JPS5834654A - Logical integration circuit - Google Patents

Logical integration circuit

Info

Publication number
JPS5834654A
JPS5834654A JP56132405A JP13240581A JPS5834654A JP S5834654 A JPS5834654 A JP S5834654A JP 56132405 A JP56132405 A JP 56132405A JP 13240581 A JP13240581 A JP 13240581A JP S5834654 A JPS5834654 A JP S5834654A
Authority
JP
Japan
Prior art keywords
logical
output
circuit
input
counter cnt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56132405A
Other languages
Japanese (ja)
Inventor
Takashi Nara
奈良 隆
Hiroshi Miyake
博 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56132405A priority Critical patent/JPS5834654A/en
Publication of JPS5834654A publication Critical patent/JPS5834654A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/62Performing operations exclusively by counting total number of pulses ; Multiplication, division or derived operations using combined denominational and incremental processing by counters, i.e. without column shift

Abstract

PURPOSE:To simplify a circuit, by constituting a logical integration circuit for detecting a call and an end, which outputs a ''significant'' state, by use of an exclusive logical gate, when logical ''1'' or ''0'' has been continued exceeding a prescribed time. CONSTITUTION:When an octal counter CNT counts 8 clock pulses CK continuously, it generates an overflow pulse OVF, but when an input signal from a terminal IN and a signal of an output OUT of a flip-flop FF2 are on the same logical level, an output of an exclusive logical gate EOR becomes logical ''0'', and logical ''0'' is supplied to a terminal CE and R of the octal counter CNT, therefore, said counter CNT continuously holds its counting value at ''0''. In case when input pulse length applied to the input terminal IN is a call or end signal which continues exceeding an 8 piece portion of the clock pulse CK, however, the flip-flop FF2 is set (or reset) by the output OVF of the counter CNT, and to the terminal OUT, a significant pulse of logical ''1'' is outputted.

Description

【発明の詳細な説明】 木登明け、論理1またけ0がN俵続いたとき出力を1ま
たは0とする論理積分回路に関し、使用する素子数會少
なくしようとするもので々2る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a logic integrator circuit that outputs 1 or 0 when logic 1s and 0s continue for N times, and attempts to reduce the number of elements used.

2値データが過渡期に不安定になるのに対処する、或い
は伝送途中で混入したノイズ全受信側で除去するために
、論理積分回路が用いられる。例えばPCM電話交換シ
ステムでは通話路にパルス符号変調−された音声信号が
伝送されるのは勿論、発呼、終話信号なども伝送され、
これらは交換機の走査機構で監視され、論理1で発呼、
論理0で終話などとされる。このとき雑音混入などによ
り一時的に論理OKなることがあるが、直ちKそれに応
動すると、通話中でも終話と判断して通話路を断つこと
になる。従りて論理1あるいは0がある時間続いて、走
査系で貫えはサンプリングして得た信号が所定数連続し
て1または0のとき始めて発呼または終話とすれば上記
のような不都合は回避でき、か\る用途に論理積分回路
は有効である。第1図にその一例を示す。同図において
SRはNビ、トのシリアルイン、バランルアウドのシフ
トレジスタで、クロ、クパルスCKによって入力(NR
Z信号)INf:順次サンプリングして取り込む。A!
はN入力のアンド回路で、り7)1/ジスタ8Rの内容
が全てH(ハイ)レベルのときにのみ出力ax’lrH
にする。絢もN入力のアンド回路であるが、入力端にイ
ンバータを備えるのでシフトレジスタSRの内容が全て
L(ロー)レベルのときにのみ出力的をHにする。FF
Iけセットリセ。
A logic integration circuit is used to cope with the instability of binary data during a transition period, or to remove all noise mixed in during transmission on the receiving side. For example, in a PCM telephone switching system, not only pulse code modulated voice signals are transmitted on the communication path, but also call origination and call termination signals are transmitted.
These are monitored by the switch's scanning mechanism, and a logic 1 causes a call to be sent.
A logical 0 is considered to be the end of the episode. At this time, the logic may temporarily become OK due to noise, etc., but if you respond immediately, the call will be judged to be over and the call path will be cut off. Therefore, if a logic 1 or 0 continues for a certain period of time, and the signal obtained by sampling in the scanning system is 1 or 0 consecutively for a predetermined number of times, then a call is initiated or terminated, the above-mentioned inconvenience occurs. can be avoided, and the logical integration circuit is effective for such applications. An example is shown in FIG. In the figure, SR is an N-bit, serial-in, balan-out shift register, and input (NR
Z signal) INf: Sequentially sampled and captured. A!
is an AND circuit with N inputs, and outputs ax'lrH only when the contents of register 7)1/8R are all at H (high) level.
Make it. Aya is also an N-input AND circuit, but since it has an inverter at the input end, the output becomes H only when the contents of the shift register SR are all at L (low) level. FF
Ike set reset.

ト型の7リツプ70ツブで、アンド回路A!の出力a1
がHになるとセットさil、%Q出力0UTtHKする
。逆にアンド回路A!の出力的がHになるとリセットさ
れ、該出力OU’l、をLICする。第2図はN=8と
した各部の信号波形図で、入力INが8ビ、ト連続して
同一レベルを維持した場合のみ出力OUTがそのレベル
に反転する様子が示されている。つまり、入力INが3
ビ、トだけしかHでない部分PI或いは1ビツトだけL
K落ちた部分PI等は除去される。
And circuit A with 7 lips and 70 tubes! output a1 of
When becomes H, set il, %Q output 0UTtHK. On the other hand, AND circuit A! When the output signal becomes H, it is reset and the output OU'l is LIC'd. FIG. 2 is a signal waveform diagram of each part with N=8, and shows how the output OUT is inverted to that level only when the input IN maintains the same level for 8 consecutive bits. In other words, the input IN is 3
Part PI where only bits and bits are high or only one bit is low
The portion PI etc. where K has fallen are removed.

しかしながら、第1図の回路ではクロ、りN周期分の積
分時間を持たせるためにはNビ、部分のシフトレジスタ
SRが必要である上、2個のN入カゲー) As + 
Amが必要であるので素子数が多く、素子レベルで見た
回路構成が複雑になる欠点がある。
However, in the circuit shown in Fig. 1, in order to have an integration time for N cycles, a shift register SR of N bits is required, and two N inputs (As +
Since Am is required, the number of elements is large, and the circuit configuration at the element level becomes complicated.

本発明はこの点を改善して同種の論理積分機能を有する
回路を共用して全体の構成素子数を低減するものである
。本発明の論理積分回路は、クロ、クパルスを計数する
N進カウンタと、該カウンタからのオーバフローパルス
を受ける毎に出方信号を反転するフリップフロ、プと、
入力信号およ散出力で該カウンタをリセットシ、該回路
の不一致出力を前記クロ、クバルスとして該カウンタに
入力するようにしてなることを特徴とするが、以下図示
の実施例を参照しながらこれを詳細に説明する。
The present invention improves this point and reduces the overall number of components by sharing circuits having the same type of logic integration function. The logic integration circuit of the present invention includes an N-ary counter that counts black and white pulses, and a flip-flop that inverts an output signal every time it receives an overflow pulse from the counter.
The counter is reset by an input signal and a distributed output, and the mismatched output of the circuit is inputted to the counter as the clock signal and the clock signal. This will be explained below with reference to the illustrated embodiment. Explain in detail.

第3図は本発明の一実施例で、EORは排他的論理和回
路、CNTはN進カウンタ、FF、はJ−にタイプの7
リツプフロツプである。このフリップフロ、プFIFI
、け前段のカウンタCNTからオーバフローパルスOv
Fがりは、クパルス端子cpに与えられる都度出力Q′
ft:反転する。この出力Qが出力信号OUTで、これ
は入力信号INと共に排他的論理和回路FORの2人力
となる。N進カウンタCNTけ計数値がNになる毎にオ
ーバーフロー パルスOVF 全発生する。例えばN=
8とすればカウンタCNTけ3ビ、トのバイナリカウン
タで構成され、そしてクロックパルスCK金連続して8
個計数したときにオーバーフローパルスOVFを発生す
る(第4図参照、以下同様)。但し、該カウンタCNT
はカウントイネーブル端子CEがH入力を受けている期
間だけクロ、りCKの計数が可能であり、カウント途中
でカウントリセット端子RがHvレベルなれば計数値を
0に復帰させる。このカウンタを制御するのが排他的論
理和回路EORで、入力INと出力OUTが一致してい
る期間はリセット端子RIH(EORの出力レベルはL
で、これが端子R前段で反転されたもの)として計数値
を0に保つ。逆に入力INと出力OUTが不一致になる
とEOR出力(cg大入力けHとなりカウンタCNTけ
計数を開始する。そして計数値がN=8にナルトオーバ
ーフローパルスOvF全発生する。この結果フリップフ
ロ、プFF、が反転するので、出力OUTは入力INと
同一レベルになり、IOR出力がLとなってカウンタC
NTけリセットされる。
FIG. 3 shows an embodiment of the present invention, in which EOR is an exclusive OR circuit, CNT is an N-ary counter, and FF is a J-type 7
It's a lip flop. This flip-flop, FIFI
, the overflow pulse Ov from the counter CNT in the previous stage
F is the output Q' each time it is applied to the coupler terminal cp.
ft: Invert. This output Q is the output signal OUT, which, together with the input signal IN, becomes the dual power of the exclusive OR circuit FOR. Every time the count value of the N-ary counter CNT reaches N, an overflow pulse OVF is generated. For example, N=
If it is 8, the counter CNT is composed of a binary counter of 3 bits and
When counting, an overflow pulse OVF is generated (see FIG. 4, the same applies hereinafter). However, the counter CNT
is capable of counting clocks and CKs only while the count enable terminal CE is receiving H input, and returns the count value to 0 if the count reset terminal R reaches Hv level during counting. This counter is controlled by the exclusive OR circuit EOR, and during the period when the input IN and output OUT match, the reset terminal RIH (the output level of EOR is L
This is inverted at the stage before terminal R), and the count value is kept at 0. Conversely, when the input IN and output OUT do not match, the EOR output (cg large input becomes H) and the counter CNT starts counting.Then, when the count value N=8, a full overflow pulse OvF is generated.As a result, the flip-flop, , is inverted, the output OUT becomes the same level as the input IN, the IOR output becomes L, and the counter C
NT is reset.

この論理積分回路によれば、第2図と同時に入力INで
Hvレベルら5ビ、トだけ続く部分P1ではカウンタC
NTの計数値が「3」までしか上昇し危いのでパルスO
VFは発生しない。また1ビ、トだけLに落ちる部分P
2ではカウンタCNTの計数値は「1」になるだけでリ
セットされるのでし、N=8としても第1図の場合は8
ビツトのシフトレジスタSRが必要であるのに対し、本
例では3ビ、トのカウンタCNTで済む。またゲート類
も第1図では8人力のゲートAしA!が2個必要である
のに対し、本例では2人力のゲー)FJOR1個で済む
。このように本発明の論理積分回路は構成素子数が少な
くてよいが、この傾向はN値が増大するにつれ顕著とな
る。例えばN=50とすれば第1図のシフトレジスタS
Rは50ビ、ト必要となるが、本発明のカウンタは6ビ
ツトで充分(N=64までカバーできる)である。
According to this logic integrator circuit, at the same time as shown in FIG. 2, at the input IN, the counter C is
Pulse O because the NT count value only rises to ``3'' and it is dangerous.
VF does not occur. Also, the part P where only 1 bit and G fall to L
2, the count value of the counter CNT is reset only when it becomes "1", and even if N=8, in the case of Fig. 1, it is 8.
While a bit shift register SR is required, a 3-bit counter CNT is sufficient in this example. Also, the gates in Figure 1 are eight-man powered gates A and A! In this example, only one FJOR is required for a two-person game). As described above, the logic integration circuit of the present invention may require a small number of constituent elements, but this tendency becomes more noticeable as the N value increases. For example, if N=50, the shift register S in Figure 1
Although R requires 50 bits, 6 bits is sufficient for the counter of the present invention (can cover up to N=64).

第1図の回路と比べて第5図の回路が簡素化される理由
の1つはFORゲートの使用にある。即ち第1図では論
理1が続く場合と論理0が続く場合をゲー) AI F
 AIで別個に検出するが、第3図では現在の状態とは
異なる状態という論理で検出するので、検出手段を論理
1,0に対し共用できる。
One of the reasons for the simplicity of the circuit of FIG. 5 compared to the circuit of FIG. 1 is the use of FOR gates. In other words, in Figure 1, the case where logic 1 continues and the case where logic 0 continues are game) AI F
Although they are detected separately by AI, in FIG. 3 they are detected using a logic that is a different state from the current state, so the detection means can be shared for logics 1 and 0.

ま九シフトVジスタの代如にカウンタを使用するので、
素子数を°Nから2n=Nなるnビ、トに低減できる。
Since a counter is used as a substitute for the M9 shift V register,
The number of elements can be reduced from °N to n bits, where 2n=N.

なおフリップフロ、プFF、はD型でもよく、この場合
は出力を反転させて入カヘ入れカウンタCNTのオーバ
フローパルスをクロ、クトシて入力すればよい(これは
実はJ−KFFに他ならないが)。
Note that the flip-flop and FF may be of D type, and in this case, the output is inverted and the overflow pulse of the counter CNT is input to the input circuit by crossing and turning (although this is actually nothing but a J-KFF).

以上述べたように本発明によれば論理積分回路の構成素
子数を低減することができ、積分時間(N値)が大であ
る場合に%に有効である。
As described above, according to the present invention, it is possible to reduce the number of constituent elements of a logic integration circuit, and this invention is effective to a large extent when the integration time (N value) is large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のシフトVジスタ方式の論理積分回路を示
す回路図、第2図はその各部信号波形図、第3図は本発
明の一実施例を示す回路図、第4図はその各部信号波形
図である。 図中、CNTはN進カウンタ、FF意はJ−にタイプの
フリップフロ、プ、EORは排他的論理和回路である。 出願人 富士通株式会社 代理人弁理士  青  柳     稔第1図 R 第2図 第3図 第4図
Fig. 1 is a circuit diagram showing a conventional shift V register type logic integration circuit, Fig. 2 is a signal waveform diagram of each part thereof, Fig. 3 is a circuit diagram showing an embodiment of the present invention, and Fig. 4 is a circuit diagram of each part thereof. It is a signal waveform diagram. In the figure, CNT is an N-ary counter, FF is a J-type flip-flop, and EOR is an exclusive OR circuit. Applicant Fujitsu Ltd. Representative Patent Attorney Minoru Aoyagi Figure 1 R Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] クロ、クパルス全計数するN進カウンタと、該カウンタ
からのオーバフローパルスを受ける毎に出力信号を反転
するフリップフロップと、入力信号および該フリップフ
ロップからの出力信号を2人力とする排他的論理和回路
とを備え、そして該回路の一致出力で該カラyりをリセ
ットシ、該回路の不一致出力を前記クロ、クツ(ルスと
して紋カウンタに入力す若ようにしてなること全特徴と
する、入力信号中の峻理1または0がN個続いたとき出
力を1ま友は0とする論理積分回路。
An N-ary counter that counts all black and white pulses, a flip-flop that inverts the output signal every time it receives an overflow pulse from the counter, and an exclusive OR circuit that uses two people to process the input signal and the output signal from the flip-flop. and the matching output of the circuit resets the color, and the mismatching output of the circuit is inputted to the counter as the black and white counters, among the input signals. A logical integrator circuit whose output is 1 when N 1's or 0's continue and 0 otherwise.
JP56132405A 1981-08-24 1981-08-24 Logical integration circuit Pending JPS5834654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56132405A JPS5834654A (en) 1981-08-24 1981-08-24 Logical integration circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56132405A JPS5834654A (en) 1981-08-24 1981-08-24 Logical integration circuit

Publications (1)

Publication Number Publication Date
JPS5834654A true JPS5834654A (en) 1983-03-01

Family

ID=15080619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56132405A Pending JPS5834654A (en) 1981-08-24 1981-08-24 Logical integration circuit

Country Status (1)

Country Link
JP (1) JPS5834654A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62239742A (en) * 1986-04-11 1987-10-20 Sony Corp Data processing circuit
JPS63168236U (en) * 1987-04-21 1988-11-01
JPH0272746A (en) * 1988-09-08 1990-03-13 Fujitsu Ltd Erroneous pulse guard system
JPH0459655U (en) * 1990-09-27 1992-05-21

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62239742A (en) * 1986-04-11 1987-10-20 Sony Corp Data processing circuit
JPS63168236U (en) * 1987-04-21 1988-11-01
JPH0272746A (en) * 1988-09-08 1990-03-13 Fujitsu Ltd Erroneous pulse guard system
JPH0459655U (en) * 1990-09-27 1992-05-21

Similar Documents

Publication Publication Date Title
US3979746A (en) High-speed Manchester code demodulator
US4786823A (en) Noise pulse suppressing circuit in digital system
JPS61244186A (en) Circuit device for steeping rim of color signal changing section
JPS5834654A (en) Logical integration circuit
US4905257A (en) Manchester decoder using gated delay line oscillator
US4837721A (en) Digital divider with integer and fractional division capability
US5053729A (en) Pulse-width modulator
JPS5828786B2 (en) A device that converts a digital video signal into a pulse width modulated or pulse number modulated brightness control signal
US4630031A (en) Pulse-width discriminating A/D converter
KR910001070B1 (en) Ring-counter circuit of three gata type
JP3016094B2 (en) Double integral type AD converter
SU1197143A1 (en) Device for selecting frame sync pulses
JPS623517A (en) Cyclic type digital filter
JPS6142895B2 (en)
SU1350839A1 (en) Phase triggering device
JPS63222519A (en) B8zs/b6zs coding circuit
SU1195450A2 (en) Code converter
SU1119180A1 (en) Decimal counter
SU692091A1 (en) Reversible n-digit pulse counter
JPS6016147B2 (en) Pulse transmission method
GB1577688A (en) Data transmission
SU1085016A1 (en) Colour synchronization device
KR950012837B1 (en) The circuit of transition matching luminance and chroma signal
JPS59119926A (en) Counter circuit
JPS63220617A (en) Noise removing circuit