JPS58500936A - Twin-stage flash evaporator with improved distillate collection - Google Patents

Twin-stage flash evaporator with improved distillate collection

Info

Publication number
JPS58500936A
JPS58500936A JP50247781A JP50247781A JPS58500936A JP S58500936 A JPS58500936 A JP S58500936A JP 50247781 A JP50247781 A JP 50247781A JP 50247781 A JP50247781 A JP 50247781A JP S58500936 A JPS58500936 A JP S58500936A
Authority
JP
Japan
Prior art keywords
chamber
stage
duct
evaporation
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP50247781A
Other languages
Japanese (ja)
Inventor
ケイン・ドメニク
ピ−タ−ソン・レイ・デイ
Original Assignee
ウエスチングハウス・エレクトリツク・コ−ポレ−シヨン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウエスチングハウス・エレクトリツク・コ−ポレ−シヨン filed Critical ウエスチングハウス・エレクトリツク・コ−ポレ−シヨン
Publication of JPS58500936A publication Critical patent/JPS58500936A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/006Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping by vibration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/06Flash evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 溜出物捕集が改善された対設フラッシュ蒸発器関連出願の記述 tvtt都ta月を日付でアール・イー・ペイリー(R,I!、 Ba1lie  ) Kより出願され重鎮受人に醸渡された出願の継続出願としてlデ10年7 月3日付で出願された米国特許出願第76よttS号「多段フラッシュ蒸発器の 設計」0 発明の背景 本発明は水の脱塩プラントに関し、4IKそのよ5なプラントに用いる段が対に された対設(pairedatago )フラッシュ蒸発器KIIするものであ る。[Detailed description of the invention] Description of Applications Related to Opposite Flash Evaporators with Improved Distillate Collection R, I!, Ba1lie ) As a continuation of the application filed by K and handed over to an important recipient, I de 10 years 7 U.S. Patent Application No. 76, ttS, filed on March 3, ``Multi-Stage Flash Evaporator'' Design” 0 Background of the invention The present invention relates to a water desalination plant, in which the stages used in 4IK and 5 plants are paired. This is a paired flash evaporator KII. Ru.

多段フラッシュ蒸発量水脱塩プラントに於ては、塩水は複数の蒸発段を次第に圧 力が低下しながら次々に通って流れる。各蒸発段では、水は蒸気となり凝縮段に 上昇し【そこで凝縮管上に凝縮して捕集皿に落下する0ここで用いる「ユニット 」なる用語は、各多段蒸発器容器の単一の管束に組合わされた部分を意味するも のである0多段フラッシュ蒸発器ユニット用の一般的な長流(long flo w )設計に於ては、塩水は蒸発段から蒸発段へと、蒸発器ユニットの端間に延 びた凝縮管の方向に平行に流れる。例えば6乃至tの複数の段を各ユニットに設 けることができ、共通の仕切りが各段の蒸発室および凝(J) msを次段の蒸発室および凝縮室から分離し【いるO各長流エエットには一対の 端管板と一対の木箱とが必要である0 長amではプラン)に要する端管板および木箱の総数を滅すことができるが、特 K :s−ニラ)1つで6乃至を段にも亘る長い凝縮管を用いるために維持費の 点で不利がある。長流渥はその性格から、小容量プラント(例えばJOf1万ガ ロン/日まで)および非常に大容量のプラント(例えば1000万ガロン/日以 上)で製造および運転上置も経済的なものである0 十字流型も多段7ラツシユ蒸発器装置に普通に用いられるものの一つである。十 字流型に於【は、各段に一対の木箱と一対の端管板が設けられている。凝縮管は 端管板間に凰び1単一の蒸発室に組合わされており、蒸発室では塩水は凝縮管を 横切る方向に流れる。この構成に於ては、各ユニットは単一の段を有するのが普 通であるので各ユニット内の段間を仕切る内部仕切りは無いOこのよ5に1段間 の仕切りはユニット間で段を分離することにより得られる。In a multi-stage flash evaporation water desalination plant, brine passes through multiple evaporation stages at progressively higher pressures. They flow through one after another with decreasing power. In each evaporation stage, the water becomes vapor and goes to the condensation stage. The "unit" used here condenses on the condensation tube and falls into the collection pan. The term "" shall also mean the parts of each multi-stage evaporator vessel combined into a single tube bundle. A typical long flow for a multi-stage flash evaporator unit is w) In the design, the brine extends from evaporator stage to evaporator stage and across the ends of the evaporator unit. flow parallel to the direction of the condensing tube. For example, each unit has multiple stages of 6 to t. A common partition separates each stage of the evaporation chamber and condensation chamber (J). ms from the next stage evaporation chamber and condensation chamber.Each long flow chamber has a pair of An end tube plate and a pair of wooden boxes are required. Although the total number of end tube plates and wooden boxes required for long am can be eliminated, K: s-leek) Maintenance costs are reduced due to the use of a long condensing pipe that spans 6 or more stages. There are some disadvantages. Due to its nature, Choryuyu is suitable for small-capacity plants (for example, JOf10,000Ga). (up to 10 million gallons/day) and very large capacity plants (e.g., more than 10 million gallons/day) above) and is also economical to manufacture and operate. The cross-flow type is also one of the commonly used multi-stage seven-lush evaporator systems. ten In the diagonal type, each stage is equipped with a pair of wooden boxes and a pair of end tube plates. The condensing tube is The end tubes are combined into a single evaporation chamber between the plates, and the salt water flows through the condensing tube in the evaporation chamber. flows in the cross direction. In this configuration, each unit typically has a single stage. Since it is a common unit, there are no internal partitions to separate the stages within each unit. partitions are obtained by separating stages between units.

十字流型によれば各ユニット内の凝縮管が比較的短いのでプラント運転が容易で 運転上経済的であるが、必要なユニットの数が多い。各ユニットにコつの端管板 とコつの水箱が必要であるので製造コストがかなり高くなる0従来の十字流型の ものは普通大容量プラント(例えばコj0万乃至600万ガロン/日)で経済的 なものであ(J) る0 最近の改良屋蒸発器ユニットは、対膜十字流ユニットと呼ばれ、上述の特許出願 に記載されている。対膜十字流ユニットに於ては、一対の蒸発段と一対の凝縮段 とが単一の十字流ユニット内に設けられ、隣接の一つの蒸発段内の2つの蒸発室 間は管軸に平行Kmびる単一の仕切りによって分離され、2つの凝縮室間は管軸 に直角Kmびる別の仕切りによって分離され【いる。同じ段の蒸発室と凝縮室と の間は連通され【い【、蒸気が流れて凝縮し溜出物を捕集できるよ5Kしてある 。凝縮管が単一の蒸発器ユニット内の2つの凝縮室を通り【いる点で長流型に似 ており、塩水が凝縮管に対して長手方向でなく横方向に畏れる点で十字流型Km ている。According to the cross-flow type, the condensing pipes in each unit are relatively short, making plant operation easy. It is economical to operate, but requires a large number of units. One end tube plate for each unit The manufacturing cost is quite high because two water boxes are required.The conventional cross-flow type These are usually economical in large capacity plants (e.g. 100,000 to 6,000,000 gallons/day). Mono de (J) Ru0 A recent improved evaporator unit is called a membrane cross-flow unit, and the patent application mentioned above It is described in. In a membrane cross-flow unit, a pair of evaporation stages and a pair of condensation stages are used. and two evaporation chambers in one adjacent evaporation stage are provided in a single cross-flow unit. The two condensing chambers are separated by a single partition extending Km parallel to the tube axis; It is separated by another partition extending at right angles to Km. Evaporation chamber and condensation chamber on the same stage There is communication between [5K] so that steam can flow, condense, and collect distillate. . Similar to long-flow type in that the condensing tube passes through two condensing chambers within a single evaporator unit. It is a cross-flow type Km in that the salt water flows not in the longitudinal direction but in the lateral direction of the condensing pipe. ing.

対膜蒸発器に於ては、従来の十字流型では一つの蒸発器ユニットで一段のフラッ シュ蒸発と凝縮とが行なわれるに過ぎないのに対し、単一の蒸発器ユニットで2 段の7ラツシユ蒸発および凝縮が行なわれる。このため、対膜蒸発器容器は運転 効率を一般に改善させ、短かく軽量であり、同じ段数の従来型十字流型の蒸発器 容器に対して幅が同じあるいは僅かに大きいだけとすることができる。対膜蒸発 器プラントは、管束がクロスオーバー配管により接続された隣接の蒸発器ユニッ ト群を備えたものであり、普通プラント面積で20%乃至25%小さくなる。従 来型の淡水化プラントは、コダの蒸発器ユニットをクロスオーバー配管で直列接 続して一参段の蒸発器を構成したものもある0対段WKよれば蒸発段を一参段に するために必要な蒸発器ユニットの数はココだけであり、ココの射殺ユニットに より2参の従来型十字流型ユニットと同量の掘出物を生成することができる。In conventional cross-flow type membrane evaporators, one evaporator unit has one stage of flashing. While only evaporation and condensation are performed in a single evaporator unit, two Seven stages of evaporation and condensation are performed. For this reason, the membrane-tight evaporator vessel is Traditional cross-flow evaporator with generally improved efficiency, shorter and lighter weight, and the same number of stages It can be the same width or only slightly larger than the container. Anti-membrane evaporation The evaporator plant consists of adjacent evaporator units whose tube bundles are connected by crossover piping. The plant area is normally 20% to 25% smaller. subordinate The next type of desalination plant will connect Koda's evaporator units in series with crossover piping. Subsequently, there is also a one-stage evaporator configured.According to the 0-to-stage WK, the evaporator stage is one stage. The number of evaporator units required to It is possible to produce the same amount of excavated material as the two conventional cross-flow type units.

射殺型にすれば、管板および水箱に対する要求が軽減されてプラント運転可能性 が高まり、維持費が低くなり、またポンプエネルギーコストが低(なる0単列プ ラントにすればイニシャルコストが低く総塩水処理能力が高くなる。Shooting type reduces requirements on tubesheets and water boxes and improves plant operability. performance, maintenance costs are low, and pump energy costs are low (zero single row pump). If it is a runt, the initial cost will be low and the total saltwater treatment capacity will be high.

従来型の十字流型多段フラッシュ蒸発器に蒙ては、各段で7ラツシ工蒸発した蒸 気は網分離器を通されてその同じ段の管上に凝縮する。生成される掘出物は蓄積 ダクト内で段から段ヘカスケードされ、最低温度の段から排出される。In a conventional cross-flow multi-stage flash evaporator, each stage produces 7 liters of evaporated vapor. The air passes through a screen separator and condenses on the same stage of tubes. The generated bargains are accumulated It is cascaded from stage to stage in the duct, with the lowest temperature exiting.

一般的な従来型のものでは段から段への掘出物カスケードは蒸発器容器の端壁の 一つ(即ち凝縮管束の一端)に設けた捕集ダクトを用いることによって扱かつて いた、この構成な対膜型十字流蒸発器に適用するには、コ段に対して2つの捕集 ダクトが必要である(凝縮管束の各端に一つのダクト)o対膜蒸発器に従来の捕 集ダクトを用いると次の欠点がある。In a typical conventional type, a step-to-step excavation cascade is formed on the end wall of the evaporator vessel. by using a collection duct at one end of the condensing tube bundle (i.e. at one end of the condensing tube bundle). In order to apply this configuration to a double-membrane type cross-flow evaporator, it is necessary to ducting is required (one duct at each end of the condenser tube bundle) versus a conventional trap in a membrane evaporator. Using a collection duct has the following drawbacks.

l カスケード溜出物は捕集される段の下流の第2の段でフラッシュ蒸発するの でサイクル熱効率が低(、再循環凝縮器で回収される熱が減少する。l The cascade distillate is flash evaporated in a second stage downstream of the stage where it is collected. At low cycle thermal efficiency (the heat recovered in the recirculation condenser is reduced).

ユ 捕集ダクトを一つ用いるので蒸発器容器価格が高く一連のものの各々の対設 フラッシュ蒸発器ユニットは、容器の底部に沿って鷺び、長手方向の段間仕切に よって分離された一対の長い蒸発室を有する長い容器を備えている。容器は更に 、その上部に設けられ横方向の段間仕切によつ【分離された一対の凝縮室をも有 して〜・る〇成る段の一方の蒸発室から一方の凝縮室へ、また他の段の他方の蒸 発室から他方の凝縮室へ蒸気を導入するために液体分離装置を含む装置が設けら れている。Since one collection duct is used, the price of the evaporator container is high and it is difficult to install each one in a series. The flash evaporator unit runs along the bottom of the vessel, with longitudinal partitions. Thus, a long vessel having a pair of separated long evaporation chambers is provided. The container is further , by means of a horizontal stage partition installed at the top [also has a pair of separated condensing chambers]. From one evaporation chamber to one condensation chamber of the stage consisting of ~・ru〇, and the other evaporation chamber of the other stage. A device including a liquid separator is provided for introducing vapor from the ignition chamber to the other condensing chamber. It is.

凝縮管からの掘出物は夫々の凝m呈内の管束下の夫々のトレイ装置により捕集さ れる。捕集ダクト装置は、横方向段間仕切近傍でトレイ装置の下方で一連の蒸発 器工具ッFを越えて経済的Kmばされており、この位置はユニットのいずれかの 端の入口から保守のためにアクセスできまた蒸発室にも完全にアクセスできるよ うKする位置である。捕集ダクト装置は段から段へと掘出物を蓄積しカスケード するよう構成され、もって掘出物が捕集された段の次の段で掘出物が効率的にフ ラッシュ蒸発できるよ5Kしてある。The excavations from the condensing tubes are collected by respective tray devices under the tube bundles in each condensing chamber. It will be done. The collection duct system consists of a series of evaporators below the tray system near the transverse stage partitions. Economically located Km beyond the instrument tool F, this position is The end inlet provides maintenance access and full access to the evaporation chamber. This is the position to move. The collection duct device accumulates excavated material from stage to stage and cascades. The structure is configured such that the excavated material is efficiently collected at the next stage after the stage in which the excavated material was collected. There is a 5K that can be used for rush evaporation.

図面の簡単な説明 第1図は中央に設けた捕集ダクトを有する本発明の原理により構成された長いフ ラッシュ蒸発器装置の斜視図、第2図はユニット内の2つの段の低温段の凝縮室 にフラッシュ蒸発室から蒸気が流れる様子を示すユニットの(6) 断面図、 第3図は凝縮管束と蒸気が各段で液体分離網を通ってその上を流れ凝縮室に入る 様子を示す部分破断平面図、第参図は多数のユニットからなるプラントの蒸発器 ユニットを越え1:鷺びる捕集ダクトの部分概略図、第3図は第ダ図の線V−V K沿って見た、捕集ダクトが仕切られ段を分離し掘出物を捕集するよう構成され ていることを示す断面図、 第6図は第S図の線W−Vlに沿った断面図である〇望ましい実施例の説明 第1図乃至第4図には海水等の11!液を処理すべき多段フラッシュ蒸発器ブラ ントの対膜蒸発器ユニット10が示しである。必要なプラント淡水化効率を得る ために複数のあるいは一連の相互接続された対膜蒸発器ユニットIOが用いられ ている〇 各対膜蒸発器ユニットioは長い容器tSを有し、容器ljはその底部で全長に 亘って蔦びた別個のフラッシュ蒸発室/lおよび/Jを形成している。上流匈の 蒸発室/lは高温高圧で作動し、下流側の蒸発misは低温低圧で作動する。容 器isは上流1liillll壁lコと、長手方向段間蒸発段仕切り参事と、下 fri、側Ij!l壁lダとを有し、これらはいずれも容器/S、蒸発室//お よび/Jの全長に亘って延びている。長手方向の仕切りダダは容器/II)g; 、部を2つの長い蒸発ml/および/Jに縦に分割している。Brief description of the drawing FIG. 1 shows a long pipe constructed according to the principles of the invention with a central collection duct. Perspective view of the rush evaporator system, Figure 2 shows the condensation chamber of the two cold stages in the unit. (6) of the unit showing steam flowing from the flash evaporation chamber. cross section, Figure 3 shows the condensing tube bundle and vapor flowing over it through a liquid separation network at each stage and entering the condensing chamber. A partially cutaway plan view showing the situation, the second figure is the evaporator of a plant consisting of many units. Crossing the unit 1: Partial schematic diagram of the collecting duct that extends, Figure 3 is the line V-V of Figure DA. Viewed along K, the collection duct is partitioned and configured to separate stages and collect excavated material. A cross-sectional view showing that FIG. 6 is a sectional view taken along line W-Vl in FIG. S. Description of preferred embodiment Figures 1 to 4 show 11! of seawater, etc. Multi-stage flash evaporator brush to process liquid An anti-film evaporator unit 10 is shown. Get the plant desalination efficiency you need For this purpose, a plurality or a series of interconnected anti-film evaporator units IO are used. Yes Each membrane evaporator unit io has a long vessel tS, the vessel lj extending over its entire length at its bottom. It extends over to form separate flash evaporation chambers /l and /j. upstream The evaporation chamber/l operates at high temperature and high pressure, and the downstream evaporation mis operates at low temperature and low pressure. capacity The vessel has an upstream wall, a longitudinal interstage evaporation stage partition, and a bottom wall. Fri, side Ij! Both of these have a container/S, an evaporation chamber//and and extends over the entire length of /J. The longitudinal partition Dada is a container/II) g; , is vertically divided into two long evaporation ml/ and /J.

(7) 図示の例では、また望ましくは傾斜し【頂を有する屋11/4が、容器/jIl )端を閉じる端壁即ち端板itおよびコ0と側壁ココおよびl参との間の9間を 覆っている0平坦な底壁コJ(隣接のモジュール蒸発器ユニットの底壁として連 続している)が略々矩形の容器を構成する構造体を完成させCおり、容器は平坦 なあるいは長さ方向に傾斜して中央に頂を有する屋根を備えるのが望ましい。(7) In the illustrated example, the roof 11/4, which is also preferably sloping and has a top, is ) between the end wall that closes the end, that is, the end plate it and ko0 and the side wall koko and 1 Covering 0 flat bottom wall J (connected as the bottom wall of the adjacent module evaporator unit) (continuing) completed the structure that constitutes the approximately rectangular container, and the container is flat. Alternatively, it is desirable to have a roof that slopes longitudinally and has a peak at the center.

次にプラント建設現場でこのモジュールを組立て、隣接のユニット間の壁が二重 でなく単に一重(即ち側壁/J)の連なった蒸発器ユニットを得ることができる 。The modules are then assembled at the plant construction site, with double walls between adjacent units. Instead, one can simply obtain a single (i.e. sidewall/J) series evaporator unit. .

長手方向の壁/J、#参および/事は、容器/Sの全長に亘って鷺びる一連の塩 水流開ロコJを形成するように底壁ココから成る距離だけ上方で終っている。ダ ム部材コロが塩水流−ロココの下流側近くで底壁ココから上方に突出して、塩水 がダム部材コロを越えて流れ蒸発室iiあるいはi、y内でより多く曝されて多 量に蒸発するようにしである。The longitudinal walls /J, #3 and / are a series of salts running the entire length of the container /S. It ends above the bottom wall by a distance so as to form a water flow opening loco J. da The rubber member roller protrudes upward from the bottom wall near the downstream side of the salt water flow. flows over the dam member rollers and is exposed to more water in the evaporation chambers ii, i, and y. Let it evaporate to a certain amount.

水平のバッフルコアが匈壁lコからダム部材−6の上方にまで高温蒸発室//内 で前方に突出してダム部材一番を僅かに越えて延びており、塩水の小満が上向の 蒸気流れ内に入りKくいよ5に1.である。A horizontal baffle core extends from the wall to above the dam member 6 inside the high temperature evaporation chamber. It protrudes forward and extends slightly beyond the first dam member, with a small amount of salt water flowing upward. 5 to 1 into the steam stream. It is.

図示の例では断面が略々円形の単一の&縮量管束JOが屋根/番の下の上部空間 内で容器1にの全長に亘って延びている0横方向の段間仕切り即ち仕切壁ココが 2枚の端板/lおよび20間の望ましくは略々中央に設けられ、容器/1の上部 を2つの別個の凝縮室Jダおよび36に横方向に分割する2助となっている。管 束JOの導管は仕切壁JJを封止関、係に貫通している。In the illustrated example, a single & reduced pipe bundle JO with a substantially circular cross section is installed in the upper space under the roof/number. Inside the container 1, there is a horizontal stage partition or partition wall that extends along the entire length of the container 1. It is preferably provided approximately in the center between the two end plates /1 and 20, and is located at the top of the container /1. This serves to laterally divide the condensing chamber into two separate condensing chambers. tube The conduit of the bundle JO passes through the partition wall JJ in a sealing manner.

凝縮室J−は上流の蒸発室l/かう蒸発した溶液即ち蒸気を受入れるので、シェ ラウドJjにより下流の蒸発室/Jから分離されている0シエラクドJSは、仕 切壁Jコと端壁itとの間で管束に沿つ【延びて屋根/番と凝縮室J参の底を形 成する溜出物捕集トレイJgとの間で管束の一側を略々覆っている。同様にシェ ラウドJりが凝縮室J6を上流側蒸発WLIIから分離させ【いる。The condensing chamber J- receives the evaporated solution or vapor from the upstream evaporation chamber l/ The 0 Sierra de JS, which is separated from the downstream evaporation chamber/J by a loud J. Between the cut wall J and the end wall it extend along the pipe bundle to form the roof/block and the bottom of the condensing chamber J. One side of the tube bundle is substantially covered between the tube bundle and the distillate collection tray Jg. Similarly, A loudspeaker separates the condensing chamber J6 from the upstream evaporator WLII.

要約すれば、凝縮室JlおよびJ4は横方向の仕切壁JコおよびトレイJtとシ ュラウドJjおよび37とにより一つの別個の凝縮段に分割され封止されている 。各凝S室はその下方の蒸発室から蒸気を受入れる。In summary, the condensing chambers Jl and J4 are separated by horizontal partition walls J and trays Jt. divided into one separate condensing stage and sealed by tubes Jj and 37. . Each condensation chamber receives steam from the evaporation chamber below it.

水平に設けられた長いメツシュ即ち網分離器#0は望ましくは蒸発室l/の全長 に亘って蔦び、適当なブラケット(図示してない)等によって餉壁lコおよびト レイ3tの脚部Jta上に支持されている。網分離器参〇は、蒸気が蒸発室l/ から凝縮室3ダヘ塩水小滴を実質的に含ますに流れることができるようにするも のである。同様の網分離器参Iが側壁/参と脚部Jtbとにより支持され【蒸発 室/Jの全長に亘って設けられ蒸気を蒸発室13から凝縮室3基に導入できるよ うにしズあるO網分離器参〇およびダIの構造および作用の詳細は、本出願と同 時にディー・モーエンおよびアール・ビーダーリン特表昭58−50O93G( 4) により出願され同じ譲受人に譲渡された「改良形状を有する対設フラッシュ蒸発 器」に記載され【いる。この出願には、管束の別の構成および非凝縮物除去構造 の別の構成も記載され【いる0 凝縮管の両端は管板に受入れられていて、管板は端壁itおよびコOの外面に固 着され、端板1tllC近接した高温水箱(図示し【ない)と端板コoK近接し た低温水箱(図示してない)とが取付られていて、周知の如く冷媒を凝縮管に供 給するようにしである0溜出物捕集トレイ3tは長(、凝縮管から溜出物を捕集 するように略々U字形である。トレイ31は管束JOの下方に設けられており、 端壁1gおよび一〇から仕切壁32に向って延びる別個のトレイ部分Jlaおよ びJibを有しているoトン4部分JtaおよびJibは仕切壁Jコの底[(K よって段に分離されている。トレイ3gの立上った脚部J?aおよび、?Fbは 長い側壁12およびlダから横方向に離間している。蒸発室/Jではトレイ31 の底コ9が蒸発室/lのバッフルコアと同様に水滴防止バッフルの作用をも成る 程度する。A long horizontal mesh or mesh separator #0 preferably covers the entire length of the evaporation chamber l/ The walls and tops are fixed with appropriate brackets (not shown), etc. It is supported on the leg Jta of the ray 3t. In the screen separator 〇, the steam is transferred to the evaporation chamber l/ From the condensing chamber 3 to the condensing chamber, which contains substantially salt water droplets, can also flow. It is. A similar mesh separator I is supported by side walls/separators and legs Jtb. It is installed over the entire length of the chamber/J and allows steam to be introduced from the evaporation chamber 13 to the three condensation chambers. The details of the structure and operation of the Ushizu O-net separators 〇 and 〇 are the same as in this application. Sometimes Die Moen and Earl Biederlin special publication 1986-50O93G ( 4) ``Opposite Flash Evaporation with Improved Geometry'' filed by and assigned to the same assignee. It is listed in ``Vessel''. This application includes alternative configurations of tube bundles and non-condensate removal structures. Another configuration is also described. Both ends of the condensing tube are received in the tubesheet, and the tubesheet is secured to the outer surface of the end wall it and coo. A high temperature water box (not shown) is attached to the end plate, and the end plate is close to the high temperature water box (not shown). A low-temperature water box (not shown) is installed to supply refrigerant to the condenser tube, as is well known. The distillate collection tray 3t is long (to collect distillate from the condensing pipe). It is roughly U-shaped. The tray 31 is provided below the tube bundle JO, Separate tray portions Jla and The four parts Jta and Jib having Jta and Jib are located at the bottom of the partition wall J[(K Therefore, it is separated into stages. Standing leg J of tray 3g? a and? Fb is It is laterally spaced from the long sidewall 12 and the lumber. Tray 31 in evaporation chamber/J The bottom part 9 also functions as a water droplet prevention baffle, similar to the baffle core of the evaporation chamber/l. To some extent.

蒸発器ユニットの既略的動作を要約すると、塩水が容器の全長に亘って延びた( 即ち塩水流れ方向に直角)一連の塩水流−ロココを過って第1の上流餉の高温( HT)フラッシュ蒸発段に流入する。高温蒸発室でフラッシュ蒸発した蒸気は上 方の綱分離器参〇を通り蒸気が凝縮室J参に入る前に塩水小滴が除去される。蒸 気は1に細管の(10) 伝熱面上に凝縮して溜出物となり溜出物捕集トレイJt内に捕集される。非凝縮 性気体は排出口Stを通って次の蒸発段に排出される。To summarize the schematic operation of the evaporator unit, the brine extends the entire length of the vessel ( i.e. perpendicular to the direction of brine flow) through a series of brine flows - Rococo to the high temperature of the first upstream stream ( HT) flows into the flash evaporation stage. The vapor flash-evaporated in the high-temperature evaporation chamber is Salt water droplets are removed before the steam passes through the second line separator and enters the condensing chamber. steaming Qi is 1 and tubule (10) It condenses on the heat transfer surface to become a distillate and is collected in the distillate collection tray Jt. non-condensing The gas is discharged to the next evaporation stage through the discharge port St.

このようなプ繋セスは第2の低温蒸発段でも基本的に繰返えされ、蒸気が低温蒸 発段の網分離器参lを通って流れ【、二段凝縮器管束の他の部分が設けられてい る凝縮室74に入る。凝縮室JA内の非凝縮性蒸気は囲まれた管束部分内に排出 され、そこでも凝縮しない蒸気は導管LDを通して外部に排出される。This process is basically repeated in the second low-temperature evaporation stage, so that the steam is The flow passes through a screen separator in the starting stage [and other parts of the two-stage condenser tube bundle are provided]. into the condensing chamber 74. Non-condensable steam in the condensing chamber JA is discharged into the enclosed tube bundle section. The steam that does not condense there is discharged to the outside through the conduit LD.

箇出物は共通の捕集ダク)!D内に貯溜され、ダクトは蒸発a:Lニットの中央 線を横切って鷺びて次々のユニットからの溜出物を蓄積する(第#図参照)。The exposed matter is a common collection duct)! It is stored in D, and the duct is evaporating a: the center of L knit. It runs across the line to accumulate distillate from successive units (see Figure #).

トレイ部分Jtaおよび、ytbK凝縮室JダおよびJ6の管部分から捕集され た溜出物は蒸発器ユニツ) 10の中央の横方向段間仕切りに向って流れる。第 参図および第3図に示す如く、捕集ダク)717は容器側壁とトレイJKとによ り支持されてトレイJKの下方を横方向に蔦びている。Collected from the tray section Jta and the pipe sections of the ytbK condensing chambers Jda and J6. The distillate flows towards the central transverse stage partition of the evaporator unit (10). No. As shown in Figure 3 and Figure 3, the collection duct 717 is constructed by the side wall of the container and the tray JK. The tray JK is supported by the tray JK and extends horizontally below the tray JK.

各トレイ部分Jta、Jtbl/Cは、溜出物をトレイ部分から捕集ダクトgo pc落下させるための適当な開ロク0あるいは7/が設けであるσ第j!li! IK示す如(、捕集ダクト!0の内部は段として分離されながら各段の溜出物が 次の段にカスケードされるように仕切られている。Each tray section Jta, Jtbl/C has a collecting duct go which collects distillate from the tray section. The σ-th j is provided with an appropriate opening lock 0 or 7/ for dropping the PC! li! As shown in IK (the interior of the collection duct!0 is separated into stages, and the distillate in each stage is It is partitioned so that it can be cascaded to the next stage.

%にこの例のダクト!0は略々矩形の断面形である。This example duct to%! 0 has a substantially rectangular cross-sectional shape.

各蒸発器ユニットIOの段はiIi接の蒸発器ユニット10の段から適切な寸法 (IIおよび高さ)のオリアイス7ダを有する仕切り72によって段分離されて おり、蓄積された箇出物が成るユニット10の高圧段へ段分離を維持したままカ スケードできるよ5Kしてある。The stage of each evaporator unit IO is dimensioned appropriately from the stage of the adjacent evaporator unit 10. (II and height) separated by a partition 72 with an oriice 7 da. The accumulated debris is transferred to the high pressure stage of the unit 10 while maintaining stage separation. You can skate 5K.

更に、ダクトj0にはオリアイスツtを有し各蒸発器エニットlo内に含まれる 対になった段を段分離するよう構成された仕切り7番が設けられている。こうし て、この場合仕切り7番は仕切り7コと共働して各蒸発器ユニットのFレイJt aから溜出物が落下する高圧ダクト741toを形成する。In addition, the duct j0 has an orifice t included in each evaporator unit lo. A partition number 7 is provided which is configured to separate the paired stages. instructor In this case, partition No. 7 works together with partition No. 7 to connect the F-ray Jt of each evaporator unit. A high pressure duct 741to is formed through which the distillate falls from a.

室10−/[於【は、次に高い蒸発器ユニット10からオリアイス7ダ−Iを通 して受入れた溜出物がトレイ開ロデ0−/からの別の溜出物と蓄積し第AWJK 示す如く他のダクトオリアイスと同様に高さの制限されたオリアイスγg−/を 通つ【、フラッシュ蒸発の起こる同じユニットioの低圧段の別の室lコー/に 流れる。同じユニット10の低圧段のトレイ部分Jlbから開口りl−1を通っ て落下する榴出物は室12−/に@検された溜出物に加えられる。次Km出物は オリフイスクヂーコを通ってトレイ部分Jfaの下の室go−コに下流側へ流れ 、そこで次段即ちプラントの次に低い段のユニットioの高圧段で7ラツシユ蒸 発する。溜出物はプラント全体に亘って上述の如く段毎に捕集°され蓄積される 。In chamber 10-/[, the next highest evaporator unit 10 passes through Orice The distillate received from the tray is accumulated with another distillate from the tray opening rod 0-/. As shown, the oriice γg-/, which has a limited height like other duct oriices, to another chamber of the low pressure stage of the same unit in which flash evaporation occurs. flows. Pass through the opening l-1 from the tray part Jlb of the low pressure stage of the same unit 10. The exudate that falls is added to the detected exudate in chamber 12-/. What will happen next Km? It flows downstream through the orifice to the chamber go-co below the tray part Jfa. Therefore, 7 lashes of steaming are carried out in the high pressure stage of the next stage, that is, the next lowest stage of the plant, unit io. emanate. The distillate is collected and accumulated in stages throughout the plant as described above. .

第6図に破線矢印で示す如く溜出物から7ラツシユ蒸発して次の高段から室10 −/IIc入る蒸気は、トレイ開(/2) ロッ0−/を通って凝縮室Jダに上昇する0同様K11i!tJ−/からの蒸気 はトレイ開口f/−/を通って上昇して凝縮室J6内で凝縮する〇 このよ5な対膜蒸発器構造の動作に於【は、上述の捕集グタトおよび関連構造に より使用者効率および全体的な性能が改善され、経済的にも改善される。またカ スケード溜出物は各段で71:)ツシュ蒸発させられるのでナイフ〃熱効率が高 まり、再循環凝縮器での熱の目状が増大する◎ 更に、生成された箇出物は、従来必要であった2つのダタトに対して一つの中央 の捕集〆クトにより段から段へのカスケードされるので蒸発器容器価格が減少さ れる〇のいずれかの端の入口から得られるので保守が容易になった〇 1猟囁8−500936(5) IG 2 国際調査報告As shown by the broken line arrow in Figure 6, 7 lashes of distillate are evaporated from the distillate to the next higher stage and then to the chamber 10. -/IIc The steam entering is when the tray is opened (/2) K11i as well as 0 rising through the lot 0-/ into the condensing chamber Jda! Steam from tJ-/ rises through the tray opening f/-/ and condenses in the condensation chamber J6. In the operation of this type of membrane evaporator structure, User efficiency and overall performance are improved, and economics are also improved. Also Since the distillate is evaporated at each stage, the thermal efficiency of the knife is high. ◎ Furthermore, the generated feature has one center point instead of the two data points that were previously required. cascading from stage to stage, reducing the cost of the evaporator vessel. It is easier to maintain since it can be accessed from the entrance at either end of the 1 Hunting Whisper 8-500936 (5) IG 2 international search report

Claims (1)

【特許請求の範囲】 t S*から溶媒を蒸発させるべ(一連の蒸発段が次第に低い圧力で運転される 多段フラッシェ蒸発プラント用の多段7ラツシ工肩発器エニットであって、対向 端壁とその間KWびた長い側壁、頂壁、および底壁とを有し、溶媒が蒸発する下 部および書出物が凝縮する上部を有する略々長い囲いと、 上記囲いの上部を分割して長手方向に段をなす一対の別個の凝縮室とする装置と 、 上記端壁間KWびて長手方向に冷媒流れを形成するように上記分割装置の孔を通 って蔦びた長い熱交換管のプレイを有する凝縮装置と、 上記凝縮室からの流出物の書出物を捕集する装置と、上記囲いの下部を仕切って 、溶液が囲いを横切る方向に導びかれる一対の別個の蒸発室を形成する装置と、 上記凝縮室を上記蒸発室から分離させ、蒸発した溶媒を成る高圧蒸発段に於ては 一方の蒸発室から一方の凝縮室に導き、次段の低圧蒸発段に於ては他方の蒸発室 から他方の凝縮室に導く装置と、 上記各凝縮室に組合わされて書出物を補集して上記分割装置K向けて導くトレイ 装置と、 横方向Kmびて上記分割装置の略々下方に支持され、上記トレイ装置に結合され ″CC出出物受入れて、フラツシネ蒸発した蒸気を上記トレイ装置を通して凝縮 室に移動させるダクト装置と、 (lダノ 上記ダクト装置を夫々上記凝縮室に組合わされた高圧室および低圧室に仕切り、 かつ書出物を高圧ダクト室から低圧ダクト室に導く装置とを備えてなる多段7ツ ツシ工蒸発器ユニット。 よ 上記仕切り装置が、書出物な次に高段の蒸発器ユニットから高圧凝縮室に組 合わされた高圧ダクト室に導(オリアイスを有し、 上記仕切り装置が、書出物を上記一つのダクト室から他方の低圧ダクト室に導く 第一のオリアイスと、書出物を上記他方のダクト室から次の低段の蒸発器ユニッ トに導く第3のオリアイスとを有してなる請求の範囲第1項記載の多段72ツシ 工蒸発器ユニット@3 各上記トレイ装置が、上記管の下方に支持され、上記分 割装置と端壁との間KiIびて凝縮室の底を形成する長いトレイを有し、各上記 トレイ装置が書出物を下方の上記ダクト装置に導くための開口を有してなる請求 の範囲第1項記載の多段フラッシェ蒸発器エニット〇礪 各蒸発器ユニットの上 記ダクト装置がilK接の上流側および下流飼蒸発器ユニットのダクト装置に結 合さゎ、書出物がユニットから次のユニットへと蓄積されるようKし【なる請求 の範囲第7項記載の多段72ツシ工蒸発器ユニットを複数個有する多段フラッシ ュ蒸発器プラント。 よ 上記仕切り装置が、書出物を次の高段の蒸発aユニットから高圧凝縮i!に 組合わされた高圧ダクト室に導くオリフィスを有し、 上記仕切り装置が、溜出物を上記一つのダクト室から他方の低圧ダクト室に導( 第一のオリアイスと、溜出物を上記他方のダクト室から次の低段の蒸発器ユニッ トに導<tgsのオリフィスとを有してなる請求の範囲第参項記載の多段ブラッ クエ蒸発器プラント。 特表昭58−500936(2)[Claims] t Evaporate the solvent from S* (a series of evaporation stages are operated at progressively lower pressures). A multi-stage 7-stage shoulder generator for a multi-stage flash evaporation plant, with opposing It has an end wall, a long side wall, a top wall, and a bottom wall, and has a bottom wall where the solvent evaporates. a generally elongated enclosure having an upper portion in which the parts and writings are condensed; A device that divides the upper part of the enclosure to create a pair of separate condensation chambers arranged in steps in the longitudinal direction. , The holes of the dividing device are passed through the holes of the dividing device so as to form a refrigerant flow in the longitudinal direction between the end walls KW. a condensing device with a play of long heat exchange tubes, A device for collecting the effluent from the condensation chamber is separated from the lower part of the enclosure. , an apparatus forming a pair of separate evaporation chambers in which the solution is directed across the enclosure; The condensation chamber is separated from the evaporation chamber and the evaporated solvent is collected in a high pressure evaporation stage. One evaporation chamber leads to one condensation chamber, and in the next low pressure evaporation stage, the other evaporation chamber a device for guiding the condensing chamber from the condensing chamber to the other condensing chamber; A tray that is combined with each of the condensing chambers and collects written material and guides it toward the dividing device K. a device; The tray extends Km in the lateral direction, is supported substantially below the dividing device, and is coupled to the tray device. ``Receive the CC output and condense the evaporated steam through the above tray device. A duct device for moving the room into the room; (l Dano partitioning the duct system into a high pressure chamber and a low pressure chamber, each of which is combined with the condensing chamber; and a device for guiding written materials from the high-pressure duct room to the low-pressure duct room. Tsushiko evaporator unit. The above partition device is assembled from the high-stage evaporator unit to the high-pressure condensing chamber. into the combined high-pressure duct chamber (with oriice, The partition device guides the written material from the one duct chamber to the other low-pressure duct chamber. The first oriice and the materials are transported from the other duct room to the next lower evaporator unit. and a third oriice for guiding the multi-stage 72 to the Technical evaporator unit @3 Each of the above tray devices is supported below the above pipe, and the above A long tray extends between the splitting device and the end wall and forms the bottom of the condensing chamber, and each A claim in which the tray device has an opening for guiding the writings downward to the duct device. Range of multi-stage flash evaporator described in item 1 above each evaporator unit The duct system is connected to the duct system of the upstream and downstream feeding evaporator units in contact with ILK. In order for the writing to be accumulated from one unit to the next, A multi-stage flash having a plurality of multi-stage evaporator units according to item 7 evaporator plant. The above partition device condenses the written material from the next higher stage evaporation unit A at high pressure i! to It has an orifice leading to the combined high pressure duct chamber, The partition device guides the distillate from the one duct chamber to the other low pressure duct chamber ( The first oriice and the distillate are transported from the other duct chamber to the next lower evaporator unit. The multi-stage brush according to claim 1, having an orifice of <tgs leading to the Que evaporator plant. Special table 1986-500936 (2)
JP50247781A 1981-06-19 1981-06-19 Twin-stage flash evaporator with improved distillate collection Pending JPS58500936A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1981/000852 WO1982004404A1 (en) 1981-06-19 1981-06-19 Paired stage flash evaporator having improved distillate collection

Publications (1)

Publication Number Publication Date
JPS58500936A true JPS58500936A (en) 1983-06-09

Family

ID=22161292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50247781A Pending JPS58500936A (en) 1981-06-19 1981-06-19 Twin-stage flash evaporator with improved distillate collection

Country Status (5)

Country Link
EP (1) EP0081486A4 (en)
JP (1) JPS58500936A (en)
ES (1) ES513279A0 (en)
IT (1) IT1152961B (en)
WO (1) WO1982004404A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018736A (en) * 2012-07-18 2014-02-03 Miura Co Ltd Fresh water generator

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GT199500016A (en) * 1994-04-15 1996-10-02 OCEAN THERMAL ENERGY CONVERSION SYSTEM
US7678227B2 (en) 2005-10-14 2010-03-16 Friedrich Alt Multi-stage flash evaporator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54116381A (en) * 1978-03-01 1979-09-10 Hitachi Zosen Corp Multistage flash distilling apparatus
JPS5581702A (en) * 1978-12-08 1980-06-20 Westinghouse Electric Corp Multistage flush evaporator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3228859A (en) * 1960-09-13 1966-01-11 Richardsons Westgarth & Co Multistage flash evaporators
US3197387A (en) * 1963-05-20 1965-07-27 Baldwin Lima Hamilton Corp Multi-stage flash evaporators
GB1105532A (en) * 1965-04-05 1968-03-06 American Mach & Foundry Improvements in flash evaporators
NL136375C (en) * 1969-03-11
US3580816A (en) * 1969-10-17 1971-05-25 Baldwin Lima Hamilton Corp Apparatus for making large distillation plants
US3707442A (en) * 1970-02-27 1972-12-26 Hitachi Ltd Multistaged flash evaporator and a method of operating the same with sponge ball descaling treatment
IT1006137B (en) * 1973-12-28 1976-09-30 Sir Soc Italiana Resine Spa MULTI-STAGE INSTANT EVAPORATOR FOR THE DESALINATION OF SEA WATER AND BRACKISH WATER
JPS5827838Y2 (en) * 1979-01-26 1983-06-16 三菱重工業株式会社 Multi-stage flash evaporator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54116381A (en) * 1978-03-01 1979-09-10 Hitachi Zosen Corp Multistage flash distilling apparatus
JPS5581702A (en) * 1978-12-08 1980-06-20 Westinghouse Electric Corp Multistage flush evaporator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018736A (en) * 2012-07-18 2014-02-03 Miura Co Ltd Fresh water generator

Also Published As

Publication number Publication date
ES8307108A1 (en) 1983-06-16
EP0081486A4 (en) 1985-06-10
EP0081486A1 (en) 1983-06-22
WO1982004404A1 (en) 1982-12-23
IT8221839A0 (en) 1982-06-11
ES513279A0 (en) 1983-06-16
IT1152961B (en) 1987-01-14
IT8221839A1 (en) 1983-12-11

Similar Documents

Publication Publication Date Title
US4624747A (en) Process for the distillation of fresh water from sea water
RU2734089C2 (en) Industrial steam condenser with completely secondary air cooling
US3941663A (en) Multi-effect evaporator
SU1612987A3 (en) Instant-boil evaporator
RU2005136433A (en) COMBINED AIR COOLED CONDENSER
GB1572471A (en) Process for evaporation and evaporator
CN110746024A (en) Concentrated waste heat retrieval and utilization device of low temperature economizer waste water
JPS58500936A (en) Twin-stage flash evaporator with improved distillate collection
EP0012256B1 (en) Multi-stage flash evaporator
US4332642A (en) Paired stage flash evaporator having improved distillate collection
US4047562A (en) Heat exchanger utilizing a vaporized heat-containing medium
US3444049A (en) Vertical multistage distillation apparatus
JP3546155B2 (en) Vertical multi-stage flash fresh water generator
US4591413A (en) Multistage flash evaporator providing isolation of impure stage distillate flows from the main duct distillate flow
CN108709437B (en) Dirty nitrogen heater tube box structure and use method
US3330739A (en) Multi-cell flash distillation system
US4318780A (en) Multi-stage flash evaporator design
JPS58500937A (en) Twin-stage flash evaporator with improved geometry
JP7144005B2 (en) Heat exchanger
CN112985128A (en) Multi-channel and multi-flow heat exchanger in mine fresh air heating system
KR100858669B1 (en) device and method for distillation
US2916260A (en) Condenser deaerator
US3501382A (en) Distillation-condenser with vertically disaligned tubes
RU31337U1 (en) Instant boiling point
JPS59205588A (en) Separation type heat pipe type heat exchanger