JPS5829884A - Preparation of metallurgical coke - Google Patents

Preparation of metallurgical coke

Info

Publication number
JPS5829884A
JPS5829884A JP12925081A JP12925081A JPS5829884A JP S5829884 A JPS5829884 A JP S5829884A JP 12925081 A JP12925081 A JP 12925081A JP 12925081 A JP12925081 A JP 12925081A JP S5829884 A JPS5829884 A JP S5829884A
Authority
JP
Japan
Prior art keywords
coal
coke oven
coke
lumped
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12925081A
Other languages
Japanese (ja)
Inventor
Yukihiro Sugimoto
杉本 行廣
Kunihiko Nishioka
西岡 邦彦
Sumio Kobayashi
純夫 小林
Tetsuo Hatono
鳩野 哲男
Yoshihiko Sunami
角南 好彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12925081A priority Critical patent/JPS5829884A/en
Publication of JPS5829884A publication Critical patent/JPS5829884A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently prepare lumped coal with high strength applicable to a large coke oven without using water or any other binders, by subjecting the surface of the lumped coal obtd. by compacting pulverized raw coal to electromagnetic heating. CONSTITUTION:Pulverized raw coal adjusted for preparing coke is charged to a container 1 slightly smaller in dimension than the coking chamber of a coke oven and built of a dielectric material with good transmittance for electromagnetic waves such as a brick or ceramic material and empacted gradually with a pushing rod 2 to obtain lumped coal. The obtd. coal 3 is converted into semicoke by charging it together with the container 1 to a dielectric furnace 4, closing the furnace opening with an openable lid 6, and heating the surface portion of the lumped coal by generating electromagnetic waves from each electromagnetic wave generator 4-1-4-6. It is possible to efficiently prepare lumped coal with good strength applicable to a large coke oven with a height of 6-7m without using water or any other binders.

Description

【発明の詳細な説明】 この発明は、室炉式コークス炉において、非・微粘結炭
の6とき粘結性の少ない低品位石炭を多配合し、品質良
好にして経済性の高い冶金用コークスを製造する方法に
関する。
Detailed Description of the Invention This invention is a room furnace type coke oven in which a large amount of non-slightly caking coal and low-grade coal with low caking property is blended to produce good quality and highly economical metallurgical use. The present invention relates to a method for producing coke.

室炉式コークス炉において、非・微粘結炭のごとき低品
位石炭を主配合とした冶金用コークスの製造方法として
は、■成型炭配合法、■予熱縦法。
Methods for producing metallurgical coke using low-grade coal such as non-slightly caking coal as the main blend in a room furnace type coke oven include: ■ Molded coal blending method; ■ Vertical preheating method.

(4)スタンプチャージング法が知られている。しかし
、これらの技術はいずれも非・微粘結炭の使用範囲の拡
大、および経済性の面において間融が残されている。
(4) A stamp charging method is known. However, all of these technologies still have problems in terms of expansion of the range of use of non-slightly caking coal and economic efficiency.

すなわち、■の成型炭配合法は、コークス炉装入用配合
炭に密度の高い成型炭を配合してコークス炉に装入する
方法であり、鋏大原料の嵩密度の同上およびコークス品
質の教養がはかられることから盛んに実施されている。
In other words, the briquette coal blending method (■) is a method in which high-density briquette coal is blended with the coal blend for coke oven charging and charged into the coke oven. It is widely practiced because it allows for the measurement of

しかし、この方法は。But this method.

成型辰と通常の装入炭とが偏析を起こさないように装入
しなければならなφため、成型炭の配合量は最大401
程度とされている。またこの場合の装入炭の嵩密度向上
効果は、配合炭単独に比して1.2倍程度で、非・微粘
結炭の配合量は25〜30%が最大とされている。しか
も、成型訳製造設備や成型炭配合時の偏析防止設備等が
必要で設備費が筒くつく欠点を有する。
Because the molten coal and the normal charged coal must be charged in such a way that they do not segregate, the blended amount of the molten coal must be at a maximum of 401 mm.
It is said that the degree of Further, the bulk density improvement effect of the charged coal in this case is about 1.2 times that of blended coal alone, and the maximum blending amount of non-slightly caking coal is said to be 25 to 30%. Moreover, it requires equipment for molding and production, equipment for preventing segregation during blending of briquette coal, and has the disadvantage of increasing equipment costs.

また、■の予熱炭法は、原料炭および非粘結炭あるいは
一般炭の一部または全量を200〜300°Cに予熱し
てコークス炉に装入する方法であり、装入炭の嵩密度向
上効果によるコークス品質の岡l−1乾留時間の短縮に
よるコークス炉の生産性の同上が期待感れるが1作業環
境の改善対策として、搬送、貯槽、装入時の粉塵発生防
止および自然発火功止設備を必要とし、美大な費用がか
かる。また。
In addition, the preheating coal method (2) is a method in which a part or all of coking coal, non-caking coal, or steam coal is preheated to 200 to 300°C and charged into a coke oven, and the bulk density of the charged coal is It is expected that coke quality will be improved by improving coke quality.1-1 The productivity of coke ovens will be improved by shortening carbonization time, but 1. As a work environment improvement measure, prevention of dust generation during transportation, storage tank, and charging and spontaneous ignition will be improved. It requires stopping equipment and costs a lot of money. Also.

非・微粘結炭の配合量も30〜40−とされており。The blending amount of non-slightly caking coal is also 30-40.

経済性が高いとはいえない。It cannot be said that it is economically efficient.

■のスタンプチャージング法は、原理的には、配合原料
を突き固めることにより原料の嵩密度を向上せしめてコ
ークス品質を高める方法である。
The stamp charging method (2) is, in principle, a method of improving the bulk density of the raw materials by compacting the blended raw materials, thereby improving the coke quality.

しかし、この方法はその実施が極めて困雌なことから、
未だ大型コークス炉への適用がなされていないのが現状
である。その原因は、配合原料を突き固めて塊成化して
コークス炉に装入する場合の真成炭強度の安定性にある
。すなわち、従来の方法は、配合炭含有水分を8〜10
%に調整し、その表面張力によ抄塊成炭とするもので、
炉高4震程度の小型のコークス炉に装入する程度の塊成
炭を得るのが限度とされている。また、塊成炭強度も良
好なものではないため、コークス炉の炉前で塊成化後直
ちに装入を行なりという方式を採用せざるを慢ず、・こ
のため設備的に非常に複雑なものになっていた。
However, this method is extremely difficult to implement;
At present, it has not yet been applied to large coke ovens. The reason for this is the stability of the strength of true coal when the blended raw materials are tamped and agglomerated and charged into a coke oven. That is, in the conventional method, the moisture content of the blended coal is 8 to 10
%, and the surface tension is used to make lump coal.
The limit is to obtain enough agglomerated coal to charge into a small coke oven with a furnace height of about 4 quakes. In addition, the strength of agglomerated coal is not good, so we have no choice but to adopt a method of charging immediately after agglomeration in front of the coke oven, resulting in very complex equipment. It had become a thing.

しかし、スタンプチャ−ジング法においては。However, in the stamp charging method.

塊成炭の密度が高いことから、非・微粘結炭の配合量は
60〜7096が可能とされ、前記従来技術の中で最大
の強粘結炭の節減効果が期待できる。そこで、この発明
者らは、スタンプチャージング法について種々研究を行
った結果、従来法の欠点である塊成炭の強度を大巾に改
善して、炉高6〜7諷の大型コークス炉への適用が可能
な塊成炭を製造し得る方法を見い出した。
Since the density of agglomerated coal is high, the blending amount of non-slightly caking coal can be 60 to 7096, and the greatest saving effect on strongly caking coal can be expected among the above-mentioned conventional techniques. Therefore, as a result of conducting various studies on the stamp charging method, the inventors were able to greatly improve the strength of agglomerated coal, which is a drawback of the conventional method, and to use it in large coke ovens with furnace heights of 6 to 7 mm. We have discovered a method for producing lump coal that can be applied to

以下、この発明について詳細に説明する。This invention will be explained in detail below.

この発明は、コークス製造用に調整された微粉状の原料
石炭をコークス炉の炭化室寸法より僅かに小さい容器に
装入しながら順次圧密し%得られた炭化室寸法に近い塊
成炭に周波数が20 M Hz〜3 Gfizの゛電磁
波を照射して該塊成炭の表面部を固化した後コークス炉
に装入することを特徴とするものである。
In this invention, pulverized raw coal adjusted for coke production is charged into a container slightly smaller than the coking chamber size of a coke oven and compacted sequentially. The method is characterized in that the surface of the agglomerated coal is solidified by irradiation with electromagnetic waves of 20 MHz to 3 Gfiz, and then charged into a coke oven.

すなわち、この発明は、圧密後の塊成炭に1[ffi波
を照射して表面部にセミコークスの殻を形成し。
That is, in this invention, a semi-coke shell is formed on the surface by irradiating 1[ffi wave] to the consolidated lump coal.

これによって塊成炭の強度を維持してコークス炉へ装入
するまでのハンドリングを行なうものである。塊成炭の
表面部を固化せしめる方法として電磁波を用いたのは、
非常に短時間で表面部の温度をセミコークス化の完了す
る濃度以上(500〜600℃)に昇温せしめることが
できるからである。この場合の電磁波の周波数は、誘電
加熱で通常使用される2QMf(z〜3GHzの周波数
帯域、すなわち石炭の誘電損失が大きい周波数帯域が有
効である。この電afl照射により、塊成炭表面部を短
時間で500〜600℃に加熱を留し、セミコークス化
することができる。
This maintains the strength of the agglomerated coal and handles it until it is charged into a coke oven. Electromagnetic waves were used as a method to solidify the surface of lump coal.
This is because the temperature of the surface portion can be raised to a concentration higher than the concentration at which semi-coking is completed (500 to 600°C) in a very short time. The frequency of the electromagnetic waves in this case is effective in the frequency band of 2QMf (z to 3 GHz), which is usually used in dielectric heating, that is, the frequency band in which the dielectric loss of coal is large. It can be heated to 500 to 600°C in a short time to form semi-coke.

この発明では前記のごとく、塊成炭の表面を電磁波によ
り加熱して固化することによって該塊成炭強度を維持す
るため、水、その他の結合剤を用いないで炉高6〜7m
の大型コークス炉へ適用し得る良好な強度の塊成炭を効
率よく製造することが可能となる。しかも、その塊成化
は、従来法のようにコークス炉へ装入する直前に炉前で
行なう必要がなく、遠隔地で集中的に塊成化し製造され
た塊成炭をコークス炉前壕で搬送して装入作秦を行なう
方式が採用できるようになるため、従来法と比較して設
備的に簡単で、かクレイアラ)[でも有利である。
In this invention, as mentioned above, in order to maintain the strength of the lump coal by heating and solidifying the surface of the lump coal using electromagnetic waves, the furnace height is 6 to 7 m without using water or other binders.
This makes it possible to efficiently produce agglomerated coal with good strength that can be applied to large coke ovens. Moreover, the agglomeration does not need to be carried out in front of the coke oven just before charging into the coke oven as in the conventional method, and the agglomerated coal produced by intensive agglomeration in a remote location is placed in the trench in front of the coke oven. Since it becomes possible to adopt a method of carrying out charging and harvesting, the equipment is simpler and more advantageous than the conventional method.

このように、この発明によれば、従来のスタンプチャー
ジング法の最大の欠点であった塊成炭の強度を大巾に改
善することができるので、炉高6〜’y*の大型コーク
ス炉にスタンプチャージング法を適用することができ、
tた水その他の結合剤を用いることなく塊成炭の強度を
維持きせることができるので、乾燥炭や予熱炭に対して
もスタンプチャージング法を適用することができ1強粘
結炭の節減ならびに生産性の向上に大なる効果を上げる
ことができる。
As described above, according to the present invention, the strength of agglomerated coal, which was the biggest drawback of the conventional stamp charging method, can be greatly improved. The stamp charging method can be applied to
Since the strength of agglomerated coal can be maintained without using water or other binders, the stamp charging method can also be applied to dry or preheated coal, reducing the amount of highly coking coal. In addition, it is possible to greatly improve productivity.

次に、この発明法を実施するための装置の一例を第1図
、第2図に基づいて説明する。
Next, an example of an apparatus for carrying out the method of the invention will be explained based on FIGS. 1 and 2.

第1図は原料石炭を塊成化するための容器と押付は棒を
示すもので、(1)は容器、(2)は押付は棒。
Figure 1 shows a container and a stick for agglomerating raw coal; (1) is the container and (2) is a stick.

(3)は塊成炭を示し、容II (t)はコークス炉の
炭化室寸法より僅かに小さい大きさであって、電磁波の
透−性の艮い鋳電体材料(例えば煉瓦、セラミック材料
)でできており、押付は棒(2)は鋼製であり重緻は2
00梅程度のものである。第2図は前記塊成訳の表面部
を固化するための篩篭加熱炉を示すもので、炉体(4)
は上面が開口され九矩形の箱体をなしており、内部には
容器(1)を収納するための載置台(8)が設けてあり
、各面には電磁波発損器(4−1)〜(4−5)が導波
管(5−1)〜(5−5)を介して取付けられている。
(3) indicates lump coal, and volume II (t) is slightly smaller than the coke oven carbonization chamber size, and is made of cast electric material (e.g., brick, ceramic material) that is transparent to electromagnetic waves. ), the pressing rod (2) is made of steel, and the heavy rod (2) is made of steel.
It is about 0.00 plum size. Figure 2 shows a sieve heating furnace for solidifying the surface part of the agglomerated grains, and the furnace body (4)
is a nine rectangular box with an open top surface, and a mounting table (8) for storing the container (1) is provided inside, and an electromagnetic wave generator (4-1) is mounted on each surface. -(4-5) are attached via waveguides (5-1) to (5-5).

(6)は炉口部の開閉蓋でおり、この蓋にも電磁波発優
1!(4−6)が導波管(5−6)を介して取付けられ
ており、さらにガス抜き部(7)が設けられている。
(6) is the opening/closing lid of the furnace mouth, and this lid also emits electromagnetic waves! (4-6) is attached via a waveguide (5-6), and is further provided with a gas vent (7).

上記装置により塊成辰を製造する場合は、先ず容!!(
1)内にコークス製造用に調整された微粉状の原料石炭
を装入しながら押付は棒(2)により順次圧密して塊成
化し、得られた塊成災(3)を容# (1)とと鐸電加
熱炉(1)内に装入し、開閉蓋(6)にて炉口部を閉じ
た後、各電磁波発!IA器(4−1)〜(4−6>より
電磁波を出力1−1塊成炭(3)の表面部を加熱、セミ
コークス化する、しかる後、5uit成炭をコークス炉
に装入して冶金用コークスを製造する。
When producing agglomerates using the above-mentioned equipment, the first step is to prepare the condensate. ! (
1) While charging fine powdered raw material coal adjusted for coke production, it is sequentially compacted and agglomerated using a rod (2), and the resulting agglomerate (3) is poured into a container # (1). ) After charging the electric heating furnace (1) and closing the furnace opening with the opening/closing lid (6), each electromagnetic wave is emitted! Output electromagnetic waves from IA units (4-1) to (4-6>) 1-1 Heat the surface part of lump coal (3) to make semi-coke, then charge 5 units of coal into a coke oven. to produce metallurgical coke.

次に、この発明の実施例について説明する。Next, embodiments of the invention will be described.

〔実施例1〕 水分が10%に!II整された第1表に示す配合炭を第
1図に示す高さくEl)1000ff、巾W 43Of
f、長さくト)1000111mの容器(1)に順次装
入しながら、重置200神の鋼製の押付は棒(2)を5
00回の高さから自由落トを繰返して圧密を行なって、
高さsoosw%巾450厘胃。
[Example 1] Moisture reduced to 10%! II) The prepared coal blend shown in Table 1 was heated to the height El) 1000ff and width W 43Of shown in Figure 1.
f, length)) While sequentially charging the container (1) with a length of 1000111 m, the steel pressing rod (2) of 200 mm is placed 5 times.
Consolidation is performed by repeating free fall from a height of 00 times,
Height soosw% width 450cm.

長さ1ooOffの塊成炭をつくり%続いて第2図に示
す防電加熱炉に前記塊成辰を容器ごと装入し、第2表に
示す電磁波照射条件により約10分間1lcta波を照
射し1表面から約50g1lの深さまでセミコース化し
た。得られた塊成炭を高さ100Q wx、巾450 
n。
An agglomerated coal having a length of 1ooOff was made, and then the agglomerated coal was charged into an electrically-proof heating furnace shown in Figure 2 with a container, and irradiated with 1 lcta waves for about 10 minutes under the electromagnetic wave irradiation conditions shown in Table 2. 1. Semi-coast was formed from the surface to a depth of about 50 g 1 liter. The obtained agglomerated coal has a height of 100Q wx and a width of 450 mm.
n.

長さ1UOOflの炭化室寸法を有する大型試験コーク
ス炉に装入し、炉−】100°Cにて乾留した。その結
果は第2表に併記した。なお、#!2表には比較のため
、圧密後室磁波を照射しないで得られた同一大ささの塊
成炭を同一コークス炉で乾留した場合の結果を比較例、
!ニジて併せて示した。
The mixture was charged into a large test coke oven having a carbonization chamber with a length of 1 UOOfl, and carbonized at 100°C. The results are also listed in Table 2. In addition,#! For comparison, Table 2 shows the results obtained when agglomerated coal of the same size obtained without irradiation with chamber magnetic waves after consolidation was carbonized in the same coke oven.
! They are also shown together.

第2表の結果より明らかなごとく、電磁波を照射しない
で得られた比較例の塊成縦と比較して、この発明による
試験Al、2の塊成炭の圧縮強度ははるかに商い。この
ように塊成縦強度が大l】に改善された結果、コークス
炉へ装入するまでの過程で発生する粉量も比較例の10
%程度からθ近くまで低減された。また、塊成縦強度の
改善にともなって、コークス強度も同上した。
As is clear from the results in Table 2, the compressive strength of the agglomerated coal of test Al, 2 according to the present invention is much higher than that of the agglomerated coal of the comparative example obtained without irradiation with electromagnetic waves. As a result of this improvement in the agglomeration longitudinal strength to a large degree, the amount of powder generated during the process up to charging into the coke oven was reduced to 10% compared to the comparative example.
% to nearly θ. In addition, along with the improvement in agglomeration longitudinal strength, coke strength also increased.

第 1 表 第  2  表 塊成炭処理量500Vバッチ 〔実施例2〕 実施例1の第1表に示す配合炭を水分2%に乾燥した原
料、および200”Cの温度に予熱した原料をそれぞれ
実施例1と同様の方法で塊成炭とし、得られた塊成炭を
実施例1と同様の条件で乾留してコークスを製造し、そ
の結果を第3表に示す。
Table 1 Table 2 Table Lump coal treatment amount 500V batch [Example 2] A raw material prepared by drying the blended coal shown in Table 1 of Example 1 to a moisture content of 2%, and a raw material preheated to a temperature of 200"C were used, respectively. Agglomerated coal was prepared in the same manner as in Example 1, and the obtained agglomerated coal was carbonized to produce coke under the same conditions as in Example 1. The results are shown in Table 3.

なお、比較のため、圧密後室磁波を照射しないで上鮎の
乾燥炭と亨熱縦について塊成化を行ったが、縮合剤とし
ての水分が存在しなZ7’jめ轟然のことなから塊成炭
を得ること杜できなかった。
For comparison, agglomeration was carried out using dry charcoal of upper sweetfish and hot water without irradiating chamber magnetic waves after compaction, but this was surprising because there was no water as a condensing agent. It was not possible to obtain lump coal.

第3表の結果より、′w1合剤としての水が存在しない
乾燥炭や予熱炭であっても、この発明法によれば塊成炭
を得ることができ、また塊成炭強度も高く、コークス炉
へ装入するまでの発生粉量もほとんどない塊成炭が得ら
れることが判明した。また、水分がない九め塊成炭の見
掛比重は向上しており、その結果非常に高いコークス強
度が得られ、かつ乾留時間も短縮された。
From the results in Table 3, it is clear that even with dry coal or preheated coal that does not contain water as a 'w1 mixture, agglomerated coal can be obtained according to the method of the present invention, and the agglomerated coal strength is high. It has been found that lump coal can be obtained with almost no amount of powder generated before being charged into a coke oven. In addition, the apparent specific gravity of the water-free Kume lump coal was improved, resulting in extremely high coke strength and a shortened carbonization time.

第3表 塊成炭熱湯量500vバッチTable 3 Lump charcoal hot water amount 500v batch

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明法における原料石炭の塊成化に用いる
容器と押付は棒の一例を示す斜視図、第2図は同上にお
ける塊成炭11面部を固化する丸めの誇電加熱炉の一例
を示す一部破断面図である。 図中、1・・・容器、2・・・押付は欅、3・・・塊成
炭、4・・・炉体、4−1〜4−6・・・電磁波発振器
、5−1〜5−6・・・導波管、6・・・蓋、7−・ガ
ス抜き部、8・・・載置台。 出願人  住友傘属工業株式会社 代理人   押   1)  良   久°、、’+、
午1第2図
Fig. 1 is a perspective view showing an example of a container and a pressing rod used for agglomerating raw material coal in the method of this invention, and Fig. 2 is an example of a round electric heating furnace for solidifying the 11-sided portion of agglomerated coal in the same method. FIG. In the figure, 1... Container, 2... Keyaki for pressing, 3... Lump coal, 4... Furnace body, 4-1 to 4-6... Electromagnetic wave oscillator, 5-1 to 5 -6... Waveguide, 6... Lid, 7-- Gas venting section, 8... Mounting table. Applicant Sumitomo Industries Co., Ltd. Agent 1) Yoshihisa °,,'+,
Noon 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] コークス製造用に調整され九黴粉状の原料石炭をコーク
ス炉の炭化型寸法より僅かに小さい*aK装入しながら
順次圧密し、得られ九炭化富寸法に近い塊成炭に周波数
が204h〜3 GHzの電磁波を照射して該塊成炭の
表面部を固化した後コークス炉に装入することを特徴と
する冶金用コークスの製造方法。
Raw coal in the form of nine mold powder adjusted for coke production is sequentially consolidated while charging *aK, which is slightly smaller than the carbonization mold size of the coke oven, and the resulting agglomerated coal with a frequency of 204 h~ is obtained. 3. A method for producing metallurgical coke, which comprises irradiating electromagnetic waves of 3 GHz to solidify the surface of the lumped coal, and then charging the coal into a coke oven.
JP12925081A 1981-08-17 1981-08-17 Preparation of metallurgical coke Pending JPS5829884A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12925081A JPS5829884A (en) 1981-08-17 1981-08-17 Preparation of metallurgical coke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12925081A JPS5829884A (en) 1981-08-17 1981-08-17 Preparation of metallurgical coke

Publications (1)

Publication Number Publication Date
JPS5829884A true JPS5829884A (en) 1983-02-22

Family

ID=15004912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12925081A Pending JPS5829884A (en) 1981-08-17 1981-08-17 Preparation of metallurgical coke

Country Status (1)

Country Link
JP (1) JPS5829884A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007514044A (en) * 2003-12-12 2007-05-31 コールテク コーポレイション Method and system for preheated drying process to improve solid fuel properties
CN103074139A (en) * 2012-12-27 2013-05-01 中信重工机械股份有限公司 Upgrading method for molding semicokes produced through pyrolyzing water-rich lignite
WO2013081129A1 (en) * 2011-12-02 2013-06-06 Jfeスチール株式会社 Method for producing metallurgical coke

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007514044A (en) * 2003-12-12 2007-05-31 コールテク コーポレイション Method and system for preheated drying process to improve solid fuel properties
WO2013081129A1 (en) * 2011-12-02 2013-06-06 Jfeスチール株式会社 Method for producing metallurgical coke
JP2013116964A (en) * 2011-12-02 2013-06-13 Jfe Steel Corp Method for producing metallurgical coke
CN103074139A (en) * 2012-12-27 2013-05-01 中信重工机械股份有限公司 Upgrading method for molding semicokes produced through pyrolyzing water-rich lignite

Similar Documents

Publication Publication Date Title
US3444046A (en) Method for producing coke
US7611609B1 (en) Method for producing blast furnace coke through coal compaction in a non-recovery or heat recovery type oven
US3018227A (en) Preparation of formcoke
JP3027084B2 (en) Method for producing molded coke for metallurgy
JP3754553B2 (en) Agglomerated product for reduced iron and method for producing the same
IE63813B1 (en) A process for the manufacture of fuel briquettes
US3117918A (en) Production of low sulfur formcoke
JPS5829884A (en) Preparation of metallurgical coke
US4186054A (en) Process and apparatus for producing blast furnace coke by coal compaction
JPH05334B2 (en)
JP2001303143A (en) Method for producing agglomerate including carbonaceous material
US4257848A (en) Apparatus for producing blast furnace coke by coal compaction
JPS638158B2 (en)
US1840491A (en) Process of manufacturing carbon electrodes for electric furnaces
US2598796A (en) Methods for the reduction and sintering of bodies containing reducible metal compounds
JPS5832683A (en) Production of formed coke
SU852952A1 (en) Method of producing iron ore carbon-containing briquettes
JP3611055B2 (en) Coke production method for blast furnace
JPH0260722B2 (en)
WO2023039651A1 (en) Solid agglomerate for use in siderurgical reduction furnaces
JPH09118883A (en) Production of coke for blast furnace
JPH08231962A (en) Production of metallurgical coke
JPH0245685B2 (en)
JPS6053590A (en) Production of metallurgical coke
JPS5993792A (en) Adjustment of coal to be charged