JPS5841832A - Preparation of magnesium dialkoxide - Google Patents

Preparation of magnesium dialkoxide

Info

Publication number
JPS5841832A
JPS5841832A JP13983281A JP13983281A JPS5841832A JP S5841832 A JPS5841832 A JP S5841832A JP 13983281 A JP13983281 A JP 13983281A JP 13983281 A JP13983281 A JP 13983281A JP S5841832 A JPS5841832 A JP S5841832A
Authority
JP
Japan
Prior art keywords
reaction
magnesium
alcohol
saturated hydrocarbon
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13983281A
Other languages
Japanese (ja)
Other versions
JPS634815B2 (en
Inventor
Shuji Machida
町田 修二
Yoichi Kawaguchi
洋一 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP13983281A priority Critical patent/JPS5841832A/en
Publication of JPS5841832A publication Critical patent/JPS5841832A/en
Publication of JPS634815B2 publication Critical patent/JPS634815B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To prepare the titled compound having definite particle form and good handleability, in high purity and efficiency, by the reaction of metallic magnesium with an alcohol in the presence of an activating agent, by carrying out the reaction in the copresence of a saturated hydrocarbon. CONSTITUTION:A magnesium dialkoxide is prepared by reacting metallic magnesium with an alcohol at 30-200 deg.C in the presence of an activating agent and a saturated hydrocarbon. The amount of the alcohol is preferably >=2.05mol, especially 2.10-20mol per 1 gram atom of the metallic magnesium. The saturated hydrocarbon is usually a 5-15C aliphatic or alicyclic hydrocarbon, especially hexane, heptane, octane, etc. The amount of the alcohol is preferably 2- 7pts. vol per 1pt. vol of the sum of the saturated hydrocarbon added to the reaction system and the saturated hydrocarbon used as the solvent of the activating agent.

Description

【発明の詳細な説明】 本発明はマグネシウムジアルコキシドの製造方法に関し
、詳しくは粒子状で高純度のマグネシウムジアルコキシ
ドを効率よく製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing magnesium dialkoxide, and more particularly to a method for efficiently producing particulate, highly pure magnesium dialkoxide.

従来からアルコールと金属マグネシウムを反応させてマ
グネシウムジアルコキシドを合成する方法はよく知られ
ている。また、この反応を芳香族炭化水素、例えばトル
エンやキシレンの存在下で行なうことも知られている(
 J、 Am、Chem、Sac、。
The method of synthesizing magnesium dialkoxide by reacting alcohol with magnesium metal is well known. It is also known that this reaction can be carried out in the presence of aromatic hydrocarbons, such as toluene and xylene (
J, Am, Chem, Sac,.

68.889および時分・昭52−111508号公報
)。
68.889 and Time/Bun/1982-111508).

しかし、これらの方法では、一定の粒子形状のものを効
率よく製造することは困難であった。
However, with these methods, it has been difficult to efficiently produce particles with a constant shape.

そこで本発明者らは、上記従来方法の欠点を解消して、
粒子状で取扱いの容易なマグネシウムジアルコキシドな
高純度でしかも効果よく製造しうる方法を開発すべく研
究を重ね、本発明を完成するに至った。
Therefore, the present inventors solved the drawbacks of the above conventional methods, and
The present invention has been completed through repeated research in order to develop a method for producing magnesium dialkoxide with high purity and high efficiency, which is in the form of particles and easy to handle.

すなわち本発明は、金属マグネシウムとアルコールを活
性化剤の存在下で反応させてマグネシウムジアルコキシ
ドを製造する方法において、反応系に飽和炭化水素を存
在させることを特徴とするマグネシウムジアルコキシド
の製造方法を提供するものである。
That is, the present invention provides a method for producing magnesium dialkoxide by reacting metallic magnesium and alcohol in the presence of an activator, which is characterized in that a saturated hydrocarbon is present in the reaction system. This is what we provide.

本発明の方法に用いる金属マグネシウムの形状は、’l
!llIC114@はなく使用目的等に応じて適宜選定
すればよいが、通常は、反応性、取扱いの便宜などの観
点から粒状あるいはけずり状とすることが好ましい。
The shape of the metallic magnesium used in the method of the present invention is 'l
! Although there is no llIC114@, it may be selected as appropriate depending on the purpose of use, etc., but it is usually preferable to form it into granules or scraps from the viewpoint of reactivity, ease of handling, etc.

一方、上記金属マグネシウムと反応するアルコールは、
様々なものがあるが、通常は一般式ROHで表わされる
アルコールであり、ここでRは炭素数1〜20のアルキ
ル基、シクロアルキル基、アラルキル基の範囲から選ば
れる。特に好ましいアルコールとしては、メタノール、
エタノール、プ0 ハ/−ル、フタノール、アシルアル
コール、ヘキシルアルコール、オクチルアルコールなど
がある。ここで加えるべきアルコールの量は、通常は金
属マグネシウムに対して過剰量とすべきであり、好まし
くは金属マグネシウム1グラム原子に対し、2.05モ
ル以上、より好ましくは2.1θ〜20モルとすべきで
ある。ここで加えられた過剰量のアルコールは、反応原
料としてのみならず、反応系の溶媒としても作用する。
On the other hand, the alcohol that reacts with the metal magnesium is
Although there are various alcohols, it is usually an alcohol represented by the general formula ROH, where R is selected from the range of an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group, and an aralkyl group. Particularly preferred alcohols include methanol,
Examples include ethanol, alcohol, phthanol, acyl alcohol, hexyl alcohol, and octyl alcohol. The amount of alcohol to be added here should normally be in excess of metal magnesium, preferably 2.05 mol or more, more preferably 2.1θ to 20 mol per 1 gram atom of metal magnesium. Should. The excess amount of alcohol added here acts not only as a reaction raw material but also as a solvent for the reaction system.

本発明の方法においては、上記金属マグネシウムとアル
コールの反応系に、飽和炭化水素を存在せしめることが
必要である。この反応系において、アルコールのみを用
いる場合に比べて、本発明の如く飽和炭化水素を用いる
と、反応速度が大きくなると共K、反応速度のコントロ
ールが容易となり好ましい。
In the method of the present invention, it is necessary that a saturated hydrocarbon be present in the reaction system of the metal magnesium and alcohol. In this reaction system, it is preferable to use a saturated hydrocarbon as in the present invention, as compared to the case where only alcohol is used, because the reaction rate increases and the reaction rate can be easily controlled.

ここで用いる飽和炭化水素としては、各−条件に応じて
定めればよ(、通常は炭素数5〜15の脂肪族あるいは
脂環族の炭化水素などがあげられる。そのうち特に好ま
しいものとしては、ヘキサン、ヘプタン、オクタンなど
がある。
The saturated hydrocarbons used here may be determined depending on each condition (usually, aliphatic or alicyclic hydrocarbons having 5 to 15 carbon atoms, etc.) are particularly preferred. Examples include hexane, heptane, and octane.

また本発明の方法においては、反応系に活性化剤を加え
る。この活性化剤としては、各種のものが考えられるが
、好ましいものとしてヨウ素、)・ロゲン化アルキル(
ヨウ化メチル、臭化メチル。
Further, in the method of the present invention, an activator is added to the reaction system. Various kinds of activators can be used as this activator, but preferred ones include iodine,
Methyl iodide, methyl bromide.

塩化メチル、ヨウ化エチル、臭化エチル、塩化エチルな
ど)、酢酸、ギ酸エステル、塩化第二水銀などをあげる
ことができる。
Methyl chloride, ethyl iodide, ethyl bromide, ethyl chloride, etc.), acetic acid, formate, mercuric chloride, etc.

なおこの活性化剤はそのまま反応系に加えてもよいが、
好ましくは、前述した飽和炭化水素に1〜50 ppm
程度の濃度に溶解したものを、反応系に徐々に添加する
ことが好ましい。
Note that this activator may be added to the reaction system as it is, but
Preferably, from 1 to 50 ppm to the aforementioned saturated hydrocarbons.
It is preferable to gradually add a solution dissolved at a certain concentration to the reaction system.

以上のように、本発明の方法は、金属マグネシウムと過
剰量のアルコールならびに飽和炭化水素を反応系に加支
、さらに飽和炭化水素に予め溶解せしめた活性化剤を徐
々に反応系に添加して、反応を進行させるものであるが
、ここでアルコールと飽和炭化水素の添加量の割合は、
適宜定めればよいが、好ましくは反応系に加える飽和炭
化水素と活性化剤の溶剤と゛しての飽和炭化水素の合計
量に対して、アルコールを2〜7(容積比)の範囲とす
べきである。ここでアルコールの添加量が飽和炭化水素
に対して2未満では、生成物の粒子径・が大きくなりす
ぎるおそれがあり、一方、7を超えると微粉末となる−
おそれがあり好ましくな(・。
As described above, the method of the present invention involves adding metal magnesium, an excess amount of alcohol, and a saturated hydrocarbon to the reaction system, and then gradually adding an activator predissolved in the saturated hydrocarbon to the reaction system. , which allows the reaction to proceed, but here the ratio of the amounts of alcohol and saturated hydrocarbon added is:
It may be determined as appropriate, but preferably the alcohol should be in the range of 2 to 7 (volume ratio) to the total amount of the saturated hydrocarbon added to the reaction system and the saturated hydrocarbon as a solvent for the activator. It is. If the amount of alcohol added is less than 2 relative to the saturated hydrocarbon, the particle size of the product may become too large, while if it exceeds 7, it will become a fine powder.
There is a possibility that this is not desirable (・.

本発明の方法によれば、上記反応系に活性化剤の溶液を
10分〜20時間かけて徐々に添加し、反応温度30〜
200°C1反応圧力常圧〜50気圧の条件にて、水素
が発生しなくなるまで反応を続けることKよって、粒子
状のマグネシウムジアルコキシドを高純度で製造するこ
とができる。
According to the method of the present invention, an activator solution is gradually added to the reaction system over a period of 10 minutes to 20 hours, and the reaction temperature is 30 to 30 minutes.
Particulate magnesium dialkoxide can be produced with high purity by continuing the reaction at a reaction pressure of 200 DEG C. and a normal pressure to 50 atmospheres until no hydrogen is generated.

本発明の方法による長所をさらに詳しく述べれば、まず
反応速度が大きく、またその速度のコントロールも容易
である。さらに反応に際して、反応容器IIK反広物が
付着したり、反応物粒子同士が凝集したりすることがな
〜・ため、操作力を容易であると共に反応後の生成物の
洗浄が容易である。
To describe the advantages of the method of the present invention in more detail, first, the reaction rate is high and the rate can be easily controlled. Furthermore, during the reaction, there is no possibility that the reaction container IIK membranes will adhere or the reactant particles will aggregate, making it easy to operate and to wash the product after the reaction.

またその結果、所望する大きさの粒子状のマグネシウム
ジアルコキシドを高純度のものとして得ることができる
Moreover, as a result, particulate magnesium dialkoxide of a desired size can be obtained with high purity.

かくして得られたマグネシウムジアルコキシドは、粒子
状で取扱いが容易であり、しかも高純度のものであるた
め、乾燥剤、エポキシ樹脂硬化剤。
The magnesium dialkoxide thus obtained is easy to handle in particulate form, and is of high purity, so it is used as a desiccant and an epoxy resin curing agent.

各種触媒および触媒担体などに広くかつ有効に坪U用す
ることができるものである。
It can be widely and effectively used for various catalysts and catalyst carriers.

次に本発明の実施例を比較例と共に示す。Next, examples of the present invention will be shown together with comparative examples.

実施例1 5g容の四ロフラスコを乾燥し、45〜100メツシユ
(平均粒径248μ)の金属マグネシウム319g(1
,31グラム原子)、脱水エタノール(水分450pp
m)750m(12,6モル)およびヘキサン(市販1
級、水分s ppm以下)50dを加え、還流温度(7
3°C)に加熱した。この系に、ヨウ素5.09をヘキ
サン100−に溶力箋した溶液を1時間にわたって滴1
した。滴下と同時に反応が始まり水素が発生した。滴下
終了後、2時間還流させて反応を完結させた。反応の進
行にしたがって、マグネシウムの形状が変化し、球状に
生長していくのが認められた。また反応中、フラスコ壁
への付着や粒子同士の凝集は全く認められなかった。
Example 1 A 5 g four-hole flask was dried and 319 g (1
, 31 g atoms), dehydrated ethanol (450 ppp water
m) 750 m (12,6 mol) and hexane (commercially available 1
grade, water content s ppm or less) was added, and the reflux temperature (7 ppm or less) was added.
3°C). To this system, a solution of 5.09 iodine in 100% hexane was added dropwise over 1 hour.
did. At the same time as the dropping, the reaction started and hydrogen was generated. After the dropwise addition was completed, the reaction was completed by refluxing for 2 hours. As the reaction progressed, the shape of the magnesium changed and was observed to grow into a spherical shape. Further, during the reaction, no adhesion to the flask wall or aggregation of particles was observed.

反応終了後、室温まで冷却し、静置して上澄液を抜き去
り、ヘキサンで洗浄後、減圧下で乾燥して球状のマグネ
シウムジェトキシド149gを得た。原料の金属マグネ
シウムあたりの収率ははぼ100%であり、また生成物
であるマグネシウムジェトキシドの平均粒子径は680
μであった。
After the reaction was completed, the reaction mixture was cooled to room temperature, allowed to stand, and the supernatant liquid was removed, washed with hexane, and dried under reduced pressure to obtain 149 g of spherical magnesium jetoxide. The yield per metallic magnesium raw material is almost 100%, and the average particle size of the product magnesium jetoxide is 680%.
It was μ.

原料の金属マグネシウムの粒径分布および生成物である
マグネシウムジェトキシドの粒径分布を第1図に示す。
FIG. 1 shows the particle size distribution of magnesium metal as a raw material and the particle size distribution of magnesium jetoxide as a product.

実施例2 実施例1において、ヨウ素5.0 mgを溶解スルヘキ
サンの量を100mから200mに変えたこと以外は、
実施例1と同様の操作を行なった。反応中、フラスコ壁
への付着や粒子同士の凝集は全くなかった。また生成し
たマグネシウムジェトキシドの平均粒子径は750μで
あり、粒径分布は第1図に示すとおりであった。
Example 2 In Example 1, except that the amount of sulfexane dissolved in 5.0 mg of iodine was changed from 100 m to 200 m.
The same operation as in Example 1 was performed. During the reaction, there was no adhesion to the flask wall or aggregation of particles. The average particle size of the produced magnesium jetoxide was 750μ, and the particle size distribution was as shown in FIG.

実施例3 実施例】において、”金属マグネシウムとしテケずり状
(長径0.8 m 、短径0.3 m )のものを用い
たこと以外は、実施例1と同様の操作を行なった。
Example 3 In Example 3, the same operations as in Example 1 were carried out except that metal magnesium was used in the shape of a lever (length: 0.8 m, breadth: 0.3 m).

反応は極めて円滑に進行し、付着や凝集は皆無であった
。また、生成したマグネシウムジェトキシドの形状は球
状に近い粒子状であり、平均粒子径ハ1400μで太き
(、均一であって、分布はシャープであった。
The reaction proceeded extremely smoothly, with no adhesion or aggregation. In addition, the shape of the produced magnesium jetoxide was a particle shape close to a spherical shape, and the average particle diameter was 1400 μm, thick (uniform, and the distribution was sharp).

実施例4 51容の四日フラスコを乾燥し、45〜100メツシユ
(平均粒径248μ)の金楓マグネシウム2.829(
0,116グラム原子)、脱水n−プロパツール104
m1(1,39モル)およびヘキサン(市kx級、水分
5 ppm以下)1011を加え、還流温度(約73℃
)に加熱した。この系K、ヨウ素5 Qをヘキサン16
m1に溶がした溶液を0.5時間にわたって滴下した。
Example 4 A 51-volume four-day flask was dried and 45 to 100 meshes (average particle size 248μ) of 2.829 g
0,116 g atom), dehydrated n-propatool 104
Add m1 (1,39 mol) and 1011 hexane (city KX grade, water content 5 ppm or less), and heat to reflux temperature (approximately 73°C).
). This system K, iodine 5 Q, hexane 16
A solution dissolved in m1 was added dropwise over 0.5 hour.

滴下と同時に反応が始まり水素が発生した。滴下終了後
、15時間還流させて反応を完結させた。反応の進行に
したがって、マグネシウムの形状が変化し、球状に生長
してい(のが認められた。また反応中、フラスコ壁への
付着や粒子同士の凝集は全く認められながった。
At the same time as the dropping, the reaction started and hydrogen was generated. After the dropwise addition was completed, the reaction was completed by refluxing for 15 hours. As the reaction progressed, the shape of the magnesium changed and it was observed to grow into a spherical shape.During the reaction, no adhesion to the flask wall or aggregation of particles was observed at all.

反応終了後、室温まで冷却し、静置して上澄液を抜き去
り、ヘキサンで洗浄後、減圧下で乾燥して球状のマグネ
シウムジロープロポキシド16.32を得た。原料の金
属マグネシウムあたりの収率はほぼ100%であり、ま
た生成物であるマグネシウムジn−グロボキシドの平均
粒子径は5o。
After the reaction was completed, the reaction mixture was cooled to room temperature, left to stand, and the supernatant liquid was removed, washed with hexane, and dried under reduced pressure to obtain spherical magnesium diropropoxide 16.32. The yield per raw material magnesium metal is approximately 100%, and the product magnesium di-n-globoxoxide has an average particle size of 5o.

μであった。It was μ.

比較例1 51容の四日フラスコを乾燥し、45〜100メツシユ
(平均粒径248μ)の金属マグネシウム4.0g(0
,165グラム原子)、脱水エタノール(水分450 
ppfn ) 174114 (3,02モル)および
p−キシレン5dを加え、還流温度(73°C)K加熱
した。この系に、ヨウ素50富gをp−キシレン7.6
dに溶かした溶液を05時間にわたって滴下した。滴下
と同時に反応が始まり水素が発生した。滴下終了後、1
85時間還流させて反応を完結させた。反応中、フラス
コ壁への付着や粒子同士の凝集は全く認められなかった
Comparative Example 1 A 51-volume four-day flask was dried, and 4.0 g (0.0
, 165 grams atom), dehydrated ethanol (water 450
ppfn) 174114 (3.02 mol) and p-xylene 5d were added and heated to reflux temperature (73°C) K. To this system, add 50 g of iodine to 7.6 g of p-xylene.
The solution dissolved in d was added dropwise over 05 hours. At the same time as the dropping, the reaction started and hydrogen was generated. After dropping, 1
The reaction was completed by refluxing for 85 hours. During the reaction, no adhesion to the flask wall or aggregation of particles was observed.

反応終了後、室温まで冷却し、静置して上澄液を抜き去
り、ヘキサンで洗浄後、減圧下で乾燥して粒子状のマグ
ネシウムジェトキシド169gを得た。原料の金属マグ
ネシウムあたりの収率はほぼ90≦であり、また生成物
であるマグネシウムジェトキシドの平均粒子径は15μ
であった。
After the reaction was completed, the reaction mixture was cooled to room temperature, allowed to stand, and the supernatant liquid was removed, washed with hexane, and dried under reduced pressure to obtain 169 g of particulate magnesium jetoxide. The yield per raw material magnesium metal is approximately 90≦, and the average particle size of the product magnesium jetoxide is 15μ.
Met.

比較例2 51容の四日フラスコを乾燥し、45〜100メツシユ
(平均粒径248μ)の金属マグネシウム4.0g(0
,165グラム原子)、脱水エタノール(水分450p
pm)174s+j(3,02モル)およびp−キシレ
ン10mを加え、還流温度(73℃)に加熱した。この
系に、ヨウ素50叩をp−キシレン41.2117に溶
かした溶液を0.5時間にわたって滴下した。滴下と同
時に反応が始まり水素が発生した。滴下終了後、6時間
還流させて反応を完結させた。反応中、フラスコ壁への
付着や粒子同士の凝集が認められた。
Comparative Example 2 A 51-volume four-day flask was dried, and 4.0 g (0.0
, 165 grams atom), dehydrated ethanol (water 450p
pm) 174s+j (3.02 mol) and 10 m of p-xylene were added and heated to reflux temperature (73°C). A solution of 50 iodine dissolved in 41.2117 p-xylene was added dropwise to this system over 0.5 hours. At the same time as the dropping, the reaction started and hydrogen was generated. After the dropwise addition was completed, the reaction was completed by refluxing for 6 hours. During the reaction, adhesion to the flask wall and aggregation of particles were observed.

反応終了後、室温まで冷却し、静置して上澄液を抜き去
り、ヘキサンで洗浄後、減圧下で乾燥して粒子状のマグ
ネシウムジェトキシド18.7gを得た。原料の金属マ
グネシウムあたりの収率ははぼ100%であり、また生
成物であるマグネシウムジェトキシドの平均粒子径は9
00μであった。
After the reaction was completed, the reaction mixture was cooled to room temperature, allowed to stand, and the supernatant liquid was removed, washed with hexane, and dried under reduced pressure to obtain 18.7 g of particulate magnesium jetoxide. The yield per metallic magnesium raw material is almost 100%, and the average particle size of the product magnesium jetoxide is 9.
It was 00μ.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1において用いた金属マグネシウムお
よび実施例1の生成物ならびに実施例2の生成物のそれ
ぞれの粒径分布を示す。 特許出願人 出光興産株式会社
FIG. 1 shows the particle size distribution of the magnesium metal used in Example 1 and the product of Example 1 and the product of Example 2, respectively. Patent applicant Idemitsu Kosan Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1、金属マグネシウムとアルコールを活性化剤の存在下
で反応させてマグネシウムジアルコキシドを製造する方
法において、反応系に飽和炭化水素を存在させることを
特徴とするマグネシウムジアルコキシドの製造方法。
1. A method for producing magnesium dialkoxide by reacting magnesium metal and an alcohol in the presence of an activator, which is characterized in that a saturated hydrocarbon is present in the reaction system.
JP13983281A 1981-09-07 1981-09-07 Preparation of magnesium dialkoxide Granted JPS5841832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13983281A JPS5841832A (en) 1981-09-07 1981-09-07 Preparation of magnesium dialkoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13983281A JPS5841832A (en) 1981-09-07 1981-09-07 Preparation of magnesium dialkoxide

Publications (2)

Publication Number Publication Date
JPS5841832A true JPS5841832A (en) 1983-03-11
JPS634815B2 JPS634815B2 (en) 1988-02-01

Family

ID=15254526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13983281A Granted JPS5841832A (en) 1981-09-07 1981-09-07 Preparation of magnesium dialkoxide

Country Status (1)

Country Link
JP (1) JPS5841832A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251633A (en) * 1985-08-28 1987-03-06 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Manufacture of spherical magnesium alkoxide particle
JPS63194164U (en) * 1987-06-02 1988-12-14
EP0461268A1 (en) * 1989-12-28 1991-12-18 Idemitsu Petrochemical Co. Ltd. Process for producing olefin polymerization catalyst component and polyolefin
US6297188B1 (en) * 1998-10-27 2001-10-02 Degussa-Huels Aktiengesellschaft Magnesium ethoxide having a high coarse particle content, process for its preparation and its use
WO2004020480A1 (en) 2002-08-29 2004-03-11 Toho Catalyst Co., Ltd Solid catalyst component for olefin polymerization and catalyst
WO2006033512A1 (en) * 2004-09-23 2006-03-30 Samsung Total Petrochemicals Co., Ltd. Method of preparation of spherical support for olefin polymerization catalyst
WO2012060361A1 (en) 2010-11-04 2012-05-10 東邦チタニウム株式会社 Method for producing solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and olefin polymers
WO2013005463A1 (en) 2011-07-06 2013-01-10 東邦チタニウム株式会社 Solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer
WO2013027560A1 (en) 2011-08-25 2013-02-28 東邦チタニウム株式会社 Method for producing solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer
WO2013042400A1 (en) 2011-09-20 2013-03-28 東邦チタニウム株式会社 Solid catalyst component for polymerization of olefin, catalyst for polymerization of olefin, and method for producing olefin polymer
WO2014013916A1 (en) 2012-07-18 2014-01-23 東邦チタニウム株式会社 Method for producing solid catalyst component for use in polymerization of olefin, catalyst for use in polymerization of olefin, and method for producing olefin polymer
WO2014050809A1 (en) 2012-09-28 2014-04-03 東邦チタニウム株式会社 Solid catalyst component for polymerization of olefins, catalyst for polymerization of olefins, and method for producing olefin polymer
WO2014132806A1 (en) 2013-02-27 2014-09-04 東邦チタニウム株式会社 Production method for solid catalyst component for polymerizing olefins, catalyst for polymerizing olefins, and production method for polymerized olefins
WO2014132805A1 (en) 2013-02-27 2014-09-04 東邦チタニウム株式会社 Production method for solid catalyst component for polymerizing olefins, catalyst for polymerizing olefins, and production method for polymerized olefins
WO2014132777A1 (en) 2013-02-27 2014-09-04 東邦チタニウム株式会社 Solid catalyst component for polymerizing olefins, catalyst for polymerizing olefins, and production method for polymerized olefins
WO2014132759A1 (en) 2013-02-27 2014-09-04 東邦チタニウム株式会社 Method for producing propylene block copolymer
US10113014B1 (en) 2017-06-27 2018-10-30 Toho Titanium Co., Ltd. Method for producing solid catalyst component containing vanadium compound for olefin polymerization, olefin polymerization catalyst, and method for producing olefin polymer
WO2019005261A1 (en) 2017-06-27 2019-01-03 Exxonmobil Chemical Patents Inc. High stiffness polypropylene impact copolymer
WO2019005262A1 (en) 2017-06-27 2019-01-03 Exxonmobil Chemical Patents Inc. High impact polypropylene impact copolymer
US10246530B2 (en) 2017-06-27 2019-04-02 Toho Titanium Co., Ltd. Method for producing solid catalyst component for olefin polymerization, catalyst for olefin polymerization and a process for propylene polymerization
WO2019064967A1 (en) 2017-09-29 2019-04-04 東邦チタニウム株式会社 CATALYST FOR OLEFIN POLYMERIZATION, METHOD FOR PRODUCING CATALYST FOR OLEFIN POLYMERIZATION, METHOD FOR PRODUCING OLEFIN POLYMER, AND PROPYLENE-α-OLEFIN COPOLYMER
WO2019202800A1 (en) 2018-04-20 2019-10-24 東邦チタニウム株式会社 Olefin polymer and method for producing olefin polymer
WO2021105373A1 (en) 2019-11-29 2021-06-03 Thai Polyethylene Co., Ltd. Catalyst composition for the polymerization of olefins
WO2021220644A1 (en) 2020-04-28 2021-11-04 東邦チタニウム株式会社 Solid catalytic component for olefin polymerization and production method therefor, catalyst for olefin polymerization and production method therefor, and production method for olefin polymer
WO2022250034A1 (en) 2021-05-26 2022-12-01 東邦チタニウム株式会社 Olefin polymerization solid catalyst component, olefin polymerization catalyst, manufacturing method for olefin polymer, olefin polymer, manufacturing method for propylene-based block copolymer, and propylene-based block copolymer

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251633A (en) * 1985-08-28 1987-03-06 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ Manufacture of spherical magnesium alkoxide particle
JPS63194164U (en) * 1987-06-02 1988-12-14
EP0461268A1 (en) * 1989-12-28 1991-12-18 Idemitsu Petrochemical Co. Ltd. Process for producing olefin polymerization catalyst component and polyolefin
US6297188B1 (en) * 1998-10-27 2001-10-02 Degussa-Huels Aktiengesellschaft Magnesium ethoxide having a high coarse particle content, process for its preparation and its use
JP2010202667A (en) * 1998-10-27 2010-09-16 Evonik Degussa Gmbh Magnesium ethoxide having coarse particle content, method for producing the same and its use
WO2004020480A1 (en) 2002-08-29 2004-03-11 Toho Catalyst Co., Ltd Solid catalyst component for olefin polymerization and catalyst
WO2006033512A1 (en) * 2004-09-23 2006-03-30 Samsung Total Petrochemicals Co., Ltd. Method of preparation of spherical support for olefin polymerization catalyst
WO2012060361A1 (en) 2010-11-04 2012-05-10 東邦チタニウム株式会社 Method for producing solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and olefin polymers
WO2013005463A1 (en) 2011-07-06 2013-01-10 東邦チタニウム株式会社 Solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer
WO2013027560A1 (en) 2011-08-25 2013-02-28 東邦チタニウム株式会社 Method for producing solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer
WO2013042400A1 (en) 2011-09-20 2013-03-28 東邦チタニウム株式会社 Solid catalyst component for polymerization of olefin, catalyst for polymerization of olefin, and method for producing olefin polymer
WO2014013916A1 (en) 2012-07-18 2014-01-23 東邦チタニウム株式会社 Method for producing solid catalyst component for use in polymerization of olefin, catalyst for use in polymerization of olefin, and method for producing olefin polymer
WO2014050809A1 (en) 2012-09-28 2014-04-03 東邦チタニウム株式会社 Solid catalyst component for polymerization of olefins, catalyst for polymerization of olefins, and method for producing olefin polymer
WO2014132806A1 (en) 2013-02-27 2014-09-04 東邦チタニウム株式会社 Production method for solid catalyst component for polymerizing olefins, catalyst for polymerizing olefins, and production method for polymerized olefins
WO2014132805A1 (en) 2013-02-27 2014-09-04 東邦チタニウム株式会社 Production method for solid catalyst component for polymerizing olefins, catalyst for polymerizing olefins, and production method for polymerized olefins
WO2014132777A1 (en) 2013-02-27 2014-09-04 東邦チタニウム株式会社 Solid catalyst component for polymerizing olefins, catalyst for polymerizing olefins, and production method for polymerized olefins
WO2014132759A1 (en) 2013-02-27 2014-09-04 東邦チタニウム株式会社 Method for producing propylene block copolymer
US10113014B1 (en) 2017-06-27 2018-10-30 Toho Titanium Co., Ltd. Method for producing solid catalyst component containing vanadium compound for olefin polymerization, olefin polymerization catalyst, and method for producing olefin polymer
WO2019005261A1 (en) 2017-06-27 2019-01-03 Exxonmobil Chemical Patents Inc. High stiffness polypropylene impact copolymer
WO2019005262A1 (en) 2017-06-27 2019-01-03 Exxonmobil Chemical Patents Inc. High impact polypropylene impact copolymer
US10246530B2 (en) 2017-06-27 2019-04-02 Toho Titanium Co., Ltd. Method for producing solid catalyst component for olefin polymerization, catalyst for olefin polymerization and a process for propylene polymerization
WO2019064967A1 (en) 2017-09-29 2019-04-04 東邦チタニウム株式会社 CATALYST FOR OLEFIN POLYMERIZATION, METHOD FOR PRODUCING CATALYST FOR OLEFIN POLYMERIZATION, METHOD FOR PRODUCING OLEFIN POLYMER, AND PROPYLENE-α-OLEFIN COPOLYMER
WO2019202800A1 (en) 2018-04-20 2019-10-24 東邦チタニウム株式会社 Olefin polymer and method for producing olefin polymer
WO2021105373A1 (en) 2019-11-29 2021-06-03 Thai Polyethylene Co., Ltd. Catalyst composition for the polymerization of olefins
WO2021220644A1 (en) 2020-04-28 2021-11-04 東邦チタニウム株式会社 Solid catalytic component for olefin polymerization and production method therefor, catalyst for olefin polymerization and production method therefor, and production method for olefin polymer
WO2022250034A1 (en) 2021-05-26 2022-12-01 東邦チタニウム株式会社 Olefin polymerization solid catalyst component, olefin polymerization catalyst, manufacturing method for olefin polymer, olefin polymer, manufacturing method for propylene-based block copolymer, and propylene-based block copolymer

Also Published As

Publication number Publication date
JPS634815B2 (en) 1988-02-01

Similar Documents

Publication Publication Date Title
JPS5841832A (en) Preparation of magnesium dialkoxide
JP3474317B2 (en) Manufacturing method of magnesium hydride
IE48062B1 (en) Process for the production of magnesium hydrides
JPH0720898B2 (en) A method for synthesizing spherical, narrow particle size distribution magnesium alcoholates.
CN101027327A (en) Method of preparation of spherical support for olefin polymerization catalyst
US4187254A (en) Grignard reagents and processes for making them
JPS6059215B2 (en) Process for producing cyclohexene from benzene
US4832934A (en) Process for preparing halogen magnesium alanate and use thereof
JPH08281115A (en) Catalyst for vapor-phase intramolecular dealcoholic reaction of n-(1-alkyloxyalkyl)carbamates, and production of n-vinyl carbamates
Stack et al. Direct formation of highly functionalized allylic organocopper reagents from allylic chlorides and acetates
JPS6123798B2 (en)
JPS63166845A (en) Single phase carbonization of aromatic halaide to carboxylate
Roberts et al. Strategies for the Controlled Hydrostannylation of Alkynes
JPS6139955B2 (en)
Yan et al. Crystal structure of chiral binaphthol lanthanide complexes and their catalysis in asymmetric transfer hydrogenation of acetophenone
JPS5811408B2 (en) Production method of trichlorethylene
JP4083806B2 (en) Soluble magnesium catalyst for dihydroxy ester production
JPH02716A (en) Preparation of alcohol
US2960515A (en) Method and composition of preparing lead alkyl compounds
Mαkosza et al. A Mild and Simple Zinc-Promoted Barbier-Type Allylation of Aldehydes in Liquid Ammonia
US3041323A (en) Chemical process and product
Maruoka et al. Tetrahedron report number 239: Organoaluminums in organic synthesis
US2950304A (en) Preparation of organomercury compounds
SU555114A1 (en) Method for producing alkyl ferrocenes
JPH06128270A (en) Production of triisobutyl aluminum