (en) Method and apparatus for radiography and a radiation detector
JPH0335634B2 (en)
Eberle et al. First tests of a liquid ionization chamber to monitor intensity modulated radiation beams
JPS5850486A (en) Radiation detector
US4795909A (en) High performance front window for a kinestatic charge detector
Miyamoto et al. An aging study of semiconductive microstrip gas chambers and a gas electron multiplier
US4841152A (en) Continuous-resistance field shaping element for a kinestatic charge detector
JPS595877B2 (en) X-ray detector
USRE30644E (en) X-ray detector
Rocco Development of a gaseous photon detector for Cherenkov imaging applications
JPS6360496B2 (en)