JPS5835321A - Oxygen controlling system for multi-fuel combustion - Google Patents

Oxygen controlling system for multi-fuel combustion

Info

Publication number
JPS5835321A
JPS5835321A JP56134184A JP13418481A JPS5835321A JP S5835321 A JPS5835321 A JP S5835321A JP 56134184 A JP56134184 A JP 56134184A JP 13418481 A JP13418481 A JP 13418481A JP S5835321 A JPS5835321 A JP S5835321A
Authority
JP
Japan
Prior art keywords
fuel
oxygen
residual oxygen
mixing ratio
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56134184A
Other languages
Japanese (ja)
Inventor
Gi Hisayoshi
久芳 議
Hideo Ito
伊藤 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56134184A priority Critical patent/JPS5835321A/en
Publication of JPS5835321A publication Critical patent/JPS5835321A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/08Controlling two or more different types of fuel simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2239/00Fuels
    • F23N2239/04Gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2239/00Fuels
    • F23N2239/06Liquid fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

PURPOSE:To effectively control the rate of residual oxygen to get an ideal rate, by finding the rate of residual oxygen to the mixing ratio of both fuel from a compensating coefficient to the mixing ratio of both fuel and a suitability value in the aspect of residual oxygen of both fuel, in an industrial combustion furnace in which two kinds of fuel are used. CONSTITUTION:When heavy oil and gas are mixed and burnt together, the flow rates of both oil and gas are detected by detectors 3 and 4, respectively, and a calorific value is compensated by compensators 6 and 7. Then, the mixing ratio of heavy oil to gas is found by a calculator 8, and a compensating coefficient to the mixing ratio is calculated by a function calculator 9. Both outputs from compensators 6 and 7 are added up by an adder 11, and a suitability value in the aspect of residual oxygen to the added value is calculated by a function calculator 10. Next, the rate of residual oxygen to the mixing ratio of both fuel is calculated by a multiplier 12 by multiplying the outputs from both function calculators 9 and 10, and the result is used as a setting value to a controller 14 to calculate the rate of oxygen. An air-fuel controller 16 is controlled by an output from the controller 14, by the intermediary of an arithmetic circuit 15 to compensate an air-fuel ratio.

Description

【発明の詳細な説明】 本発明は工業用燃焼炉の混焼制御における酸素制御装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxygen control device for co-combustion control in an industrial combustion furnace.

省エネルギ一対策として工業燃焼炉の専焼制御における
酸素制御は一応の確立が見られるが、例えばガスと重油
の混焼焚きになった場合、第1図に示す様に各燃料によ
り理想残留酸素量が違う為、現在は結局残留酸素量の高
い重油の方のカーブを使って酸素制御演算器に設定値と
して使用している。この為、見かけ上の燃焼空気が過剰
気味となり、エネルギーロスを生じているのが現状であ
る。
Oxygen control in the exclusive combustion control of industrial combustion furnaces has been established to some extent as an energy-saving measure, but for example, in the case of mixed combustion of gas and heavy oil, the ideal amount of residual oxygen is determined by each fuel, as shown in Figure 1. Since they are different, currently the curve for heavy oil, which has a higher amount of residual oxygen, is used as the set value for the oxygen control calculator. For this reason, the current situation is that the apparent combustion air tends to be excessive, resulting in energy loss.

これを防ぐ為、一定混合比に燃料を制約して運転する方
法も考えられるが、自由度が無く、運転に不便であるこ
とが実状である。
In order to prevent this, a method of operating the engine by restricting the fuel to a constant mixture ratio may be considered, but the reality is that there is no degree of freedom and the operation is inconvenient.

本発明の目的は、上記欠点を無くシ、燃料A。The object of the present invention is to eliminate the above-mentioned drawbacks and to provide fuel A.

Bの混合比を自由に選択でき、かつその混合比に対して
、理想残留酸素量制御が負荷の変化に対応できる制御装
置を提供することにある。
It is an object of the present invention to provide a control device in which the mixing ratio of B can be freely selected, and the ideal residual oxygen amount control can respond to changes in load with respect to the mixing ratio.

重油とガスの混焼を例にとれば、負荷に対して理想残留
酸素量は重油とガスでは違う為混合比によりこの特性を
描けば良いことになる。しかし、混合比と負荷と酸素量
との3次元の関係になる為、このカーフ1は、無限の組
合せになり、制御装置としては不向きである、従って、
どちらか一方の特性を基本に使ってそのカーブに対して
、混合比と低減率との関係を負荷に応じてあらかじめ計
算又は、実験により求めておけば、単なる乗算として、
ある混合割合に対しての理想残留酸素量を求めることが
可能となる。燃料の組合せ、種類には無関係にこの関係
は成立する。
Taking the co-firing of heavy oil and gas as an example, since the ideal amount of residual oxygen for the load is different for heavy oil and gas, it is sufficient to depict this characteristic based on the mixing ratio. However, since it is a three-dimensional relationship between mixing ratio, load, and oxygen amount, this calf 1 has an infinite number of combinations, making it unsuitable as a control device.
If one of the characteristics is used as a basis and the relationship between the mixing ratio and the reduction rate is calculated or experimentally determined in advance according to the load for that curve, then it can be simply multiplied.
It becomes possible to determine the ideal amount of residual oxygen for a certain mixing ratio. This relationship holds true regardless of the combination or type of fuel.

第2図は本発明の混焼焚きの制御回路の一例を示す。こ
の例では重油とガスの混燃焚きを例に取っである。燃料
となる重油とガスはそれぞれの検出器3,4で検出され
、それぞれのカロリーの違いを、係数器6,7により補
正され、同一単位に換算された値Fo、Faは、演算器
8、加算器11にて演算される。演算器8では、混合比
を求める為、−例として下記式が使用される。
FIG. 2 shows an example of a control circuit for co-firing according to the present invention. This example uses mixed combustion of heavy oil and gas. The heavy oil and gas used as fuel are detected by respective detectors 3 and 4, and the differences in their respective calories are corrected by coefficient units 6 and 7, and the values Fo and Fa converted to the same unit are calculated by calculators 8, It is calculated by the adder 11. In order to obtain the mixture ratio, the computing unit 8 uses the following formula as an example.

この式は、分子にFaを用いても何ら差しつかえない、
重油主体に焚く時は、分子にFO% ガス主体に焚く時
は分子にFcを用いた方が扱い易い。
In this formula, there is no problem even if Fa is used in the molecule,
When burning mainly heavy oil, it is easier to use FO% in the molecule. When burning mainly gas, it is easier to use Fc in the molecule.

これはαの値が1に近い方が、理想残留酸素量のカーブ
がそれぞれの専焼の場合のカーブ、そのもので使える為
である。(1)式で重油専焼の場合はα=1となりガス
専焼の場合α==0となる。
This is because the closer the value of α is to 1, the more the ideal residual oxygen amount curve can be used as the curve for each dedicated combustion. In equation (1), α=1 in case of heavy oil-only combustion, and α==0 in case of gas-only combustion.

一方関数演算器10には、重油専焼時の負荷に対しての
理想残留酸素量カーブを記憶させておき、このカーブよ
り負荷入力に対して酸素量を求める。
On the other hand, the function calculator 10 stores an ideal residual oxygen amount curve for the load during heavy oil exclusive combustion, and calculates the oxygen amount for the load input from this curve.

本図の例では、αに対してμは一定値として求めている
が、第3図で解る様に負荷に対してのカーブは重油とガ
スでは常に一定化とならない。これを厳密に補正する為
には、乗算器12に第3図の負荷に対しての補正係数γ
をさらに入力する必要がある。これらの演算結果は酸素
演算調節計14ヘカスケード設定されその出力は酸素濃
度になる様に空燃比を補正演算する演算回路15へ入力
される。
In the example shown in this figure, μ is determined as a constant value with respect to α, but as can be seen from Figure 3, the curve against load is not always constant for heavy oil and gas. In order to accurately correct this, the multiplier 12 must be given a correction coefficient γ for the load shown in FIG.
need to be entered further. The results of these calculations are cascaded to an oxygen calculation controller 14, and the output thereof is input to a calculation circuit 15 that corrects and calculates the air-fuel ratio so as to achieve the oxygen concentration.

上記構成により、炉における混焼焚の酸素制御が燃料の
種類混合比に関係なく、自動的に最適状態に保たれ省エ
ネルギーに寄与できる。
With the above configuration, the oxygen control for co-firing in the furnace is automatically maintained in an optimal state regardless of the fuel type/mixing ratio, contributing to energy saving.

尚、第2図の関数演算器10は、燃料流量に対しての酸
素量の関数演算器を例に取っているが、ボイラーであれ
ば、負荷のスチーム量が使用され、鉄鋼の加熱炉、均熱
炉であれば、温度調節計の出力信号が横軸に使用される
Note that the function calculator 10 in FIG. 2 takes as an example a function calculator for the amount of oxygen with respect to the fuel flow rate; however, in the case of a boiler, the load steam amount is used, and in the case of a steel heating furnace, In the case of a soaking furnace, the output signal of the temperature controller is used on the horizontal axis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる混焼用酸素制御装置を示す構成図
、第2図は負荷と理想残留酸素量との関係を示す図、第
3図は燃料に対する燃料種類に対しての理想残留酸素量
の比を示す関数演算器である。 1・・・酸素検出器、2・・・温度検出器、3.4・・
・検出  τ器、5・・・開平演算器、6.7・・・係
数器、訃・・演算器、9,1o・・・関数演算器、11
・・・加算器、12・・・乗算器、13・・・バイアス
補正器、14・・・酸素演算調節計、15・・・空燃比
補正演算回路、16・・・燃料空気調節計、17・・・
燃料重油調節計、18・・・燃第1図 □ 貫417(燃料) 第2図 第3図
Fig. 1 is a configuration diagram showing the oxygen control device for co-combustion according to the present invention, Fig. 2 is a diagram showing the relationship between load and ideal residual oxygen amount, and Fig. 3 is a diagram showing the ideal residual oxygen amount for each fuel type. It is a functional calculator that shows the ratio of quantities. 1...Oxygen detector, 2...Temperature detector, 3.4...
・Detection τ unit, 5...Square root operator, 6.7...Coefficient unit, 舆...Arithmetic unit, 9, 1o...Function operator, 11
. . . Adder, 12 . . . Multiplier, 13 . ...
Fuel oil regulator, 18... Fuel Figure 1 □ Kan 417 (Fuel) Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、燃料Aと燃料Bの各流量を測定し、かつそれりの燃
料に対するカロリー補正をした後に燃料Aと燃料Bの混
合比を演算し、その混合比に対する補正係数を関数演算
器により算出し、この補正係数と、一方燃料Aと燃料B
のカロリー補正後の総和に対しての残留酸素量の適性値
を別の関数演算器により算出し、この値と前述の補正係
数との積によシ燃料Aと燃料Bとの混合比に対する残留
酸素量を算出し、その値を酸素制御調節計の設定値とし
たことを特徴とする混焼用酸素制御装置。
1. After measuring the flow rate of each fuel A and fuel B and correcting the calories for each fuel, calculate the mixture ratio of fuel A and fuel B, and calculate the correction coefficient for the mixture ratio using a functional calculator. , this correction coefficient, and on the other hand fuel A and fuel B
Calculate the appropriate value of the residual oxygen amount for the total sum after calorie correction using another functional calculator, and multiply this value by the correction coefficient mentioned above to determine the residual oxygen amount for the mixture ratio of fuel A and fuel B. An oxygen control device for co-firing, characterized in that the amount of oxygen is calculated and the calculated value is used as a set value of an oxygen control controller.
JP56134184A 1981-08-28 1981-08-28 Oxygen controlling system for multi-fuel combustion Pending JPS5835321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56134184A JPS5835321A (en) 1981-08-28 1981-08-28 Oxygen controlling system for multi-fuel combustion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56134184A JPS5835321A (en) 1981-08-28 1981-08-28 Oxygen controlling system for multi-fuel combustion

Publications (1)

Publication Number Publication Date
JPS5835321A true JPS5835321A (en) 1983-03-02

Family

ID=15122396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56134184A Pending JPS5835321A (en) 1981-08-28 1981-08-28 Oxygen controlling system for multi-fuel combustion

Country Status (1)

Country Link
JP (1) JPS5835321A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2847659A1 (en) * 2002-11-25 2004-05-28 Air Liquide Combustion procedure for use in industrial site e.g. chemical factory, involves adding oxygen to air in order to avail source of fuel with thirty percent oxygen volume, and making oxidant to react with fuel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2847659A1 (en) * 2002-11-25 2004-05-28 Air Liquide Combustion procedure for use in industrial site e.g. chemical factory, involves adding oxygen to air in order to avail source of fuel with thirty percent oxygen volume, and making oxidant to react with fuel

Similar Documents

Publication Publication Date Title
GB2141267A (en) Method of controlling combustion
JPS5835321A (en) Oxygen controlling system for multi-fuel combustion
JP2988960B2 (en) Boiler air supply device
JPS648243B2 (en)
JPS6025688B2 (en) Combustion furnace air-fuel ratio control device
JPH07280256A (en) In-furnace pressure controlling method for burning furnace
JPH025222Y2 (en)
JPS62206320A (en) Air-fuel ratio control device of furnace
JP2014214942A (en) Apparatus and method for controlling combustion of boiler
JPH01150742A (en) Control device for hot water feeder
JPS60207827A (en) Controlling unit for controlling gaseous mixture combustion
JPS60259823A (en) Optimum burning control of induction type radiant tube burner furnace
JPH028213B2 (en)
JPS604724A (en) Combustion method by oxygen-enriched air for combustion
SU1698583A1 (en) Automatic control system of boiler total air flow rate
JPH0438966B2 (en)
JPS5813809B2 (en) Combustion control method using low excess air
JP2797943B2 (en) Mixed gas calorie control device
SU1213314A1 (en) Method of controlling delivery of air into furnace of steam generator
JPH1194205A (en) Equipment for control corresponding to multiple kind of coal
KR20220141094A (en) Apparatus, method and computer readable medium of calculating inputted air amount for reducing nitrogen monoxide and carbon monoxide
JP2947677B2 (en) Exhaust gas concentration control device
JPS59100309A (en) Air-fuel ratio control device for multi-fuel combustion
JPS5845411A (en) Combustion control system
JP2577443B2 (en) Combustion control device