JPS5830171A - Compound semiconductor element and forming method of its electrode - Google Patents

Compound semiconductor element and forming method of its electrode

Info

Publication number
JPS5830171A
JPS5830171A JP56127332A JP12733281A JPS5830171A JP S5830171 A JPS5830171 A JP S5830171A JP 56127332 A JP56127332 A JP 56127332A JP 12733281 A JP12733281 A JP 12733281A JP S5830171 A JPS5830171 A JP S5830171A
Authority
JP
Japan
Prior art keywords
layer
electrode
compound semiconductor
metal
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56127332A
Other languages
Japanese (ja)
Inventor
Masaaki Sakata
雅昭 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP56127332A priority Critical patent/JPS5830171A/en
Publication of JPS5830171A publication Critical patent/JPS5830171A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier

Abstract

PURPOSE:To obtain the electrode with good reproducibility, when the electrode is provided in the semiconductor including Al, by forming the three layer structure of the electrode comprising a Ti layer which is provided on the substrate, a layer including Sn and an ohmic contacting metal, and an Au layer. CONSTITUTION:On the P type GaAlAs substrate 1, a P type GaAlAs region 2 and an N type GaAlAs region 3 are laminated and grown by a liquid phase epitaxial method. At first, the Ti layer 7, which is to become a protecting film at the time of etching is deposited on the region 3. Then the metal layer 8 comprising Sn, Ge, and Ni which can obtain the excellent ohmic contact with respect to the region 3, and the Au layer 9 which is readily bonded are laminated and deposited on the Ti layer 7. Thereafter, a light sensitive film 10 having a fine precise pattern is provided on the layer 9. The exposed part of the layer 9 and the layer 8 are etched away by using a mixed liquid of KI-I2. Then the layer 7 is etched by using an HF series solution, the film 10 is removed, and the three layer structure comprising the layers 7, 8, and 9 is obtained. Thereafter, an electrode 5 such as Au-Zn is deposited on the back surface of the substrate 1, and the heat treatment is performed for the entire element.

Description

【発明の詳細な説明】 本発明はアルミニウムを含む化合物半導体素子およびこ
の素子の電極゛形成法に係り、とくにktを含む化金物
半導体素子の選択的な領域に電極を形成する方法Kll
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compound semiconductor device containing aluminum and a method for forming an electrode of the device, and particularly relates to a method for forming an electrode in a selective region of a compound semiconductor device containing kt.
It is something to do.

周知のように発光ダイオード、トランジスタ、レーザー
、光検出器などの素子には、GaAs、Ga AjAs
、GaAsPs GaP或いはCd8 、 Zn8 な
どの化合物半導体材料が使用されており、その半導体材
料の応用分野も増々広がってきているのが現状である。
As is well known, elements such as light emitting diodes, transistors, lasers, and photodetectors are made of GaAs, GaAjAs, etc.
, GaAsPs, GaP, Cd8, Zn8, and other compound semiconductor materials are currently being used, and the field of application of these semiconductor materials is currently expanding.

これらの化合物半導体材料は、単元素の半導体材料であ
る81などに比し、物理的性質が素子製作工程て複雑に
変化するため、電極形成の方法を含めて素子製作工程も
単純ではなく高度の技術を要する場合が多す、とくにG
aAtA−に代表されるよりなklを含む化合物半導体
材料においては、半導体表面が不安定で製作工程中の熱
処理や化学処理の段階で蜜化しやすく、オーミック接触
のための電極形成が行ないにくいなどの欠点を有してい
た。従って、他の化合物半導体の場合もそうであるが、
とくにAtを含む化合物半導体材料を用い九素子の電極
形成には種々の材料、技術、方法が開発されている。し
かしながらなお工程が複雑であるとか、性能、歩留りな
どに問題点が多く残っているのが現状である。この従来
法の電極形成法の欠点、問題点をGaAtA−発光ダイ
オードの電極形成法を例にとって具体的に説明する。
Compared to single-element semiconductor materials such as 81, the physical properties of these compound semiconductor materials change in a complicated manner during the device manufacturing process, so the device manufacturing process, including the method of electrode formation, is not simple and requires sophisticated techniques. Technical skills are often required, especially G.
Compound semiconductor materials containing more than Kl, such as aAtA-, have many problems, such as the semiconductor surface being unstable and easily condensing during heat treatment and chemical treatment during the manufacturing process, making it difficult to form electrodes for ohmic contact. It had drawbacks. Therefore, as is the case with other compound semiconductors,
In particular, various materials, techniques, and methods have been developed for forming nine-element electrodes using compound semiconductor materials containing At. However, the current situation is that the process is complicated, and many problems remain in terms of performance, yield, etc. The disadvantages and problems of this conventional method of forming electrodes will be specifically explained using a method of forming electrodes of a GaAtA-light emitting diode as an example.

第1図(a)は従来のGaAtAs発光ダイオードの断
面構造の一例である。この図においては、ダイオードは
p li GaAjAs結晶基板1の上に液相成長法な
どで得られたplIGaAtAs領域2、n型GaAt
As領斌6が積層されたpng合となっている。素子の
電極としては裏面の全面にオーミック電極5が、また表
面にはStO,などの絶縁膜6に所定の形状、大きさを
もつ窓があけられ選択的にオーミック電極4が形成され
ている。
FIG. 1(a) shows an example of the cross-sectional structure of a conventional GaAtAs light emitting diode. In this figure, the diode consists of a pliGaAtAs region 2 obtained by liquid phase growth on a pli GaAjAs crystal substrate 1, an n-type GaAt
It is a png combination in which the As layer 6 is stacked. As electrodes of the element, ohmic electrodes 5 are formed on the entire back surface, and ohmic electrodes 4 are selectively formed on the front surface by opening windows with predetermined shapes and sizes in an insulating film 6 such as StO.

このような電極構造は通常水のような方法によって得ら
れる。即ち、pn接合が形成され九基板の全面にs t
 O,などの絶縁膜6をCV D (chemical
vapor d@posltion )法などで付着被
覆する。
Such electrode structures are usually obtained by aqueous methods. That is, a pn junction is formed on the entire surface of the nine substrates.
The insulating film 6 such as O, etc. is coated with CVD (chemical
Adhesive coating is performed using the vapor d@position method or the like.

しかる後、この絶縁膜6に感光膜を塗布し通常の写真蝕
刻法によって所定の形状、サイズをもつ電極形成用の窓
をあける。その後電極用金属を真空蒸着法などにより全
面蒸着し、再び感光膜塗布、写真蝕刻法によって電極領
域4をマスクして化学エツチングなどの処理によって館
1図(a)の断面構造を得る。裏面のオーミック電極は
全面に形成されるので上記のような工程は不要である。
Thereafter, a photoresist film is applied to the insulating film 6, and a window for forming an electrode having a predetermined shape and size is formed by a conventional photolithography method. Thereafter, electrode metal is deposited on the entire surface by vacuum evaporation or the like, and the electrode area 4 is masked again by photoresist coating, photolithography, and chemical etching to obtain the cross-sectional structure shown in FIG. 1(a). Since the ohmic electrode on the back surface is formed on the entire surface, the above steps are not necessary.

これらに電極のGaAtAs結晶への付着力、安定性、
オー建ツク接触性を高めるためO熱処理工程がつけ加わ
るのが普通である。
These include the adhesion of the electrode to the GaAtAs crystal, stability,
An O heat treatment step is usually added to improve the contact with the oak.

このような従来の電極形成法における欠点、問題点を列
挙すると次のような4のである。
The following four drawbacks and problems in the conventional electrode forming method are listed below.

イ)  81(hなどの絶縁膜6はCVD法などの熱的
過和での形成によるので、熱的歪および結晶との物理的
性質の違いがかなシあることによる応力歪が結晶との境
界面に発生し中すい。とくに窓周辺部においては結晶、
絶縁物、オーミック電極金属とが互いに接触することと
なシ複艙な歪が発生する。これらの不必要な歪は、とく
に歪に対して敏感な化合物半導体結晶からなる素子の特
性に悪影譬を及ぼし、歩留に、鳥命勢の信頼性が低下し
てい良。
b) Since the insulating film 6 such as 81 (h) is formed by thermal overloading such as CVD method, thermal strain and stress strain due to the slight difference in physical properties from the crystal may occur at the boundary with the crystal. Crystals occur on the surface, especially around the window.
When the insulator and the ohmic electrode metal come into contact with each other, multiple strains occur. These unnecessary strains adversely affect the characteristics of devices made of compound semiconductor crystals, which are particularly sensitive to strain, leading to a decline in yield and reliability.

帽 選択的なオーミック電極形成のための絶縁膜の窓あ
けは薬品を用いた化学的処理によってなされる。絶縁膜
を溶解し結晶を溶解しない薬品であったとしてもAtを
含む結晶の場合には薬品に触れた窓の中の結晶表頁は活
性化されやすく、また酸化されやすい性質があるため、
後のオーミック電極が付着形成されても接触抵抗が大き
くなったりバラついたシしやすく、良好なオーミック接
触がとれにくいといった結果を生じていた。
Opening of the insulating film for selective ohmic electrode formation is done by chemical treatment using chemicals. Even if the chemical dissolves the insulating film but does not dissolve the crystal, in the case of a crystal containing At, the surface of the crystal inside the window that comes into contact with the chemical is likely to be activated and easily oxidized.
Even if a later ohmic electrode is deposited and formed, the contact resistance tends to increase or vary, and it is difficult to make good ohmic contact.

ハ)この化合物半導体素子が発光ダイオードであった場
合上部が光取出し面となる。従って発光面積に対する電
極面積の占める割合は効率などダイオードの発光特性を
左右するものとなるから電極面積は可能な限シ小さくか
つ形状、サイズの精度の良いことが要求される。これを
いい換えれば、電極4の窓からはみだし絶縁膜6の上を
覆っている領域部分は不必要というより問題となる領域
である。写真蝕刻法によってこのはみだし部分を極力な
くすようなマスクバター/を用い化学エツチングをした
場合、マスク合せの精度およびずれ、サイドエツチング
現象、貴意性などが関係しノ(ターンがずれエツチング
液が窓の端部の方で結晶に達する場合が往々にして存在
していた。電極(たとえば金)などの化学エツチング液
FiAtを含む化合物半導体なども容JIKエツチング
するため素子特性や歩留りが低下する場合が多かった。
c) If this compound semiconductor element is a light emitting diode, the upper part becomes the light extraction surface. Therefore, since the ratio of the electrode area to the light emitting area affects the light emitting characteristics of the diode such as efficiency, the electrode area is required to be as small as possible and to have good precision in shape and size. In other words, the region protruding from the window of the electrode 4 and covering the insulating film 6 is not unnecessary but rather a problematic region. If chemical etching is performed using a mask butter that minimizes this protruding part by photo-etching, the accuracy and misalignment of the mask alignment, side etching phenomenon, etching quality, etc. will be affected (the turn may be misaligned and the etching liquid may leak onto the window). There were cases in which the crystals were often reached at the edges. Compound semiconductors containing the chemical etching solution FiAt, such as electrodes (for example, gold), were also subjected to JIK etching, which often resulted in a decrease in device characteristics and yield. Ta.

二)素子上部の電極形成のための工程数は、上記した種
々の欠点ないし問題点があるにも拘らず、比較的多いの
で素子のコスト高につながっていた。
2) Despite the various drawbacks and problems mentioned above, the number of steps required to form electrodes on the upper part of the device is relatively large, leading to an increase in the cost of the device.

また別な方法として次に示すような簡単な方法で発光ダ
イオードの電極を形成する方法本ある。
As another method, there is a method book for forming electrodes of a light emitting diode using a simple method as shown below.

第1図(b)がそれKよって得られ九発光ダイオードの
断面構造例である。各領域1,2,5.4は第1図(a
)における各領域1〜4と同じである。第1図(b)に
示した構造においては形状のみを考えれば絶縁膜がなく
発光ダイオードとしては好都合な構造であゐ。これを得
るためには、上面に電極金属を全面に付着させ写真蝕刻
法および化学エツチングによって電極4を残そうとして
も前述したように電極金属のエツチング液はAtを含む
化合物半導体をもエツチングしてしまうので用いられず
、金属マスクを用いる。すなわち、Moなどの金属薄板
に所定の形状の孔をあけ九ものをマスクとし、これを半
導体基板に密着させた状態でその上部から電極用金属を
真空蒸着法などの方法で蒸着させ絡1図fb)のような
構造の素子を得るのである◎この方法は原理的には簡単
なのであるが、やはや次のような欠点が存在していた。
FIG. 1(b) is an example of the cross-sectional structure of a nine-light emitting diode obtained by this method. Each area 1, 2, 5.4 is shown in Figure 1 (a
) is the same as each area 1 to 4 in . Considering only the shape, the structure shown in FIG. 1(b) has no insulating film and is a convenient structure for a light emitting diode. In order to obtain this, the electrode metal is deposited on the entire surface of the upper surface and the electrode 4 is left by photolithography or chemical etching, but as mentioned above, the etching solution for the electrode metal also etches the compound semiconductor containing At. It is not used because it is stored away, so a metal mask is used. That is, a hole of a predetermined shape is made in a thin metal plate such as Mo, and the mask is used as a mask, and with this in close contact with the semiconductor substrate, electrode metal is deposited from above using a method such as vacuum evaporation to form a wire. fb) This method is simple in principle, but it has the following drawbacks.

金属板マスクにおける孔の加工には限界があって微細な
形状、サイズの孔は作れず、従って写真蝕刻法などでは
可能な精度の良い形状、サイズをもつ電極は得られない
のである。またマスクを半導体基板に密着させるといっ
ても重ね合わせるわけであるから、どうしてもある程度
の間隙を生じ、しかも蒸着時におけるマスクの熱膨張、
振動等があって、蒸着した電極領域4端部においてずれ
やぼけが生じやすく電極の形状、サイズの再現性に乏し
くなるのである。
There is a limit to the processing of holes in a metal plate mask, and holes with minute shapes and sizes cannot be made, so it is not possible to obtain electrodes with the precise shapes and sizes that are possible with photolithographic methods. Furthermore, even though the mask is brought into close contact with the semiconductor substrate, since it is overlapped, a certain amount of gap inevitably occurs, and furthermore, thermal expansion of the mask during vapor deposition,
Due to vibrations and the like, shifts and blurring tend to occur at the ends of the 4 deposited electrode regions, resulting in poor reproducibility of the shape and size of the electrodes.

この上うに従来の電極形成法には種々の問題点かあ抄、
素子製作上の性能、精度、歩留り、再現性に大きな障害
となっていた。
Moreover, there are various problems with conventional electrode formation methods.
This has been a major hindrance to performance, precision, yield, and reproducibility in device manufacturing.

本発明は上記の諸欠点、問題点を解決或いは回避するこ
とによって、htを含む化合物半導体素子およびこの半
導体素子に精縦良くかつ再現性の良い電極を選択的に形
成する方法を提供することを目的とするものである@ 以下、本発明の一実施例について第2図を参照して説明
する。
The present invention aims to solve or avoid the above-mentioned drawbacks and problems by providing a compound semiconductor device containing HT and a method for selectively forming electrodes on this semiconductor device with precision and good reproducibility. Hereinafter, one embodiment of the present invention will be described with reference to FIG. 2.

第2図(a) 〜(f)は本発明に従ったGmAIAa
発光ダイオードの電極形成のための工程例である。
FIGS. 2(a) to (f) show GmAIAa according to the present invention.
This is an example of a process for forming electrodes of a light emitting diode.

(1)  第2図(1)において、pmGaAtAs結
晶基板1の上に液相成長法などによってp !Is! 
GaAtAs領域2およびn ill GaAtA−領
域3が形成されたpm接合を有する化合物半導体基板が
示されている。
(1) In FIG. 2 (1), p! Is!
A compound semiconductor substrate is shown having a pm junction in which a GaAtAs region 2 and a nill GaAtA-region 3 are formed.

(b)  この半導体基板0nfliG*kLkmIA
域6の全面に電極となる金属を真空蒸着法或いはスノく
ツタリングなどの方法によって付着させる(第2図(b
)参照)。この電極は以下の構造に形成する。すなわち
、まず最初に、付着されn fjIGaAtA−領域6
に接することになる第1層7の金属はT1である。
(b) This semiconductor substrate 0nfliG*kLkmIA
A metal that will become an electrode is deposited on the entire surface of area 6 by a method such as vacuum evaporation or snok vine ring (see Fig. 2(b)).
)reference). This electrode is formed in the following structure. That is, first of all, the deposited n fjIGaAtA-region 6
The metal of the first layer 7 that will be in contact with is T1.

このTi層は後述する最初の選択的な化学エツチングの
際の保護膜として用いられるものであシ、境界面におけ
る歪の発生を抑えかつ次の第2層8の金属によるオーミ
ック形成の効果を発揮させるためにも可能なAUシ薄い
ことが望ましい。非常に良好な結果を得曳厚みとしては
数百えであり、数百λ〜数千1でもよい゛が1 am以
上の厚みでは問題となることが判つ九。
This Ti layer is used as a protective film during the first selective chemical etching described later, and it suppresses the occurrence of strain at the interface and exhibits the effect of ohmic formation by the metal of the next second layer 8. In order to make the AU thinner, it is desirable to make the AU thinner. Very good results were obtained when the thickness of the web was several hundred, and it was found that a thickness of several hundred λ to several thousand 1 was sufficient, but it became a problem at a thickness of 1 am or more.

この第1層7の上に8m%Gの、N1からなる金属層を
第2層8として全面に付着させる。この第2層8を形成
する金属層の中にはロ型GaムtAs領賦3に対しオー
イック接触が得られるG・、8mが含まれており、これ
が後の熱感塩過程で第1層7およびn型GmAtAs表
面に拡散して良好なオーズック接触を形成させる役目を
果たすのである。この目的が達成できる金属であればG
・、SRでなく別の金属であってもよい。BnはT1層
と同様に後述する最初の選択的な化学エツチングの保護
膜でもあシ、次の選択的カ化学エツチングに4別の作用
を有しているので本発明には必要な金属である。
On this first layer 7, a metal layer of 8 m% G and N1 is deposited as a second layer 8 over the entire surface. The metal layer forming the second layer 8 contains G.,8m which can make an ohic contact with the R-type Gam tAs region 3. 7 and n-type GmAtAs to form a good Ozuc contact. If the metal can achieve this purpose, G
・It may be made of another metal instead of SR. Like the T1 layer, Bn is also a protective film for the first selective chemical etching described later, and has four other functions for the next selective chemical etching, so it is a necessary metal in the present invention. .

この第2層8は8ws、G@sNlの混合金属層であっ
てもよいが、T1層Kllする備の層が811層であり
その上KG・、N1層が形成されているといった2層構
造であればなお更よい。
This second layer 8 may be a mixed metal layer of 8ws, G@sNl, but it has a two-layer structure in which the preparatory layer for the T1 layer Kll is the 811 layer, and the KG and N1 layers are formed thereon. Even better if so.

この第2層8の厚さも前述した理由から4薄いことが望
ましく、良好な結果を得る厚みは数百Aであり、数千λ
で(可能であるが1−以上の厚みでは問題となる。
The thickness of this second layer 8 is also desirably 4 thin for the reasons mentioned above, and the thickness for obtaining good results is several hundred amps and several thousand λ.
(It is possible, but it becomes a problem if the thickness is 1 or more.

最後に、形成される第3層9′に用いられる金属はムU
である。Auを用いる理由はリード線のボンディング等
後のリード線取出しを容易にするためである。このA+
a層の厚みは数pmあれば充分である。
Finally, the metal used for the third layer 9' to be formed is
It is. The reason why Au is used is to facilitate lead wire removal after lead wire bonding and the like. This A+
It is sufficient for the thickness of the a-layer to be several pm.

このように本発明においては、それぞれ作用効果の異な
る金属薄層が3層に積層された電極金属の構成になって
いる。しかしながらその3層はそれぞれ薄膜であること
や後で熱処理することなどの理由から、実際Ka互いの
境界面は明確ではないと考えられる。この3層は、蒸着
源を費えるとかスパッタリングの放電電極を考えるなど
の方法をとれば同一容器内で同一工程で得ることができ
る。
As described above, in the present invention, the electrode metal has a structure in which three thin metal layers each having a different function and effect are laminated. However, because each of the three layers is a thin film and is heat-treated later, it is considered that the boundaries between the three layers are not clearly defined. These three layers can be obtained in the same container and in the same process by using a method such as using a vapor deposition source or using a sputtering discharge electrode.

(cl  この3層の金属が付着された基板に感光膜′
frI!!布し通常の写真蝕刻法によシ所定の形状、サ
イズをもつ感光膜を残す。金属マスクとは異なシ写真蝕
刻法なので極めて微細で精密なパターンをもつ感光膜1
0が形成される(第2図(@)参照)。
(cl) A photoresist film' is applied to the substrate on which these three layers of metal are attached.
frI! ! Then, a photoresist film with a predetermined shape and size is left behind using conventional photolithography. The photoresist film 1 has an extremely fine and precise pattern because it uses a photographic etching method that is different from metal masks.
0 is formed (see FIG. 2 (@)).

(d)次にK1−1層混合液などの化学エツチング液に
上記の工程を終えた基板を浸漬する。この最初の選択的
な化学エツチングによシ感光膜10のある部分を残して
エツチングが進む、この混合液は^UおよびG・、Nl
をもエツチングするがs 8n。
(d) Next, the substrate that has undergone the above steps is immersed in a chemical etching solution such as a K1-1 layer mixture. In this first selective chemical etching, etching proceeds while leaving a certain portion of the photoresist film 10. This mixed solution contains ^U, G, and Nl.
It is also etched, but s 8n.

Tl tiエツチングし得ないので、第1層7tたはそ
の近傍にエツチングが達した時にエツチングが停止する
ことになる。
Since Tl ti cannot be etched, the etching will stop when it reaches the first layer 7t or its vicinity.

このように最初の選択的な化学エツチングは絡1層71
九はその近傍で停止すればよいので、そのような作用を
4つエツチング液であれば上述したような混合液でなく
ともよいわけである。
In this way, the first selective chemical etching
Since it is sufficient that the etching liquid 9 stops in the vicinity thereof, it is not necessary to use the above-mentioned mixed liquid as long as the etching liquid has 4 such effects.

(@)上記の工程が終了したら感光膜10を残し九ft
で次の選択エツチングを行う、用いるエツチング液はT
1膜がエツチングされるHF系或いはこれにNH4Fを
加え九混合液である。実験の結果、 8mを含まない(
或いはBmで被覆されていない)  Ttのみの層が形
成されているときには上記の混合液ではT1もエツチン
グされるがGaAtAs結晶も早い速度でエツチングさ
れる。従ってGaktAs表面でエツチングを停止する
といった制御が困難なのであるが、8mを含む(或いは
fimで被覆された) T1層が形成されているときに
は上記混合液の組成を変えることによりこ0層は速やか
にエツチングされるがG1ムtム一層は殆どエツチング
されないことが判つ九のである。この結果から(d)で
述べたような表面状態をもつ1%層が存在する基板を上
記混合液でエツチングすればエツチングがGaAtAs
表面に達し九らエツチングを停止させるといったことが
可能でしかもその制御が容謳となるのである。従ってT
1層が除去されて4 GaAtAs表面は殆ど侵食され
ず錠面が保たれ発光ダイオードとしての発光特性を悪化
させないかつ微細な形状、サイズが精度よくしかも再現
性よく得られるのである(第2図(・)参照)。
(@) After the above process is completed, 9 ft of photoresist film 10 is left.
Perform the next selective etching using the etching solution T.
A HF system is used for etching a film, or a mixed solution is prepared by adding NH4F to the HF system. As a result of the experiment, 8m is not included (
(or not coated with Bm) When a layer of only Tt is formed, the above mixed solution etches T1 as well, but the GaAtAs crystal is also etched at a high rate. Therefore, it is difficult to control the etching to stop at the GaktAs surface, but when a T1 layer containing 8m (or covered with fim) is formed, this 0 layer can be quickly removed by changing the composition of the above mixed solution. Although it is etched, it is found that the G1 layer is hardly etched. This result shows that if a substrate with a 1% layer with the surface condition described in (d) is etched with the above mixed solution, the etching will be GaAtAs.
It is possible to reach the surface and stop etching, and this control is impressive. Therefore T
When one layer is removed, the 4 GaAtAs surface is hardly eroded, the lock surface is maintained, the light emitting characteristics as a light emitting diode are not deteriorated, and fine shapes and sizes can be obtained with good precision and reproducibility (see Figure 2). ·)reference).

(f)シかる後、感光膜10を除去し、裏面のp型Qa
A4A@結晶基板1にオーミック電極金属(九とえばA
u−Znなど)を全面に付着させ5NstたはH2ガス
などの雰囲気ガス中で約400〜500Cのi!度で熱
処理する。この熱処理によってn型、p型いずれのGa
AtAs結晶に対して4付着力が強く、良好なオーミッ
ク接触が再現性よく安定して得られることになる(第2
図(f)参照)。
(f) After printing, remove the photoresist film 10 and remove the p-type Qa on the back side.
A4A @ Ohmic electrode metal on crystal substrate 1 (for example, A
(u-Zn, etc.) is deposited on the entire surface, and the i! Heat treated at 30°F. Through this heat treatment, both n-type and p-type Ga
4 has a strong adhesion force to the AtAs crystal, and good ohmic contact can be stably obtained with good reproducibility (second
(See figure (f)).

以上本発明をGaAtA−発光ダイオードの電極形成法
を実施例として述べた。本発明による、GaAtAs結
晶などAtを含む化合物半導体基板上に、化合物半導体
結晶に接する何にT1層を配し、しかもこのT一層とA
u層とでオーミンク接触を可能ならしめる金属を含む8
m層をサンドイツヂ状に挾んだ3層構造の電極膜を形成
する方法と写真蝕刻法を用いた化学エツチングを2段階
に分けて用いる方法とによって最初の選択的化学エツチ
ングを8n−Ti @で停止させてこの化学薬品がkt
を含む化合物半導体に接触させないようにし、8n−’
rs@を次の化学エツチングで除去しかつGaAtA−
結晶を侵食することなく極めて微細な形状、サイズをも
つ電極の選択的な形成が精度よく%また再現性よく得ら
れるのである・ また1本発明によると、第1図(a)の説明で述べたよ
うな絶縁膜の形成を行わないですむた、め工程が簡単と
なり絶縁物生成時の熱的歪や物理的性質の違いからくる
応力歪を半導体素子に与えないですみ、さらに電極を形
成するIN竣の化合物半導体面には化学薬品が触れない
方法がとられているので、GaAtAs結晶表面の活性
化、酸化が避けられオーミック接触4良くなり電極の形
成工程の再現性が向上するのである。
The present invention has been described above using a method for forming electrodes of a GaAtA light emitting diode as an example. According to the present invention, on a compound semiconductor substrate containing At, such as a GaAtAs crystal, a T1 layer is disposed in contact with the compound semiconductor crystal, and this T layer and A
Contains a metal that enables ohmink contact with the u layer 8
The first selective chemical etching was carried out on 8n-Ti@ by a method of forming an electrode film with a three-layer structure in which the m layer was sandwiched in a sandwich pattern, and a method of using chemical etching using photolithography in two steps. Stop this chemical kt
Avoid contact with compound semiconductors containing 8n-'
rs@ was removed by the following chemical etching and GaAtA-
It is possible to selectively form electrodes with extremely fine shapes and sizes without eroding the crystals with high accuracy and reproducibility.In addition, according to the present invention, as described in the explanation of FIG. 1(a), This eliminates the need to form an insulating film, which simplifies the manufacturing process, eliminates the need to apply stress and strain to the semiconductor element due to thermal strain and differences in physical properties during the formation of the insulator, and further facilitates the formation of electrodes. Since a method is used that does not allow chemicals to come into contact with the IN-finished compound semiconductor surface, activation and oxidation of the GaAtAs crystal surface is avoided, resulting in better ohmic contact and improved reproducibility in the electrode formation process. .

上記実施例はGaAJ!、AI結晶を基板とする本ので
あったが、化合物半導体の中にAtが含まれていると、
既述したように化学薬品に対し結晶表面の性質が敏感に
なるので、ムtを含む化合物半導体に対し本発明は充分
な効果を発揮するのである。
The above example is GaAJ! , the book uses AI crystal as a substrate, but if At is included in the compound semiconductor,
As mentioned above, the crystal surface properties are sensitive to chemicals, so the present invention is fully effective for compound semiconductors containing Mut.

本発明は実施例の発光ダイオードに限るものではなく、
半導体レーザー等他の半導体素子であってもよいことは
勿論であゐ・本発明の精神を逸脱 (しない範囲で工程
を変更或いは付加することもまた勿論可能である。
The present invention is not limited to the light emitting diode of the embodiment,
It is of course possible to use other semiconductor elements such as a semiconductor laser, and it is also possible to change or add steps without departing from the spirit of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は、従来法によるGaAtム1発光ダイオ
断面図。 第2図(a) 〜(f)は、本発明によるGajlkt
A−発光ダイオードの電極形成1糧を示す図であゐ。 j −p 21I GaAtA−結晶基板; 2− p
 1lGaAtAs領域;6・・・mJllGaAtム
・領域ニア・・・第1層;8・・・第2層;9・・・第
3層;10・・・感光膜。 第2図
FIG. 1(a) is a cross-sectional view of a GaAt layer 1 light-emitting diode according to a conventional method. FIGS. 2(a) to 2(f) show Gajlkt according to the present invention.
A-A diagram showing one method of forming electrodes of a light emitting diode. j-p 21I GaAtA-crystal substrate; 2-p
1lGaAtAs region; 6... mJllGaAtm region near... first layer; 8... second layer; 9... third layer; 10... photoresist film. Figure 2

Claims (1)

【特許請求の範囲】 1)  klを含む化合物半導体の電極の金属層として
、上記化合物半導体に接する備にT一層を?し、該Ti
層と、Srsおよびオーミック接触を可能ならしめる金
属を含む層と、Au層との実質的3層構造になされてい
ることを特徴とするktを含む化合物半導体素子。 2)ktを含む化合物半導体の電極の金属層として、上
記化合物半導体Kmする側にT1層を形成ししかる後に
8nおよびオーミック接触を可能ならしめる金属を含む
層を形成しさらKA11層を形成し、以て実質的に3層
構造とするとともに、上記電極を所定の形状に加工する
処理工種として8nおよびTIを実質的に侵食しない薬
品による化学エツチングを行ない、引きglHFを含む
薬品による化学エツチングを行なうことを%像とする化
合物半導体の電極形成法。
[Claims] 1) As a metal layer of an electrode of a compound semiconductor containing kl, is a T layer in contact with the compound semiconductor? and the Ti
1. A compound semiconductor device containing kt, characterized in that it has a substantially three-layer structure consisting of an Au layer, a layer containing Srs and a metal that enables ohmic contact, and an Au layer. 2) As a metal layer of the electrode of the compound semiconductor containing kt, a T1 layer is formed on the side facing the compound semiconductor Km, and then a layer containing 8n and a metal that enables ohmic contact is formed, and then a KA11 layer is formed; Thus, a three-layer structure is obtained, and the electrode is processed into a predetermined shape by chemical etching using a chemical that does not substantially corrode 8n and TI, and chemical etching using a chemical containing glHF. A compound semiconductor electrode formation method that takes this into account.
JP56127332A 1981-08-15 1981-08-15 Compound semiconductor element and forming method of its electrode Pending JPS5830171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56127332A JPS5830171A (en) 1981-08-15 1981-08-15 Compound semiconductor element and forming method of its electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56127332A JPS5830171A (en) 1981-08-15 1981-08-15 Compound semiconductor element and forming method of its electrode

Publications (1)

Publication Number Publication Date
JPS5830171A true JPS5830171A (en) 1983-02-22

Family

ID=14957297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56127332A Pending JPS5830171A (en) 1981-08-15 1981-08-15 Compound semiconductor element and forming method of its electrode

Country Status (1)

Country Link
JP (1) JPS5830171A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176835U (en) * 1987-04-27 1988-11-16
JPS6483430A (en) * 1987-09-24 1989-03-29 Tokai Rika Co Ltd Vehicle speed sensitive type turn cancelling device
US5028971A (en) * 1990-06-04 1991-07-02 The United States Of America As Represented By The Secretary Of The Army High power photoconductor bulk GaAs switch
US5917243A (en) * 1994-12-22 1999-06-29 Sony Corporation Semiconductor device having ohmic electrode and method of manufacturing the same
CN106783566A (en) * 2016-11-29 2017-05-31 东莞市广信知识产权服务有限公司 A kind of N-type Ohm contact production method of Ge

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042786A (en) * 1973-05-18 1975-04-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5042786A (en) * 1973-05-18 1975-04-18

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176835U (en) * 1987-04-27 1988-11-16
JPH0352589Y2 (en) * 1987-04-27 1991-11-14
JPS6483430A (en) * 1987-09-24 1989-03-29 Tokai Rika Co Ltd Vehicle speed sensitive type turn cancelling device
US5028971A (en) * 1990-06-04 1991-07-02 The United States Of America As Represented By The Secretary Of The Army High power photoconductor bulk GaAs switch
US5917243A (en) * 1994-12-22 1999-06-29 Sony Corporation Semiconductor device having ohmic electrode and method of manufacturing the same
US5924002A (en) * 1994-12-22 1999-07-13 Sony Corporation Method of manufacturing a semiconductor device having ohmic electrode
CN106783566A (en) * 2016-11-29 2017-05-31 东莞市广信知识产权服务有限公司 A kind of N-type Ohm contact production method of Ge

Similar Documents

Publication Publication Date Title
US4914499A (en) Semiconductor device having an ohmic electrode on a p-type III-V compound semiconductor
US5310695A (en) Interconnect structure in semiconductor device and method for making the same
US4080722A (en) Method of manufacturing semiconductor devices having a copper heat capacitor and/or copper heat sink
US3878008A (en) Method of forming high reliability mesa diode
CN103904170B (en) The method of separating base plate and the method using its manufacture semiconductor device
JPS5830171A (en) Compound semiconductor element and forming method of its electrode
JP5228381B2 (en) Manufacturing method of semiconductor device
JPH057019A (en) Manufacture of semiconductor light emitting element
JPS5830170A (en) Compound semiconductor element and forming method of its electrode
RU2084988C1 (en) Method for producing resistive contacts on planar side of structure with local regions of low-alloyed semiconductors
JP3128165B2 (en) Method for forming electrode of compound semiconductor device
JP2605180B2 (en) Semiconductor device
US11296255B2 (en) Manufacturing method of light-emitting element
JPS59112654A (en) Gallium arsenide semiconductor device
JP2981347B2 (en) Method for manufacturing semiconductor device
JP2008124375A (en) Method of manufacturing light-emitting device
JP2977378B2 (en) Ohmic electrode
JPH0528780Y2 (en)
JP3123217B2 (en) Method of forming ohmic electrode
JPS63204662A (en) Semiconductor device
JPS58135667A (en) Semiconductor device
JPS63104485A (en) Manufacture of semiconductor device
JPS5950107B2 (en) semiconductor equipment
JPS6294989A (en) Manufacture of pellet of impatt diode
JPS58215088A (en) Manufacture of semiconductor laser device