JPS5847379B2 - gas - Google Patents

gas

Info

Publication number
JPS5847379B2
JPS5847379B2 JP50087091A JP8709175A JPS5847379B2 JP S5847379 B2 JPS5847379 B2 JP S5847379B2 JP 50087091 A JP50087091 A JP 50087091A JP 8709175 A JP8709175 A JP 8709175A JP S5847379 B2 JPS5847379 B2 JP S5847379B2
Authority
JP
Japan
Prior art keywords
coolant
gas
gas generator
combustion
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50087091A
Other languages
Japanese (ja)
Other versions
JPS5215030A (en
Inventor
忠彦 永岡
正宜 加藤
峻 石井
卓司 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP50087091A priority Critical patent/JPS5847379B2/en
Publication of JPS5215030A publication Critical patent/JPS5215030A/en
Publication of JPS5847379B2 publication Critical patent/JPS5847379B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は火薬のようなガス発生剤を燃焼させ急速にガス
を発生させて乗員保護用エアクッション、水難救命具等
を膨らませるのに使用する燃焼式ガス発生器における粒
状ガス冷却材(以下冷却材と称する)の充填方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a combustion type gas generator used to inflate passenger protection air cushions, water rescue equipment, etc. by burning a gas generating agent such as gunpowder to rapidly generate gas. The present invention relates to a method of filling a gas coolant (hereinafter referred to as coolant).

この種のガス発生器はガスの流れる方向により半径方向
噴出型ガス発生器と軸方向噴出型ガス発生器の2種類の
ガス発生器に大別される。
This type of gas generator is roughly divided into two types, radial jet gas generator and axial jet gas generator, depending on the direction of gas flow.

半径方向噴出型ガス発生器の製造方法を第1図に基づい
て説明すると下記の通りである。
The method for manufacturing the radial jet gas generator will be described below with reference to FIG.

(1)多数個のガス噴口2を周側に有するケーシング1
の直ぐ内側に固体燃焼副成物捕捉用のフィルター3と冷
却材こぼれ防止用金網4aを張る。
(1) Casing 1 having multiple gas nozzles 2 on the circumferential side
A filter 3 for capturing solid combustion by-products and a wire mesh 4a for preventing coolant from spilling are placed immediately inside.

ケーシング1内中央部には通気性円筒部材5を配設し、
該ケーシング1内部を燃焼室6と冷却室7に隔成する。
A breathable cylindrical member 5 is disposed in the center of the casing 1,
The inside of the casing 1 is divided into a combustion chamber 6 and a cooling chamber 7.

通気性円筒部材5の外側には冷却材こぼれ防止用金網4
bを、内側にはスペイサー金網8を張る。
A wire mesh 4 for preventing coolant from spilling is placed on the outside of the breathable cylindrical member 5.
b, and spacer wire mesh 8 is placed on the inside.

(2)冷却室7に冷却材9を所定の高さまで充填する。(2) Fill the cooling chamber 7 with the coolant 9 to a predetermined height.

(3)冷却室7に冷却材9を充填したら円板状の蓋体1
0をケーシング1に全周溶接して冷却室7を密閉する。
(3) After filling the cooling chamber 7 with the coolant 9, the disc-shaped lid 1
0 to the casing 1 all around to seal the cooling chamber 7.

(4)次にケーシング1のイグナイク装着用孔11から
燃焼室6にガス発生剤12を装填した後、イグナイク1
3を取付けて燃焼室6を密閉することにより完成される
(4) Next, after loading the gas generating agent 12 into the combustion chamber 6 from the ignition mounting hole 11 of the casing 1,
3 and sealing the combustion chamber 6 completes the process.

軸方向噴出型ガス発生器の製造方法も同様であり、これ
を第3図に基づいて説明すると次の通りである。
The method for manufacturing the axially ejected gas generator is similar, and will be explained below based on FIG. 3.

(1)ケーシング21にスペイサー金網28、通気性円
板25および冷却材こぼれ防止用金網24bを順に挿入
して、該ケーシング21内部を燃焼室26と冷却室27
に隔戒する。
(1) Insert the spacer wire mesh 28, the ventilation disk 25, and the coolant spill prevention wire mesh 24b into the casing 21 in this order, and connect the inside of the casing 21 to the combustion chamber 26 and the cooling chamber 27.
I will refrain from doing so.

(2)冷却室27に冷却材9を所定の高さまで充填する
(2) Fill the cooling chamber 27 with the coolant 9 to a predetermined height.

(3)冷却室27に冷却材9を充填したら、冷却材こぼ
れ防止用金網24a1フィルター23を挿入して然る後
に多数個のガス噴口22を有する円板状の蓋体30をケ
ーシング21に全周溶接して冷却室27を密閉する。
(3) After filling the cooling chamber 27 with the coolant 9, insert the wire mesh 24a1 filter 23 for preventing coolant spillage, and then insert the disk-shaped lid 30 having a large number of gas nozzles 22 into the casing 21 completely. The cooling chamber 27 is sealed by circumferential welding.

(4)ケーシング21のイグナイク装着用孔31から燃
焼室26にガス発生剤12を装填した後、イグナイタ1
3を取付けて燃焼室26を密閉することにより完成され
る。
(4) After loading the gas generating agent 12 into the combustion chamber 26 from the igniter mounting hole 31 of the casing 21, the igniter 1
3 and sealing the combustion chamber 26 completes the process.

次に上記の如くして製造されたガス発生器のガス発生作
用を半径方向噴出型ガス発生器を例にとって述べると次
のようになる。
Next, the gas generating function of the gas generator manufactured as described above will be described as follows, taking a radial jet type gas generator as an example.

(1)外部信号によりイグナイク13に電流が流れて発
火する。
(1) An external signal causes current to flow through the ignition 13, causing it to ignite.

(2)この発火エネルギにより燃焼室6に装填されてい
る発生剤12が着火し燃焼する。
(2) This ignition energy ignites and burns the generator 12 loaded in the combustion chamber 6.

(3)燃焼により生或した高温でかつ固体燃焼副成物を
含有しているガスはスペイサー金網8、通気性円筒部材
5および冷却材こぼれ防止用金網4bを通過し冷却材9
が充填されている冷却室7に入る。
(3) The high-temperature gas produced by combustion and containing solid combustion byproducts passes through the spacer wire mesh 8, the breathable cylindrical member 5, and the coolant spill prevention wire mesh 4b, and passes through the coolant 9.
enters the cooling chamber 7, which is filled with

(4)冷却室7に入ったガスは冷却室7内に充填されて
いる冷却材9を通過する際に接触熱交換により冷却され
、同時に固体燃焼副成物の大部分が捕捉される。
(4) When the gas entering the cooling chamber 7 passes through the coolant 9 filled in the cooling chamber 7, it is cooled by contact heat exchange, and at the same time most of the solid combustion byproducts are captured.

(5)冷却材9によって冷却され低温となりかつ大部分
の固体・燃焼副成物が捕捉されたガスは、冷却材こぼれ
防止用金網4aを通過し、フィルター3に入る。
(5) The gas cooled by the coolant 9 to a low temperature and with most of the solids and combustion byproducts captured passes through the coolant spill prevention wire mesh 4a and enters the filter 3.

冷却材9で捕捉できなかった固体燃焼副或物の大部分は
このフィルター3によって捕捉され、ケーシング1周側
のガス噴口2を経てガス発生器外に噴出し、乗員保護用
エアクッション、水難救命具等を膨らませるのである。
Most of the solid combustion by-products that could not be captured by the coolant 9 are captured by the filter 3, and are ejected to the outside of the gas generator through the gas nozzle 2 on the 1st circumference side of the casing, and are used as air cushions to protect passengers and water rescue equipment. etc. is inflated.

軸方向噴出型ガス発生器の場合も全く同様である。The same applies to the axially ejected gas generator.

前記乗員保護用エアクッション、水難救命具等は、通常
ナイロン等の有機繊維の織布、ゴム、樹脂等の有機高分
子材料の膜でできているので、燃焼式ガス発生剤より噴
出するガスはこれら有機材料に熱損傷を与えることのな
い程度の低温ガスでなければならない。
The above-mentioned passenger protection air cushions, water rescue equipment, etc. are usually made of woven fabrics of organic fibers such as nylon, and membranes of organic polymer materials such as rubber and resin, so the gas ejected from the combustion type gas generating agent is The gas must be low enough to not cause thermal damage to organic materials.

ところが燃焼式ガス発生器はガス発生剤の燃焼を伴うの
で燃焼生成時のガスは極めて高温であり、かつ大量の固
体燃焼副成物を含有している。
However, since combustion type gas generators involve the combustion of a gas generating agent, the gas produced by combustion is extremely hot and contains a large amount of solid combustion byproducts.

そこで燃焼式ガス発生器には、高温ガスを冷却し、かつ
固体燃焼副生物を捕捉する冷却捕捉機能をもたせること
が必要となる。
Therefore, it is necessary for combustion type gas generators to have a cooling capture function that cools the high-temperature gas and captures solid combustion byproducts.

この冷却捕捉機能を燃焼式ガス発生器にもたせるのが前
記冷却材9とフィルター3である。
The coolant 9 and filter 3 provide this cooling capture function to the combustion gas generator.

冷却材9は鉄、アルミニュム等の金属、アルミナ、マグ
ネシア等の金属酸化物、炭火硅素等その他の化合物など
熱伝導度、熱容量が大きい材質のものを粒状としたもの
から成っている。
The coolant 9 is made of granular materials having high thermal conductivity and heat capacity, such as metals such as iron and aluminum, metal oxides such as alumina and magnesia, and other compounds such as charcoal silicon.

そしてこの冷却材9は燃焼生戒高温ガスが通過する際に
熱交換によって高温ガスを冷却して低温ガスとする一方
、燃焼生成時には気体或いは液体であって燃焼副或物を
冷却することにより固体とし、この固体となった燃焼副
戒物を表面に付着させてこれを捕捉するのである。
The coolant 9 cools the high-temperature gas by heat exchange when the combustion-generated high-temperature gas passes through it, turning it into a low-temperature gas, while at the time of combustion, it is a gas or liquid, and by cooling the combustion by-products, it becomes a solid. Then, this solid combustion sub-precept is attached to the surface and captured.

ところが冷却材9は通気性が極めて良く、かつ上記のよ
うにその表面に固体となった燃焼副戊物を付着させて捕
捉するという単純な固体捕捉機能しか有しないために通
常冷却材のみではガス中に含まれる固体を完全に捕捉で
きない。
However, the coolant 9 has extremely good air permeability, and as mentioned above, it only has a simple solid trapping function of attaching solid combustion byproducts to its surface and trapping them. The solids contained within cannot be completely captured.

乗員保護用エアクッションに用いられるガス発生器のよ
うに人間の居住する車室内で使用されるような場合はで
きるだけ噴出する固体の量が少ない方が望ましいので、
通常ガス流出通路の後方に金属繊維、セラミック繊維、
有機繊維等の織布または不織布で作られたフィルター3
を設け、冷却材9では捕捉できなかった固体を捕捉する
のである。
When the gas generator is used in a vehicle interior where people live, such as a gas generator used in an air cushion for passenger protection, it is desirable to emit as little solid as possible.
Usually metal fibers, ceramic fibers,
Filter 3 made of woven or non-woven fabric such as organic fibers
is provided to capture solids that could not be captured by the coolant 9.

冷却材としては上記の如き粒状ガス冷却材9の他に鉄、
ステンレススチール、銅、真鍮等の金網が使用されるこ
ともあるが、一般には粒状ガス冷却材が用いられている
In addition to the granular gas coolant 9 described above, iron,
Stainless steel, copper, or brass wire mesh may be used, but granular gas refrigerants are commonly used.

粒状ガス冷却材が汎く使用されているのは鉄、真鍮等の
金網からなる冷却材に比べ次の如き利点があり、また使
用し易いからである。
The reason why granular gas coolants are widely used is that they have the following advantages compared to coolants made of wire mesh made of iron, brass, etc., and are easy to use.

(1)材料自体の熱容量が大きく、更に空隙が小さいの
で容積当りの熱容量が大きい。
(1) The material itself has a large heat capacity, and since the voids are small, the heat capacity per volume is large.

(2)ガス流路が複雑で冷却効率および固体捕捉効率が
高い。
(2) The gas flow path is complex and the cooling efficiency and solid trapping efficiency are high.

(3)価格が安い。(3) The price is low.

(4)組立工数が少ない。(4) Fewer assembly steps.

このような粒状ガス冷却材8はできるだけ密に冷却室7
に充填することが望ましい。
Such granular gas coolant 8 is packed as densely as possible in the cooling chamber 7.
It is desirable to fill the

即ち乗員保護用エアクッションの中でも殊に自動車の運
転席用としてステアリングハンドルの中央部に設置され
るエアクッション装置はその収納状態においてコンパク
ト化が必須要件となり、ガス発生器にも当然小型化が要
求される。
In other words, among the air cushions for passenger protection, the air cushion device installed in the center of the steering wheel for the driver's seat of a car has to be compact in its stored state, and of course the gas generator is also required to be compact. be done.

しかして所要量のガスを得るためにはガス発生剤の量、
つまり燃焼室の容積を削減することができないため、必
須的に冷却室容積が制約されるからである。
However, in order to obtain the required amount of gas, the amount of gas generating agent,
In other words, since the volume of the combustion chamber cannot be reduced, the volume of the cooling chamber is inevitably restricted.

そこで冷却材9を冷却室7に密に充填する方法として従
来は加振、即ちクッピングが行われていた。
Therefore, conventionally, as a method of densely filling the cooling chamber 7 with the coolant 9, excitation, that is, cupping has been performed.

しかしクッピングにより冷却材が充填された従来のガス
発生器にあっては次のような欠点がある。
However, conventional gas generators filled with coolant by cupping have the following drawbacks.

(1)ガス発生器と同形状の透明容器を用いて高速度カ
メラでクツピング中の冷却材の動きを観察したところ、
タツピングにより冷却材は跳ね廻り、容器の隅の部分へ
は沈降して行くが、冷却材の個々の粒子間ではあまり密
に充填できないことがわかった。
(1) Using a transparent container with the same shape as the gas generator, we observed the movement of the coolant during chopping using a high-speed camera.
By tapping, the coolant bounces around and settles in the corners of the container, but it was found that the individual particles of coolant could not be packed very tightly.

特に燃焼式ガス発生器の冷却材として用いる粒状物は表
面積を太きくして冷却効率、固体捕捉効率を大きくする
ため球形度の低い形状の粒状物を用いることが多いので
、最も密に充填された状態は、粒状物の鋭端部が隣接す
る粒状物同志の形成する極くわずかな鋭角状の空間に入
り込み、かつ粒状物同志が可能な限り密着した状態であ
ると考えられる。
In particular, granules used as coolants in combustion gas generators are often used with less sphericity in order to increase the surface area and increase cooling efficiency and solid trapping efficiency. The state is considered to be such that the sharp ends of the granules enter into the very slight acute-angled spaces formed by adjacent granules, and the granules are in close contact with each other as much as possible.

ところがクツピングを行うと粒状物が跳ね廻るので1度
は粒状物の鋭端部が隣接する粒状物同志が形戒する鋭角
状の空間に入り込むが、またこの状態を失い易く密に充
填できない。
However, when clipping is performed, the granules bounce around, so that at one time the sharp ends of the granules enter the acute-angled spaces formed by adjacent granules, but this state is easily lost again, making it impossible to pack them densely.

そのため大きな・燃焼圧力により粒状物が移動する。Therefore, particulate matter is moved due to large combustion pressure.

又冷却材こぼれ防止用金網またはその相当品が燃焼圧力
によって圧縮、変形し、粒状物の移動を助長する。
Also, the coolant spill prevention wire mesh or its equivalent is compressed and deformed by the combustion pressure, facilitating the movement of particulate matter.

そのため粒状物間にガスが流出し易い通路が生じ、燃焼
生戒時の高温かつ固体含有量の多い燃焼生或ガスの一部
が殆んど冷却されず、かつ固体が捕捉されずに噴出する
ため、冷却材全体の冷却効率、固体捕捉効率が低下し、
噴出ガス温度が上昇し噴出固体量が増加する。
As a result, passages are created between the particulates that allow gas to easily flow out, and a portion of the combustion gas that is high in temperature and has a high solids content during combustion is hardly cooled, and the solids are not captured and ejected. As a result, the overall cooling efficiency and solids trapping efficiency of the coolant decreases,
The temperature of the ejected gas increases and the amount of ejected solids increases.

更に振動、衝撃等により粒状ガス冷却材の相対位置が変
動して空隙が生じ、ガスが流出し易い通路をより太きく
し、その結果冷却効率、固体捕捉効率が更に低下する。
Furthermore, the relative position of the granular gas coolant fluctuates due to vibrations, shocks, etc., creating voids, making the passage through which gas easily flows out wider, and as a result, cooling efficiency and solid trapping efficiency are further reduced.

特に加振回数が多くなると冷却材同志が擦れ合い摩耗粉
化して更に空隙が拡大し、空隙が拡大すると一層摩耗し
易くなるため加速度的に空隙が拡大する。
In particular, when the number of vibrations increases, the coolant rubs against each other and becomes abraded into powder, further expanding the gap, and as the gap expands, it becomes more susceptible to wear, so the gap expands at an accelerated rate.

その結果、著しく冷却効率が低下し、噴出ガス温度が極
端に高くなり場合によってはバッグが破裂する。
As a result, the cooling efficiency is significantly reduced, and the temperature of the ejected gas becomes extremely high, possibly causing the bag to burst.

(2)冷却材こぼれ防止用金網、フィルターと他部品と
の密着具合クツピング方法の差などにより冷却材の移動
量、即ちガスが流出し易い通路のでき具合に差が生じ、
その結果冷却効率、固体捕捉効率が製品により異なって
バッグ内圧が一定にならず、乗員保護用エアクッション
の乗員拘束性能が安定しない。
(2) Differences in the amount of movement of the coolant, that is, the formation of passages through which gas easily escapes, occur due to differences in the tightness of the wire mesh to prevent coolant spillage, the filter and other parts, and the clipping method.
As a result, the cooling efficiency and solid trapping efficiency vary depending on the product, the internal pressure of the bag is not constant, and the occupant restraint performance of the air cushion for protecting the occupant is not stable.

即ちエアクッション内圧が低すぎると高速で移動してく
る乗員を支えきれずに乗員は車両前部に激突する。
That is, if the air cushion internal pressure is too low, it will not be able to support the occupant moving at high speed, and the occupant will crash into the front of the vehicle.

又エアクッション内圧が高すぎると高速で移動してきた
乗員は跳ね飛ばされ乗員は所謂ムチ打ち症になる。
Furthermore, if the internal pressure of the air cushion is too high, the occupant moving at high speed will be thrown off, causing the occupant to suffer from so-called whiplash.

本発明は従来のクツピングによる冷却材の充填方法を改
良し冷却材をより密に充填するための燃焼式ガス発生器
における冷却材の充填方法に関するものであり、第1の
発明は鉄、アルミニウム等の金属、アルミナ、マグネシ
ア等の金属酸化物、炭化硅素等のその他の化合物などの
冷却材を冷却室に充填する際に、ガス発生器のガス噴出
方向あるいはその逆方向にガスを流すと共に冷却材に振
動を与えることにより冷却材に方向性を持たせた状態で
密に充填する方法であり、第2の発明は冷却材に上記ガ
スを流すと共に振動を与える作業と、荷重をかける作業
を少なくとも1回ずつ行うことにより、冷却材をより密
に充填する方法である。
The present invention relates to a method for filling a coolant in a combustion type gas generator, which improves the conventional method of filling a coolant by cupping and more densely fills the coolant. When filling the cooling chamber with a coolant such as metals, metal oxides such as alumina and magnesia, and other compounds such as silicon carbide, the gas is flowed in the gas generator's gas jet direction or the opposite direction, and the coolant is The second invention is a method of densely filling the coolant with directionality by applying vibration to the coolant, and the second invention is a method of at least performing the work of causing the gas to flow through the coolant and applying vibration, and the work of applying a load. This is a method of filling the coolant more densely by performing the process once at a time.

この一実施例を第1,2図に示す半径方向噴出型ガス発
生器の場合について説明すれば次の通りである。
One embodiment of this invention will be described below with reference to the radial jet type gas generator shown in FIGS. 1 and 2.

(1)冷却室7に冷却材9を所定の高さまで入れる。(1) Put the coolant 9 into the cooling chamber 7 to a predetermined height.

(2)外径がスペイサー金網8の内径よりやや小さい円
柱状のガス洩れ防止用の栓16を冷却材9の充填位置よ
りやや低い位置まで燃焼室6の内部に挿入する。
(2) A cylindrical gas leak prevention plug 16 whose outer diameter is slightly smaller than the inner diameter of the spacer wire mesh 8 is inserted into the combustion chamber 6 to a position slightly lower than the position where the coolant 9 is filled.

(3)それと共に、外径が冷却材こぼれ防止用金網4a
の内径よりやや小さく、内径が冷却材こぼれ防止用金網
4bの外径よりやや大きく、かつ振動子14が通過でき
る孔を有するドーナツ状の円板15を冷却材9上に配設
し、振動子14を冷却材9の中に挿入する。
(3) At the same time, the outer diameter is the wire mesh 4a for preventing coolant from spilling.
A donut-shaped disk 15 is disposed on the coolant 9, and has an inner diameter slightly larger than the outer diameter of the metal mesh 4b for preventing coolant spillage, and has a hole through which the vibrator 14 can pass. 14 into the coolant 9.

(4)ケーシング1のイグナイタ装着用孔11から図の
矢印方向あるいはガス噴口2から図の矢印とは逆方向に
ガスを流すと共に振動子14により冷却材9に直接振動
を与える。
(4) Gas is caused to flow from the igniter mounting hole 11 of the casing 1 in the direction of the arrow in the figure or from the gas nozzle 2 in the direction opposite to the direction of the arrow in the figure, and the vibrator 14 directly vibrates the coolant 9.

(5)以上の操作を振動子14の位置を変えて数回行う
(5) Repeat the above operation several times by changing the position of the vibrator 14.

(6)ガス流を止め栓16、振動子14、円板15を取
り外し更に冷却材9を補充して上記(4) , (5)
の作業を繰り返す。
(6) Stop the gas flow, remove the plug 16, the vibrator 14, and the disc 15, and replenish the coolant 9, and perform the steps (4) and (5) above.
Repeat the steps.

(7)冷却材9が所定の高さまで密に充填できたら、円
板状の蓋体10をケーシング1に全周溶接して密閉する
(7) Once the coolant 9 has been densely filled to a predetermined height, the disk-shaped lid 10 is welded to the casing 1 all around to seal it.

軸方向噴出型ガス発生器の場合も同様であり、これを第
3,4図に基づいて説明すると次の通りである。
The same applies to the axial jet type gas generator, which will be explained below based on FIGS. 3 and 4.

(1)冷却室27に冷却材9を所定の高さまで入れる。(1) Put the coolant 9 into the cooling chamber 27 to a predetermined height.

(2)外径がケーシング21の内径よりやや小さく、多
数の小孔と振動子34が通過できる孔を有する円板35
を冷却材9上に配設し、振動子34を冷却材9の中に挿
入する。
(2) A disk 35 whose outer diameter is slightly smaller than the inner diameter of the casing 21 and has a large number of small holes and holes through which the vibrator 34 can pass.
is placed on the coolant 9, and the vibrator 34 is inserted into the coolant 9.

(3)ケーシング21のイグナイク装着用孔31から図
の矢印方向あるいはケーシング21の開口部から円板3
5の小孔を通して図の矢印とは逆方向にガスを流すと共
に振動子34により冷却材1に直接振動を与える。
(3) From the ignition mounting hole 31 of the casing 21 in the direction of the arrow in the figure or from the opening of the casing 21 to the disc 3
Gas is caused to flow in the direction opposite to the arrow in the figure through the small holes 5, and the coolant 1 is directly vibrated by the vibrator 34.

(4)以上の操作を振動子34の位置を変えて数回行う
(4) Repeat the above operation several times by changing the position of the vibrator 34.

(5)ガス流を止め、振動子34、円板35を取り外し
、更に冷却材9を補充して上記(3) , (4)の作
業を繰り返す。
(5) Stop the gas flow, remove the vibrator 34 and disk 35, replenish the coolant 9, and repeat the operations (3) and (4) above.

(6)冷却材9が所定の高さまで密に充填できたら、冷
却材こぼれ防止用金網24aとフィルター23を挿入し
、円板状の蓋体30をケーシング21に全周溶接して密
閉する。
(6) When the coolant 9 is densely filled to a predetermined height, the coolant spill prevention wire mesh 24a and the filter 23 are inserted, and the disk-shaped lid 30 is welded to the casing 21 all around to seal it.

以上の実施例において、冷却材9に直接振動を与える振
動子14 .34は、該振動子14.34を抜いた時の
空隙が小さく、それによって冷却材9の移動が少くなる
ようにできるたり小さいことが望ましい。
In the above embodiment, the vibrator 14 . vibrates directly vibrating the coolant 9 . 34 is desirably as small as possible so that when the vibrator 14.34 is removed, the gap is small, thereby reducing the movement of the coolant 9.

又、上記実施例のように振動子14,34を用いず、ケ
ーシング1,21全体に振動を与えるようにしてもよい
Further, the vibrations may be applied to the entire casings 1 and 21 without using the vibrators 14 and 34 as in the above embodiment.

更に前記実施例のように冷却室に冷却材の所定量を数分
割して少しずつ充填するのに替えて、冷却材を一度に所
定高さまで入れるようにしてもよい。
Furthermore, instead of filling the cooling chamber with a predetermined amount of coolant little by little by dividing it into several parts as in the above embodiment, the coolant may be filled at once to a predetermined height.

以上の方法に加え、本発明の冷却材充填方法には次のよ
うなものがある。
In addition to the above methods, the coolant filling method of the present invention includes the following.

以下第1,2図に示す半径方向噴出型ガス発生器を例に
とって説明する。
The following will explain the radial ejection type gas generator shown in FIGS. 1 and 2 as an example.

(1)冷却材9にガスを流しながら振動を与え、しかる
後外径が冷却材こぼれ防止用金網4aの内径よりやや小
さく、内径が冷却材こぼれ防止用金網4bの外径よりや
や大きい円筒状の押し型17を冷却材9の上に置き油圧
プレス18等により荷重をかける。
(1) Vibrate the coolant 9 while flowing gas, and then form a cylindrical shape whose outer diameter is slightly smaller than the inner diameter of the coolant spill prevention wire mesh 4a and whose inner diameter is slightly larger than the outer diameter of the coolant spill prevention wire mesh 4b. The pressing die 17 is placed on the coolant 9 and a load is applied using a hydraulic press 18 or the like.

以上の操作を数回繰り返し所定の高さまで冷却材の充填
が終った後、蓋体10をケーシング1に全周溶接して密
閉する。
After repeating the above operation several times and filling the coolant to a predetermined height, the lid 10 is welded to the casing 1 all around to seal it.

(2)冷却材9にガスを流しながら振動を与える作業と
冷却材9に押し型17で荷重をかける作業を同時に行う
(2) The work of applying vibration to the coolant 9 while flowing gas and the work of applying a load to the coolant 9 with the press die 17 are performed at the same time.

この操作を数回繰り返し所定の高さまで冷却材の充填が
終った後、蓋体10をケーシング1に全周溶接して密閉
する。
After repeating this operation several times and filling the coolant to a predetermined height, the cover 10 is welded to the casing 1 all around to seal it.

(3)冷却材9にガスを流しながら振動を与える作業を
数回繰り返して所定の高さまで冷却材9を充填した後、
蓋体10を冷却材9上に設置し、該蓋体10に押し型1
7で荷重をかけ、そのままの状態で蓋体10をケーシン
グ1に全周溶接して密閉する。
(3) After filling the coolant 9 to a predetermined height by repeating the process of applying vibration while flowing gas to the coolant 9 several times,
The lid body 10 is placed on the coolant 9, and a press mold 1 is placed on the lid body 10.
A load is applied at step 7, and in that state, the lid body 10 is welded to the casing 1 all around to seal it.

以上の方法は第3,4図に示す軸方向噴出型ガス発生器
の場合も同様であり、この軸方向噴出型ガス発生器の場
合は円筒状の押し型17に代わり、ケーシング21の内
径より外径がやや小さい円柱状の押し型37を油圧プレ
ス38等により荷重をかける。
The above method is the same in the case of the axial jetting type gas generator shown in Figs. A cylindrical pressing mold 37 with a slightly smaller outer diameter is loaded with a hydraulic press 38 or the like.

尚この場合荷重により通気性円板25が過度に変形する
場合は油圧プレス37の受台39からイグナイタ装着用
孔31を通じて受具40を突出させ、これで荷重を受け
止めるようにすると良い。
In this case, if the air permeable disk 25 is excessively deformed due to the load, it is preferable to make the holder 40 protrude from the holder 39 of the hydraulic press 37 through the igniter mounting hole 31 to absorb the load.

以上本発明において冷却材に与えるガスの流量は同時に
与える振動の振動加速度、振動数、荷重の大きさ更には
冷却材の形状、粒径等によって異なるがIl/min以
上のガス流量が適当である。
As described above, in the present invention, the flow rate of gas applied to the coolant varies depending on the vibration acceleration, frequency, and load of the vibrations simultaneously applied, as well as the shape and particle size of the coolant, but a gas flow rate of Il/min or more is appropriate. .

ガス流量が少ないと冷却材に方向性を持たせることがで
きない。
If the gas flow rate is low, the coolant cannot have directionality.

又与える振動は冷却材の粒径、形状、密度、冷却室の大
きさ等によって異なるが、荷重と同時に与える場合は振
動加速度±0.3〜±20G1振動数10〜1 0 0
0 0Hz,荷重と別に与える場合は振動加速度±5
G以下、振動数5〜3000Hzがよいであろう。
Also, the vibration applied varies depending on the particle size, shape, density of the coolant, size of the cooling chamber, etc., but when applied at the same time as the load, the vibration acceleration is ±0.3 to ±20G1 vibration frequency 10 to 100
0 0Hz, if applied separately from load, vibration acceleration ±5
G or less and a frequency of 5 to 3000 Hz would be good.

更にかける荷重の大きさは、冷却材の強度、形状、充填
する層の厚さ、同時に与える振動の振動加速度、振動数
等により異なるが、冷却室の荷重をかける方向に対し直
角の断面において、振動と同時にかける場合は0.2〜
100kg/Cr?L荷重たけの場合は10kg/i以
上が望ましい。
Furthermore, the magnitude of the load to be applied varies depending on the strength and shape of the coolant, the thickness of the layer to be filled, the vibration acceleration and frequency of the vibrations applied at the same time, etc., but in a cross section perpendicular to the direction in which the load is applied to the cooling chamber, If applied at the same time as vibration, 0.2~
100kg/Cr? In case of L load, 10 kg/i or more is desirable.

上記の如き本発明の冷却材充填方法によれば次に列挙す
る効果を奏するものである。
According to the coolant filling method of the present invention as described above, the following effects are achieved.

(1)燃焼生或ガスの噴出方向あるいはその逆方向にガ
スを流しながら振動を与えて冷却材を充填するので、不
定形の冷却材は振動中に燃焼生或ガスが流れ易い方向に
向きを変えて充填される。
(1) Since the coolant is filled by applying vibration while flowing the gas in the direction of the combustion gas or the opposite direction, the irregularly shaped coolant is oriented in the direction where the combustion gas or gas flows easily during the vibration. It is changed and filled.

従って燃焼生或ガスが流れ易いため燃焼圧力が低下し、
ケーシング、蓋体等の肉厚等を薄くすることが可能とな
り、ガス発生器は小型、軽量になり、車両のステアリン
グコラムのような狭小な場所に収納する運転席用乗員保
護エアクッションに供するガス発生器の製造が容易とな
る。
Therefore, the combustion pressure decreases because the combustion products or gases flow easily.
It has become possible to reduce the thickness of the casing, lid, etc., making the gas generator smaller and lighter, and the gas used for the air cushion for protecting the driver's seat, which is stored in a narrow space such as the steering column of a vehicle. Manufacture of the generator becomes easier.

(2)燃焼生戒ガスの流路が均一に分布されるため冷却
効率、固体捕捉効率が向上する。
(2) Cooling efficiency and solid trapping efficiency are improved because the combustion gas flow paths are uniformly distributed.

従って冷却材の量が減少でき、ガス発生器はより小型、
軽量化できる。
Therefore, the amount of coolant can be reduced, the gas generator is smaller,
Can be made lighter.

(3)冷却材にガスを流しながら振動を与えて方向性を
有した冷却材に更に荷重をかけることにより、冷却材は
より密に充填される。
(3) By applying vibration to the coolant while flowing gas and further applying a load to the directional coolant, the coolant can be filled more densely.

よって冷却効率、固体捕捉効率は更な向上し、ガス発生
器の小型、軽量化が容易となる。
Therefore, the cooling efficiency and solid trapping efficiency are further improved, and the gas generator can be easily made smaller and lighter.

(4)製品にバラツキがあり冷却材こぼれ防止用金網、
フィルター、ケーシング等が冷却材充填前において密着
していなくても、冷却材に振動および荷重をかけた状態
で上記部品が密着するため燃焼圧力により冷却材が移動
することがない。
(4) Wire mesh to prevent coolant from spilling due to product variations;
Even if the filter, casing, etc. are not in close contact with each other before the coolant is filled, the coolant will not move due to combustion pressure because the components will be in close contact with each other when vibration and load are applied to the coolant.

その結果、冷却効率、固体捕捉効率、エアクッション内
圧が一定となりガス発生器の安定性が向上する。
As a result, the cooling efficiency, solid trapping efficiency, and air cushion internal pressure are kept constant, improving the stability of the gas generator.

(5)冷却材を密に充填している上に冷却材こぼれ防止
用金網、フィルターは冷却材を加圧する際に圧縮され、
充填後はその反発力により冷却材を押圧しているので、
冷却材の相対位置が変動し難くなり、長期の振動によっ
ても冷却能力、固体捕捉能力に変化が生じることがなく
、ガス発生器の安定した作動が望める。
(5) In addition to being densely filled with coolant, the wire mesh to prevent coolant spillage and the filter are compressed when pressurizing the coolant.
After filling, the repulsive force presses the coolant, so
The relative position of the coolant becomes less likely to fluctuate, and even long-term vibrations do not cause changes in the cooling capacity or solid trapping capacity, and stable operation of the gas generator can be expected.

実験例 1 第1,2図に示す半径方向噴出型ガス発生器において、
周側に多数個のガス噴口2を有するケーシング1の直ぐ
内側にガラス繊維、織布のフィルター3と40メッシュ
の金網よりなる冷却材こぼれ防止用金網4aを張る。
Experimental example 1 In the radial jet gas generator shown in Figures 1 and 2,
Immediately inside a casing 1 having a large number of gas nozzles 2 on the circumferential side, a filter 3 made of glass fiber or woven cloth and a wire mesh 4a for preventing coolant spillage made of a wire mesh of 40 meshes are placed.

ケーシング1内中央部には通気性円筒部材5を配設し、
燃焼室6と冷却室7に隔或する。
A breathable cylindrical member 5 is disposed in the center of the casing 1,
It is separated into a combustion chamber 6 and a cooling chamber 7.

通気性円筒部材5の外側には40メッシュの金網の冷却
材こぼれ防止用金網4bを内側には12メッシュの金網
よりなるスペイサー金網8を張る。
A wire mesh 4b made of a 40-mesh wire mesh for preventing spillage of coolant is placed on the outside of the breathable cylindrical member 5, and a spacer wire mesh 8 made of a 12-mesh wire mesh is placed on the inside.

次に粒径約1間のアルミナ粒である冷却材9の総量約5
00gを4等分した1分量を冷却室7に充填し、振動台
19に載せる。
Next, the total amount of coolant 9, which is alumina particles with a particle size of about 1, is about 5
00g divided into four equal parts is filled into the cooling chamber 7 and placed on the vibration table 19.

このアルミナ粒の上にドーナツ状の円板15を配設する
と共に、燃焼室6にはガス洩れ防止用の栓16を冷却材
9の高さよりやや低い位置まで挿入した後、イグナイタ
装着用孔11からガスを10l/min流し込みながら
、ケーシング1全体に振動加速度±201振動数1.
O O Hzの振動を約30秒間与える。
A donut-shaped disk 15 is disposed on top of the alumina grains, and a stopper 16 for preventing gas leakage is inserted into the combustion chamber 6 to a position slightly lower than the height of the coolant 9. While flowing gas at 10 l/min from the casing 1, the vibration acceleration ±201 vibration frequency 1.
Apply vibration at O O Hz for about 30 seconds.

この操作を3回繰り返して所定量の冷却材9の充填が完
了した後、円板15、栓16を取り除き、蓋体10をケ
ーシング1に全周溶接して冷却室7を密閉する。
After repeating this operation three times to complete filling with a predetermined amount of coolant 9, the disk 15 and plug 16 are removed, and the lid 10 is welded to the casing 1 all around to seal the cooling chamber 7.

次にアジ化ナ} IJウムと過塩素酸カリウムとからな
るガス発生剤12を約130g、イグナイタ装着用孔1
1から燃焼室6に装填し、イグナイク13を取付けてガ
ス発生器を製造した。
Next, add about 130 g of gas generating agent 12 consisting of sodium azide and potassium perchlorate to the igniter mounting hole 1.
1 was loaded into the combustion chamber 6, and the ignite 13 was attached to manufacture a gas generator.

実験例 2 実験例1と下記の点のみ異なる方法で半径方向噴出型ガ
ス発生器を製造した。
Experimental Example 2 A radial jet gas generator was manufactured using a method different from Experimental Example 1 only in the following points.

即ち、イグナイタ装着用孔11からガスを1 0 67
min流し込みながらケーシング1全体に振動加速度±
3G,振動数500Hzの振動を与えると同時に、冷却
材9に10kg/一の荷重を加える作業を約30秒続け
る。
That is, 1 0 67 gas is supplied from the igniter mounting hole 11.
Vibration acceleration ± throughout the casing 1 while pouring min.
The operation of applying a load of 10 kg/1 to the coolant 9 while applying vibrations of 3 G and a frequency of 500 Hz continues for about 30 seconds.

この操作を3回繰り返して所定量の冷却材を充填する。This operation is repeated three times to fill a predetermined amount of coolant.

その他は実験例1と全く同様である。実験例 3 第3,4図に示す軸方向噴出型ガス発生器において、ケ
ーシング21に12メッシュ金網よりなるスペイサー金
網28、通気性円板25 .40メンシュ金網よりなる
冷却材こぼれ防止金網24bを順に挿入してケーシング
21内部を燃焼室26と冷却室27に隔成する。
The rest is exactly the same as Experimental Example 1. Experimental Example 3 In the axial jet gas generator shown in FIGS. 3 and 4, the casing 21 includes a spacer wire mesh 28 made of a 12-mesh wire mesh, a permeable disk 25. A coolant spill prevention wire mesh 24b made of a 40-mesh wire mesh is sequentially inserted to separate the inside of the casing 21 into a combustion chamber 26 and a cooling chamber 27.

次に粒径約1mrttの炭化硅素である冷却材9の総量
約500gを4等分した1分量を冷却室27に充填し、
この上に円板35を配設し、直径約2mmの振動子34
を冷却材9の中に挿入する。
Next, a total amount of about 500 g of the coolant 9, which is silicon carbide with a particle size of about 1 mrtt, is divided into four equal parts and filled into the cooling chamber 27.
A disc 35 is arranged on this, and a vibrator 34 with a diameter of about 2 mm
into the coolant 9.

イグナイタ装着用孔31から図の矢印方向にガスを1
0 l/m in流し込みながら、振動子34を振動加
速度±IG1振動数3 0 0 Hzの振動を約15秒
与える。
Pour gas from the igniter mounting hole 31 in the direction of the arrow in the figure.
While pouring water at a rate of 0 l/min, the vibrator 34 is subjected to vibration at a vibration acceleration ±IG1 frequency of 300 Hz for about 15 seconds.

この操作を振動子34の位置を変え計12回行う。This operation is repeated 12 times in total while changing the position of the vibrator 34.

以上の操作を3回繰り返して所定量の冷却材9の充填が
完了したら、40メッシュの金網よりなる冷却材こぼれ
防止用金網24a1羊毛フエルトよりなるフィルター2
3及び蓋体30を順に装備して、該蓋体30をケーシン
グ21に全周溶接して冷却室27を密閉する。
After repeating the above operation three times and filling the predetermined amount of coolant 9, a wire mesh 24a for preventing coolant spillage made of a 40-mesh wire mesh, a filter 2 made of wool felt.
3 and a lid 30 are installed in this order, and the lid 30 is welded to the casing 21 all around to seal the cooling chamber 27.

その他は実験例1と全く同様である。The rest is exactly the same as Experimental Example 1.

実験例 4 実験例3と下記の点のみ異なる方法で軸方向噴出型ガス
発生器を製造した。
Experimental Example 4 An axial jet gas generator was manufactured using a method different from Experimental Example 3 only in the following points.

即ち、粒径約1間の炭化硅素である冷却材9の総量約5
00gを4等分した1分量を冷却室27に充填し、この
上に円板35を配設し、振動子34を冷却材9の中に挿
入する。
That is, the total amount of the coolant 9, which is silicon carbide with a particle size of about 1.
00g divided into four equal parts is filled in the cooling chamber 27, a disc 35 is placed on top of the disc 35, and the vibrator 34 is inserted into the coolant 9.

次にイグナイタ装着用孔31からガスを1 0 l/m
in流し込みながら振動子34により振動加速度±IG
1振動数3 0 0 Hzの振動を冷却材9に約15秒
与える。
Next, gas is supplied from the igniter mounting hole 31 at a rate of 10 l/m.
Vibration acceleration ±IG by the vibrator 34 while pouring
Vibration at a frequency of 300 Hz is applied to the coolant 9 for about 15 seconds.

この振動を振動子34の位置を変え計12回行った後、
振動子34、円板35を取り除き、押し型37で冷却材
9に約100kg/crj−の荷重をかける。
After performing this vibration 12 times in total by changing the position of the vibrator 34,
The vibrator 34 and the disc 35 are removed, and a load of about 100 kg/crj- is applied to the coolant 9 using the press die 37.

以上のガスを流しながら振動を与える作業と、荷重をか
ける作業とを交互に3回ずつ繰り返し所定量の冷却材9
の充填が完了したら冷却材こぼれ防止用金網24a1フ
ィルター23、蓋体30を順に装備して、蓋体30を押
し型37で更に約100kg/一の荷重をかけた状態で
ケーシング21に全周溶接する。
The above operations of applying vibration while flowing gas and applying loads are repeated 3 times each to obtain a predetermined amount of coolant 9.
When the filling is completed, the wire mesh 24a1 for preventing coolant spillage, the filter 23, and the lid 30 are installed in this order, and the lid 30 is welded around the entire circumference to the casing 21 with an additional load of about 100 kg/1 applied to the press die 37. do.

その他は実験例1と全く同様である。The rest is exactly the same as Experimental Example 1.

比較例 1 実験例1と全く同一の構或材料を用い、下記の点のみ異
なる方法でガス発生器を製造した。
Comparative Example 1 A gas generator was manufactured using the same construction and materials as in Experimental Example 1, except for the following differences.

即ち実験例1と同じアルミナ粒約500gを用意し、そ
の大部分を冷却室7の所定の高さまで入れ、蓋体10で
蓋をしてクツピングを行う。
That is, about 500 g of alumina grains, which are the same as in Experimental Example 1, are prepared, most of them are placed in the cooling chamber 7 to a predetermined height, the lid is covered with the lid 10, and the cutting is performed.

次に蓋体10を外してクツピングによりアルミナ粒が沈
降した部分に残りのアルミナ粒の一部を補充した後、更
に蓋体10で蓋をしてクッピングを行う。
Next, the lid 10 is removed and a part of the remaining alumina grains is replenished into the part where the alumina grains have settled due to cupping, and then the lid 10 is further covered and cupping is performed.

この操作を4回繰り返した後残りのアルミナ粒を全部充
填してタツピングを行い、蓋体10をケーシング1に全
周溶接する。
After repeating this operation four times, all remaining alumina grains are filled and tapped, and the lid body 10 is welded to the casing 1 all around.

その他は実験例1と全く同一である。The rest is exactly the same as Experimental Example 1.

比較例 2 実験例3と全く同一の構或材料を用いて下記の点のみ異
なる方法でガス発生器を製造した。
Comparative Example 2 A gas generator was manufactured using the same structure and materials as in Experimental Example 3, except for the following differences.

即ち実験例3と同じ炭化硅素粒を約500g用意し、そ
の大部分を冷却室27の所定の高さまで入れ、ケーシン
グ21の内径よりもやや小径の円柱で蓋をしてタツピン
グする。
That is, about 500 g of the same silicon carbide particles as in Experimental Example 3 are prepared, most of them are put into the cooling chamber 27 up to a predetermined height, and the lid is tapped with a cylinder having a diameter slightly smaller than the inner diameter of the casing 21.

次に円柱を外してクツピングにより炭化硅素粒が沈降し
た部分に残りの炭化硅素粒の一部を補充した後、更に円
柱で蓋をしてタツピングを行う。
Next, the cylinder is removed and a portion of the remaining silicon carbide grains is replenished into the part where the silicon carbide grains have settled due to the tapping, and then the part is further covered with a cylinder and tapping is performed.

この操作を4回繰り返した後に残りの炭化硅素粒全部を
充填し、この上に実験例3と同一の冷却材こぼれ防止用
金網24a1フィルター23及び蓋体30を順に装備し
、蓋体30とケーシング21を全周溶接する。
After repeating this operation four times, all the remaining silicon carbide grains are filled, and on top of this, the same coolant spill prevention wire mesh 24a1 as in Experimental Example 3, the filter 23 and the lid 30 are installed in order, and the lid 30 and the casing are 21 is welded all around.

その他は実験例3と全く同一の方法で製造する。The rest is manufactured in exactly the same manner as in Experimental Example 3.

以上の各方法で製造したガス発生器のそれぞれに対し、
次の実験を行い、下記の点を調べた。
For each of the gas generators manufactured by the above methods,
The following experiment was conducted and the following points were investigated.

1.各ガス発生器を作動させ、その時の燃焼圧力、噴出
ガス温度噴出固体量を調べる。
1. Operate each gas generator and check the combustion pressure, ejected gas temperature, and amount of ejected solids.

2.振動加速度±4G,振動数151−Izの振動を3
×106回与え、その後ガス発生器を分解して粒度分布
即ち目開き0. 7 1 mmのフルイを通過する冷却
材を調べる。
2. Vibration acceleration ±4G, vibration frequency 151-Iz 3
×106 times, and then disassemble the gas generator to obtain particle size distribution, that is, opening 0. Examine the coolant passing through a 7 1 mm sieve.

3.上記振動試験後のガス発生器を作動させ、その時の
燃焼圧力噴出ガス温度、噴出固体量を調べる。
3. After the above vibration test, the gas generator is operated, and the combustion pressure, temperature of the ejected gas, and amount of ejected solids are examined.

4. 5mの高さからコンクリートの床に連続10回落
下させる衝撃試1験を行い、その後ガス発生器を分解し
て粒度分布、即ち目開き0.71mmのフルイを通過す
る冷却材を調べる。
4. An impact test is performed in which the gas generator is dropped 10 times in succession from a height of 5 m onto a concrete floor, after which the gas generator is disassembled to examine the particle size distribution, that is, the coolant passing through a sieve with an opening of 0.71 mm.

5.上記衝撃試験後のガス発生器を作動させ、その時の
燃焼圧力噴出ガス温度、噴出固体量を調べる。
5. After the above impact test, the gas generator is operated, and the combustion pressure, temperature of the ejected gas, and amount of ejected solids are examined.

以上の比較実験結果を次の表にまとめる。The results of the above comparative experiments are summarized in the following table.

上記表より明らかなように、従来の冷却材充填方法によ
る比較例1,2では振動、衝撃試験後のガス発生器の性
能が劣化しているのに対し、本発明の冷却材充填方法に
より製造したガス発生器にあっては振動、衝撃試験後も
性能の劣化はなく、又試験前の状態でも非常に低温、清
浄ガスである。
As is clear from the table above, in Comparative Examples 1 and 2 using the conventional coolant filling method, the performance of the gas generator after vibration and impact tests deteriorated, whereas the gas generator produced using the coolant filling method of the present invention deteriorated. The gas generator tested showed no deterioration in performance even after vibration and impact tests, and the gas was extremely low temperature and clean even before the test.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図は半径方向噴出型ガス発生器の説明用断面図
、第3,4図は軸方向噴出型ガス発生器の説明用断面図
である。 1,21・・・・・・ケーシング、2,22・・・・・
・ガス噴口、3,23・・・・・・フィルター、4a,
4b,24a,24b・・・・・・冷却材こほれ防止用
金網、5・・・・・・通気性円筒部材、6,26・・・
・・・燃焼室、7,27・・・・・・冷却室、8,28
・・・・・・スペイサー金網、9・・・・・・冷却材、
10.30・・・・・・蓋体、11.31・・・・・・
イグナイタ装着用孔、12・・・・・・ガス発生剤、1
3・・・・・・イグナイク、14.34・・・・・・振
動子、15,35・・・・・・円板、16・・・・・・
栓、17.37・・・・・・押し型、18.38・・・
・・・油圧プレス、19.39・・・・・・振動台、2
5・・・・・・通気性円板、40・・・・・・受具。
1 and 2 are explanatory sectional views of a radial ejection type gas generator, and FIGS. 3 and 4 are explanatory sectional views of an axial ejection type gas generator. 1, 21... Casing, 2, 22...
・Gas nozzle, 3, 23...Filter, 4a,
4b, 24a, 24b...Wire mesh for preventing coolant from collapsing, 5...Breathable cylindrical member, 6, 26...
... Combustion chamber, 7, 27 ... Cooling chamber, 8, 28
...Spacer wire mesh, 9... Coolant,
10.30... Lid body, 11.31...
Igniter mounting hole, 12...Gas generating agent, 1
3...Ignike, 14.34...Vibrator, 15,35...Disc, 16...
Plug, 17.37...Press type, 18.38...
... Hydraulic press, 19.39 ... Vibration table, 2
5... Breathable disc, 40... Receiver.

Claims (1)

【特許請求の範囲】 1 ガス噴口を有するケーシングと燃焼式ガス発生剤を
装填する燃焼室との間に冷却材を充填する冷却室を設け
たガス発生器の冷却材充填工程において、前記冷却室に
冷却材を入れ、この冷却材にガス発生器のガス噴出方向
あるいはその逆方向にガスを流すと共に振動を与えるこ
とを特徴とするガス発生器における冷却材の充填方法。 2 ガス噴口を有するケーシングと燃焼式ガス発生剤を
装填する燃焼室との間に、冷却材を充填する冷却室を設
けたガス発生器の冷却材充填工程において、前記冷却室
に冷却材を入れ、この冷却材にガス発生器のガス噴出方
向あるいはこの逆方向にガスを流すと共に振動を与える
作業と、荷重をかける作業とを少なくとも1回ずつ行う
ことを特徴とするガス発生器における冷却材の充填方法
[Scope of Claims] 1. In the coolant filling process of a gas generator in which a cooling chamber is provided between a casing having a gas nozzle and a combustion chamber in which a combustion type gas generating agent is loaded, the cooling chamber is filled with a coolant. 1. A method of filling a coolant in a gas generator, which comprises: introducing a coolant into the coolant, causing gas to flow through the coolant in the gas ejection direction of the gas generator or in the opposite direction, and applying vibration to the coolant. 2. In the coolant filling process of a gas generator in which a cooling chamber for filling a coolant is provided between a casing having a gas nozzle and a combustion chamber in which a combustion type gas generating agent is loaded, the coolant is charged into the cooling chamber. , a method of controlling a coolant in a gas generator, characterized in that an operation of causing gas to flow through the coolant in the gas ejection direction of the gas generator or in the opposite direction thereof and applying vibration, and an operation of applying a load are performed at least once each. Filling method.
JP50087091A 1975-07-15 1975-07-15 gas Expired JPS5847379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50087091A JPS5847379B2 (en) 1975-07-15 1975-07-15 gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50087091A JPS5847379B2 (en) 1975-07-15 1975-07-15 gas

Publications (2)

Publication Number Publication Date
JPS5215030A JPS5215030A (en) 1977-02-04
JPS5847379B2 true JPS5847379B2 (en) 1983-10-21

Family

ID=13905270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50087091A Expired JPS5847379B2 (en) 1975-07-15 1975-07-15 gas

Country Status (1)

Country Link
JP (1) JPS5847379B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834325B2 (en) * 1977-12-24 1983-07-26 株式会社ロツテ Packaging method and device for plate-shaped articles
US4450082A (en) * 1981-06-11 1984-05-22 Asahi Kasei Kogyo Kabushiki Kaisha Method for obtaining uniform stream in adsorption column
DE4300149A1 (en) * 1993-01-08 1994-07-14 Focke & Co Device for producing cigarette packs

Also Published As

Publication number Publication date
JPS5215030A (en) 1977-02-04

Similar Documents

Publication Publication Date Title
US5547638A (en) Pyrotechnic air bag inflator with unitary filter
US7559146B2 (en) Wire mesh filter with improved hoop strength
JP2554812B2 (en) Method of Assembling Inflator and Filter Assembly for Airbag
US3934984A (en) Gas generator
JP2534029B2 (en) Composite expansion device and expanded gas generation method
KR950009343B1 (en) Two stage automotive gas bag inflator using igniter material to delay second stage ignition
JP2991332B2 (en) Pyrotechnic inflator for airbag
JP3019917U (en) Inflator
US6926304B2 (en) Airbag generator, deflector member, coolant/filter means support member, coolant, and housing
JPH0570109A (en) Particulate collection by concentrate gas-generating agent and air bag-expanding machine
CA1140058A (en) Gas inflator structures with improved cooling filters and method of making the filters
JPH0648880A (en) Multi-layer type gas generating disk for gas generator
US6065774A (en) Filtration system for gas generators
JPH1143007A (en) Gas generator and its filter
US6277166B2 (en) Filter with stiffening ribs
JPS5847379B2 (en) gas
JP3976155B2 (en) Inflator for airbag
JPH07172260A (en) Filter for pyrotechinc air bag inflating device
US5086550A (en) Method of assembling an inflator for a vehicle occupant restraint
JPH03174210A (en) Gas filter of device for generating gas to develop air bag
JP2665516B2 (en) Final filter of gas generator for airbag deployment
JP4814832B2 (en) Gas generator filter material and gas generator
JP4753692B2 (en) Inflator for airbag
EP0698535A2 (en) Air bag inflator with flow deflecting filter
USRE39611E1 (en) Filter with stiffening ribs