JPS5836974B2 - Double structure infusion tube and its manufacturing method - Google Patents

Double structure infusion tube and its manufacturing method

Info

Publication number
JPS5836974B2
JPS5836974B2 JP49122234A JP12223474A JPS5836974B2 JP S5836974 B2 JPS5836974 B2 JP S5836974B2 JP 49122234 A JP49122234 A JP 49122234A JP 12223474 A JP12223474 A JP 12223474A JP S5836974 B2 JPS5836974 B2 JP S5836974B2
Authority
JP
Japan
Prior art keywords
tube
double
pvc
blood
infusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49122234A
Other languages
Japanese (ja)
Other versions
JPS5148593A (en
Inventor
孝一 高倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP49122234A priority Critical patent/JPS5836974B2/en
Publication of JPS5148593A publication Critical patent/JPS5148593A/en
Publication of JPS5836974B2 publication Critical patent/JPS5836974B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、二重構造をもつ医療用の輸液管ならびにその
製造方法、くわしくは異なる樹脂を同軸同時押出しする
ことによって得られる二重構造の医療用輸液管とその製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a medical infusion tube with a double structure and a method for manufacturing the same, in particular, a medical infusion tube with a double structure obtained by coaxial coextrusion of different resins and the manufacturing method thereof. Regarding the method.

従来、採血、輸血、輸液セット、人工賢臓血液回路等、
医療分野にふ・ける血液又は薬液の人体からの採取、輸
送あるいは人体への注入に用いられる輸液管の材料とし
て、軟質ポリ塩化ビニル組戒物(以下「塩ビ」と略称す
る)が使用されてきた。
Conventionally, blood collection, blood transfusion, infusion sets, artificial blood circuits, etc.
Soft polyvinyl chloride (hereinafter abbreviated as "PVC") is used as a material for infusion tubes used in the medical field to collect, transport, or inject blood or medicinal fluids into the human body. Ta.

それは、塩ビが透明性、柔軟性、原型復帰性、耐薬品性
、耐熱性、耐寒性など輸液管の材料として要求される性
能をいずれも高水準にそなえて居り、しかも価格が低廉
iので衛生面から好捷しい使いすて(「デイスポーザブ
ル」)製品にも好適だからである。
This is because PVC has all the properties required as a material for infusion tubes, such as transparency, flexibility, resiliency, chemical resistance, heat resistance, and cold resistance, all at a high level, and is also inexpensive and sanitary. This is because it is also suitable for disposable ("disposable") products.

しかし乍ら、塩ビをこのような用途に用いる場合、使用
中に可塑剤、安定剤等比較的低分子の物質が血液又は薬
液中に溶出することが認められ、それらの物質の毒性の
問題と絡んで塩ビの輸液管への適用が問題視される状態
になってきている。
However, when PVC is used for such purposes, it is recognized that relatively low-molecular substances such as plasticizers and stabilizers are eluted into blood or drug solutions during use, and the toxicity of these substances may be a problem. Due to this, the application of PVC to infusion pipes is becoming a problem.

さらに、塩ビの血液適合性が良好でないことが、最近に
いたって明らかになった。
Furthermore, it has recently become clear that PVC has poor blood compatibility.

すなわち塩ビ表面に赤血球が接触した場合にかなりの溶
血が起ることがわかり、1た抗凝血性もシリコーンやヒ
ドロキシアルキル(メタ)アクリレート系重合体に比べ
るとかなり低く、塩ビは医療用途には決して好1しい材
料ではないといえる。
In other words, it was found that considerable hemolysis occurs when red blood cells come into contact with the PVC surface, and its anticoagulant properties are also considerably lower than that of silicone or hydroxyalkyl (meth)acrylate polymers, making PVC never suitable for medical use. It can be said that it is not a desirable material.

本発明者は、このような現状に釦いて、上記のような心
配なしに安全に使用できる輸液管の開発を意図した。
In view of the current situation, the present inventor intended to develop an infusion tube that can be used safely without the above concerns.

その場合、上述のような各種要求性能に対する塩ビのす
ぐれた適合性を考えれば塩ビに全面的に置換わりうる材
料はそう簡単には考えられず、むしろ塩ビの長所をいか
した−it上記のような欠点を解消する方向の方が実現
性が高いと判断し、そのための手段を鋭意検討した結果
本発明に到達したものである。
In that case, considering the excellent suitability of PVC to the various performance requirements mentioned above, it is not so easy to think of a material that can completely replace PVC. We determined that it would be more practical to solve these drawbacks, and as a result of intensive study of means to achieve this goal, we arrived at the present invention.

本発明に従って、塩ビを外側に、輸液管内壁材料として
血液、体液あるいは薬液にふれたときに有害な物質を実
質的に溶出せず生体適合性のすぐれた熱可塑性高分子材
料を内側に、各々を同軸の円周上に同時に熔融押出しし
、両者いずれもが熔融状態である間に両者を一体的に結
合させ、1〜かるのち全体を冷却固化させることによっ
て、塩ビからなる外管と上記熱可塑性高分子材料からな
る内管とが一体的に結合されてなる二重構造輸液管が得
られる。
According to the present invention, PVC is used on the outside, and thermoplastic polymer material, which is biocompatible and does not substantially elute harmful substances when it comes in contact with blood, body fluids, or medical fluids, is used on the inside as the inner wall material of the infusion tube. are simultaneously melted and extruded on a coaxial circumference, and while both are in a molten state, they are integrally bonded, and the whole is cooled and solidified from 1 to 30 days later, thereby combining the outer tube made of PVC and the above-mentioned heat. A double structure infusion tube is obtained in which the inner tube made of a plastic polymer material is integrally joined.

本発明に使用する塩ビとしては、従来輸液管を製造する
のに用いられてきている軟質塩化ビニル組或物が主とし
て用いられる。
As the vinyl chloride used in the present invention, a soft vinyl chloride composition, which has been conventionally used for manufacturing infusion tubes, is mainly used.

しかしそれ以外の処方にもとづく軟質塩化ビニル組成物
をもちいてもよいし、あるいは又直接人体に接触しない
輸送用輸液管ないし軟質管相互もし〈は軟質管と機器等
の流路の接続部分に用いる輸液管の場合には硬質塩化ビ
ニル組或物を用いてもよい。
However, soft vinyl chloride compositions based on other formulations may be used, or they may be used for transporting infusion tubes or soft tubes that do not come into direct contact with the human body, or for connecting portions between soft tubes and channels of equipment, etc. In the case of an infusion tube, a rigid vinyl chloride composition may be used.

本発明にち−いては輸液管内壁材料として血液、体液あ
るいは薬液にふれたときに有害な物質を実質的に溶出せ
ず、為害性の少ない生体適合性の良好な熱可塑性高分子
材料であるエチレンー酢酸ビニル共重合物、熱可塑性ポ
リウレタン斗たはポリカーボネートを用いる。
According to the present invention, a thermoplastic polymer material that is used as an inner wall material for an infusion tube is a thermoplastic polymer material that does not substantially elute harmful substances when it comes into contact with blood, body fluids, or medicinal fluids, has low toxicity, and has good biocompatibility. Ethylene-vinyl acetate copolymer, thermoplastic polyurethane or polycarbonate is used.

これら二種の熱可塑性材料を同時に同軸の円周状に熔融
押出しするには、二つの押出し機を用いて各々の材料を
別々に可塑化し、それらを一つのダイに導いて押出す。
To melt-extrude these two types of thermoplastic materials simultaneously in a coaxial circumferential shape, each material is plasticized separately using two extruders, and then they are introduced into one die and extruded.

ダイは二つの材料の流路がその中で同軸円周状を保ち乍
ら合流1〜たのち単一の円周状開口部につながるもので
もよく、1た二つの別々の同軸円周状開口部をもつもの
でもよい。
The die may be such that the flow paths of the two materials remain coaxial circumferentially therein but merge into a single circumferential aperture, or may have one or two separate coaxial circumferential apertures. It may also have a part.

前者の場合には内管と外管との一体的な結合はダイ中で
行われ、後者にち−いては押出し後冷却する前にたとえ
ば内管内部に空気圧をかけること等によって内管と外管
とを密着させることにより内管と外管とが一体的に結合
される。
In the former case, the integral joining of the inner and outer tubes is carried out in a die, while in the latter case, the inner and outer tubes are joined together after extrusion and before cooling, for example by applying air pressure inside the inner tube. The inner tube and outer tube are integrally connected by bringing them into close contact with each other.

このようにして一体的に結合された管の冷却固化は、公
知のどのような手段を用いてもよいが、急冷するよりは
徐々に冷却する方が望寸しい。
Any known means may be used to cool and solidify the tubes integrally connected in this way, but gradual cooling is more desirable than rapid cooling.

こうして得られた二重構造輸液管は、輸液の対象となる
液が塩ビに直接ふれることがなく、塩ビからの有害物質
の溶出を心配せずに使用することができるとともに抗溶
血性、坑凝血性の改良がみられる。
The double-structured infusion tube thus obtained does not allow the liquid to be infused to come into direct contact with the PVC, allowing it to be used without worrying about the elution of harmful substances from the PVC, as well as having anti-hemolytic and anti-coagulant properties. Improvement in sex is seen.

しかも内管の厚みを適当に定めることにより管全体とし
ての各種機械的性能は塩ビ管と殆んど変らないようにす
ることができるので、実際に使用する場合に従来の塩ビ
輸液管の使い方をその捷1適用することができ、容易に
従来の塩ビ輸液管にとってかわることができる。
Moreover, by appropriately determining the thickness of the inner tube, the mechanical performance of the entire tube can be made to be almost the same as that of PVC pipes, so when actually used, it is possible to use conventional PVC infusion pipes. It can be easily applied to conventional PVC infusion tubes.

以下に実施例を示す。Examples are shown below.

実施例 1 従来輸液管を製造するのに用いられているポリ塩化ビニ
ル軟質組成物(フタル酸エステル系可塑剤を樹脂重量の
55重量係含有)を外管用材料、熱可塑性ポリウレタン
(商標名工ラストラン)を内管用材料として、外管厚み
0. 8 mm、内管厚み0.1問管内径5胴とkるよ
うに単一の円周状開口部をもったダイを通じて二重構造
管を押出した。
Example 1 A polyvinyl chloride soft composition (containing a phthalate ester plasticizer by weight of 55% of the resin weight) conventionally used to manufacture infusion tubes was used as an outer tube material and thermoplastic polyurethane (trademark Meiko Lastran). is used as the material for the inner tube, and the outer tube thickness is 0. A double-walled tube was extruded through a die with a single circumferential opening so that the inner tube thickness was 0.1 mm and the inner tube diameter was 5 mm.

このとき、押出機ブレーカープレート位置の温度は塩ビ
160℃、ポリウレタン180℃に設定した。
At this time, the temperature at the extruder breaker plate was set at 160°C for vinyl chloride and 180°C for polyurethane.

こうして得られた二重構造管な、8Cmへたたったとこ
ろを幅約2cmのクランブでつかんだ1000回直角折
り曲げを繰り返したが内管と外管との間に剥離は起らな
かった。
The thus obtained double-structure tube was bent 1,000 times at right angles by gripping it with a clamp having a width of about 2 cm at the point where it reached 8 cm, but no separation occurred between the inner tube and the outer tube.

1た、該二重構造管に水及び生理的食塩水を満し常温に
二昼夜放置したが、内管と外管との接着は強固で剥離は
みられなかった。
1. The double-walled tube was filled with water and physiological saline and left at room temperature for two days and nights, but the adhesion between the inner tube and outer tube was strong and no peeling was observed.

次に押出し後10日間常温放置した二重構造管10mに
蒸溜水200mlを満して両端を閉じ70℃の恒温水槽
中に2時間浸漬して抽出を行なった。
Next, a 10 m double-structured tube that had been left at room temperature for 10 days after extrusion was filled with 200 ml of distilled water, both ends of which were closed, and the tube was immersed in a constant temperature water bath at 70° C. for 2 hours to perform extraction.

得られた抽出液についてフタル酸エステルDOP量をガ
スクロマト法で分析したところ0.070TIgであっ
た。
The amount of phthalate DOP in the obtained extract was analyzed by gas chromatography and was found to be 0.070 TIg.

一方対照として在来の塩ビ管について同様の実験を行な
ったところDOP溶出量は0.25m1であり、明らか
に二重構造管ではDOPの溶出が抑えられていることが
わかる。
On the other hand, when a similar experiment was conducted using a conventional PVC pipe as a control, the amount of DOP eluted was 0.25 ml, which clearly shows that the double-structured pipe suppresses the elution of DOP.

実施例 2 実施例1と同様の方法で塩ビとエチレンー酢酸ヒニル共
重合体(商標名エバフレックス、酢酸ビニル含量25重
量%)とを同時押出ししてエバフレックス内管を有する
二重構造管を得た。
Example 2 In the same manner as in Example 1, vinyl chloride and ethylene-hinyl acetate copolymer (trade name: Evaflex, vinyl acetate content 25% by weight) were co-extruded to obtain a double-structured tube having an Evaflex inner tube. Ta.

この管の外管と内管との接着性は乾,湿時とも良好であ
った。
The adhesion between the outer tube and the inner tube of this tube was good both in dry and wet conditions.

次に該二重構造管及び同内径の塩ビ管に、各々10Pの
蒸溜水を満たして両端を閉じ、1時間水浴中で煮沸させ
て抽出を行なった。
Next, the double structure tube and the PVC tube with the same inner diameter were each filled with 10P of distilled water, both ends were closed, and the tubes were boiled in a water bath for 1 hour to perform extraction.

得られた抽出液について過マンガン酸カリウム還元性物
質の定量を行なったところ、二重構造管及び対照塩ビ管
に対する0.0IN一過マンガン酸カリウム消費量(抽
出液12当り)は各/Z O. 1 3 ml , 0
.3 0mlであった。
When the amount of potassium permanganate reducing substances was quantified in the obtained extract, the consumption amount of 0.0 IN potassium permanganate (per 12 extracts) for the double-walled tube and the control PVC tube was 1/ZO. .. 1 3 ml, 0
.. The volume was 30 ml.

エバフレックス内管を導入することにより明らかに過マ
ンガン酸カリウム還元性物質の溶出量が低下した。
By introducing the Evaflex inner tube, the elution amount of potassium permanganate reducing substances was clearly reduced.

実施例 3 実施例2で得た塩ビーエバフレックス二重構造管につい
て管内面での溶血性テストを以下の方法で行なった。
Example 3 A hemolytic test on the inner surface of the tube was conducted using the following method for the double-walled tube obtained in Example 2.

犬のACD血液から遠心分離法で血球戒分を取り出し、
リン酸等張緩衝液(NaCl 7.6 5 ?、Na2
HPO4−1 2 H20 2.9 3 ?、NaH2
PO4・2H200.21f、ブドウ糖5?を水に溶か
して1tとする)を加えて10容積係に稀釈し3mlを
被検体チューブに入れて37℃の恒温水槽で87時間静
置後、軽く振り−iぜてから遠心分離して上澄を取り出
し100倍に稀釈して、赤血球の破壊で水中に溶け出し
たヘモグロビンの相対量を紫外吸収スペクトル(414
mμの吸光度A414)より測定した。
Blood cells are extracted from dog ACD blood by centrifugation,
Phosphate isotonic buffer (NaCl 7.6 5?, Na2
HPO4-1 2 H20 2.9 3? , NaH2
PO4・2H200.21f, glucose 5? (dissolved in water to make 1 t), diluted to 10 volumes, put 3 ml into the test tube, let it stand for 87 hours in a thermostatic water bath at 37°C, shake it gently, centrifuged it, and poured it up. The clear sample was taken out, diluted 100 times, and the relative amount of hemoglobin dissolved in water due to the destruction of red blood cells was measured using an ultraviolet absorption spectrum (414
The absorbance was measured using mμ absorbance A414).

該二重構造管管及びいくつかの比較試料(内径4〜5間
)について得られた結果を下表に示す。
The results obtained for the double-walled tube and several comparative samples (inner diameter between 4 and 5) are shown in the table below.

本発明のエバフレックスを内管とする二重構造管は塩ビ
単独の管に比べて管内壁面に釦げる血液の溶血性がかな
り少く、輸血管として従来品に比べてすぐれていること
がわかる。
It can be seen that the double-walled tube of the present invention whose inner tube is made of Evaflex has considerably less hemolysis of blood that splatters on the inner wall of the tube than a tube made only of PVC, and is superior to conventional products as a transfusion tube. .

次に塩ビーエバフレックス二重管の抗凝血性をリー・ホ
ワイト・テスト法を参考にして市販の医用塩ビ管及びシ
リコーン管と比較評価した。
Next, the anticoagulant properties of the Chloride B-Evaflex double tube were compared and evaluated with commercially available medical PVC tubes and silicone tubes using the Lee-White test method as reference.

塩ビーエバフレックス二重講造の抗凝血性は対照塩ビ管
にくらべてすぐれてかり、比較に用いた医用シリコーン
管と同程度であった。
The anticoagulant properties of the Chloride B-Evaflex double-coated tube were superior to that of the control PVC tube, and were comparable to that of the medical silicone tube used for comparison.

実施例 4 ポリ塩化ビニル軟質組戒物(フタル酸エステル系可塑剤
を樹脂重量の40重量係含有)を外管用材料とし、熱可
塑性ポリカーボネート(商標名ユービロン)を内管用材
料として外管厚み0.8mm、内管厚み0. 1 wn
、管内径5問となる様に単一の円周状開口部をもったダ
イを通じて二重構造管を押出した。
Example 4 Polyvinyl chloride soft composite material (containing phthalate ester plasticizer by 40% of resin weight) was used as the material for the outer tube, thermoplastic polycarbonate (trade name: Ubilon) was used as the material for the inner tube, and the outer tube thickness was 0. 8mm, inner tube thickness 0. 1 wn
The double-walled tube was extruded through a die with a single circumferential opening so that the inner diameter of the tube was 5 mm.

この時の樹脂温度は塩ビ200℃、ポリカーボネート2
40℃に設定した。
The resin temperature at this time is PVC 200℃, polycarbonate 2
The temperature was set at 40°C.

こうして得られた二重構造管の外管と内管との接着性は
乾,湿時とも良好であった。
The adhesion between the outer tube and the inner tube of the double-walled tube thus obtained was good both in dry and wet conditions.

次に該二重構造管及び対照として同内径の塩ビ単独管に
、各々IOPの蒸溜水を満たして両端を閉じ、一時間水
浴中で煮沸させて抽出を行なった。
Next, the double-walled tube and a single PVC tube with the same inner diameter as a control were each filled with distilled water of IOP, both ends were closed, and the tubes were boiled in a water bath for one hour to perform extraction.

得られた抽出液について過マンガン酸カリウム還元性物
質の定量を行なったところ、二重構造管及び対照塩ビ管
に対する0.0IN一過マンガン酸カリウム消費量(抽
出液1i当り)は各々o.osmg、0.28mlであ
った。
When the potassium permanganate reducing substance was quantified in the obtained extract, the amount of potassium permanganate consumed at 0.0 IN (per 1 i of extract) for the double-walled tube and the control PVC tube was 0.000. osmg, 0.28 ml.

ポリカーボネート内管の導入により明らかに過マンガン
酸カリウム還元性物質の溶出量が低下した。
The introduction of the polycarbonate inner tube clearly reduced the amount of potassium permanganate reducing substances eluted.

Claims (1)

【特許請求の範囲】 1 ポリ塩化ビニルを主とする組成物からなる外管と、
エチレンー酢酸ビニル共重合物、熱可塑性ポリウレタン
1たはポリカーボネートからなる内管とが一体的に結合
されてなる血液、体液あるいは薬液にふれたときに為害
性が少なく生体適合性がすぐれている二重構造輸液管。 2 ポリ塩化ビニルを主とする組成物を外側に、エチレ
ンー酢酸ビニル共重合物、熱可塑性ポリウレタン捷たは
ポリカーボネートを内側に、各々を同軸の円周状に同時
に熔融押出しし、両者いずれもが熔融状態である間に両
者を一体的に結合させ、しかるのち全体を冷却固化させ
ることを特徴とする、血液、体液あるいは薬液にふれた
とき為害性が少なく生体適合性がすぐれている二重構造
輸液管の製造方法。
[Claims] 1. An outer tube made of a composition mainly composed of polyvinyl chloride;
A double tube that is made of an inner tube made of ethylene-vinyl acetate copolymer, thermoplastic polyurethane, or polycarbonate and is less harmful when it comes in contact with blood, body fluids, or medical fluids and has excellent biocompatibility. Structure infusion tube. 2. Melt and extrude the composition mainly composed of polyvinyl chloride on the outside and the ethylene-vinyl acetate copolymer, thermoplastic polyurethane, or polycarbonate on the inside at the same time in a coaxial circumferential shape, so that both are melt-extruded. A double-structured infusion solution that is less harmful when it comes into contact with blood, body fluids, or medicinal fluids and has excellent biocompatibility, and is characterized by integrally binding the two components while the fluid is still in the state, and then cooling and solidifying the entire body. Method of manufacturing tubes.
JP49122234A 1974-10-23 1974-10-23 Double structure infusion tube and its manufacturing method Expired JPS5836974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49122234A JPS5836974B2 (en) 1974-10-23 1974-10-23 Double structure infusion tube and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49122234A JPS5836974B2 (en) 1974-10-23 1974-10-23 Double structure infusion tube and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS5148593A JPS5148593A (en) 1976-04-26
JPS5836974B2 true JPS5836974B2 (en) 1983-08-12

Family

ID=14830882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49122234A Expired JPS5836974B2 (en) 1974-10-23 1974-10-23 Double structure infusion tube and its manufacturing method

Country Status (1)

Country Link
JP (1) JPS5836974B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565601U (en) * 1979-06-25 1981-01-19
JPS5846961A (en) * 1981-09-16 1983-03-18 株式会社バイオ・エンジニアリング・ラボラトリ−ズ Blood compatible polyvinyl chloride and production thereof
JPS5843449U (en) * 1981-09-16 1983-03-23 株式会社バイオ・エンジニアリング・ラボラトリ−ズ Improved blood flow path
JPS59166161A (en) * 1983-03-11 1984-09-19 大洋産業株式会社 Production of medical bag-shaped product
JPH0246903Y2 (en) * 1985-01-23 1990-12-11
DE58903472D1 (en) * 1989-08-09 1993-03-18 Siemens Ag IMPLANTABLE INJECTION BODY.

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS448679Y1 (en) * 1965-10-07 1969-04-08

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS448679Y1 (en) * 1965-10-07 1969-04-08

Also Published As

Publication number Publication date
JPS5148593A (en) 1976-04-26

Similar Documents

Publication Publication Date Title
AU646348B2 (en) Plastic container with anti-hemolytic effect
US4898573A (en) Blood components collector unit
US5100401A (en) Plastic composition with anti-hemolytic effect
US5167657A (en) Plastic composition with anti-hemolytic effect
JP3236937B2 (en) Materials for medical grade products and products made therefrom
CH617856A5 (en)
US5302299A (en) Biological semi-fluid processing assembly
JPS5836974B2 (en) Double structure infusion tube and its manufacturing method
JP3310675B2 (en) Antithrombotic drug release device used to prevent blood coagulation in extracorporeal circulation of blood
EP0054221B1 (en) Multiple blood bag system made of plastic substantially free of blood extractible plasticizers
JPS5890513A (en) Method and apparatus for fractional collection of blood component
JP2711736B2 (en) Multiple blood bags
US3204632A (en) Intravenous valve device
JPS62155867A (en) Catheter for stay in blood vessel
JPH03112562A (en) Blood bag
JPS6158192B2 (en)
JP2757190B2 (en) Platelet storage container and platelet storage method
JPS5967960A (en) Blood preserving container
EP0286163B1 (en) Tubular apparatuses of plastics, for bio-medical use
AU713648B2 (en) Blood component preservation container and multi-linkage container system
AU625741C (en) Plastic composition with anti-hemolytic effect
JPH04210061A (en) Platelet preserving container
CA1306698C (en) Hemolysis depressant, and medical resin composition, medical implement and blood preserving liquid using the hemolysis depressant
JPS6036059A (en) Serum sampling apparatus
JPH05305137A (en) Bag link body