JPS58223912A - Surface acoustic wave filter - Google Patents

Surface acoustic wave filter

Info

Publication number
JPS58223912A
JPS58223912A JP10781982A JP10781982A JPS58223912A JP S58223912 A JPS58223912 A JP S58223912A JP 10781982 A JP10781982 A JP 10781982A JP 10781982 A JP10781982 A JP 10781982A JP S58223912 A JPS58223912 A JP S58223912A
Authority
JP
Japan
Prior art keywords
reflectors
reflector
output
electrode
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10781982A
Other languages
Japanese (ja)
Inventor
Toshihiko Kitano
北野 利彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP10781982A priority Critical patent/JPS58223912A/en
Publication of JPS58223912A publication Critical patent/JPS58223912A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/643Means for obtaining a particular transfer characteristic the transfer characteristic being determined by reflective or coupling array characteristics
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02637Details concerning reflective or coupling arrays
    • H03H9/02803Weighted reflective structures
    • H03H9/02811Chirped reflective or coupling arrays

Abstract

PURPOSE:To realize uniformly low loss in a band, by providing a surface acoustic wave reflector where intervals of reflecting grating are changed gradually to a three-electrode filter. CONSTITUTION:An input converter comprising a reed screen electrode 3 to convert a sound signal to an electric signal and an output converter comprising reed screen electrodes to convert the sound signal into the electric signal are provided on a piezoelectric substrate 1. Reflectors 5, 6 reflecting a leakage surface wave irradiated from the input converter 3 and propagated without being converted into the electric signal at the output converters 2, 4, in the direction of the output converters 2, 4 is provided at the outside of the output converts. The intervals of the grating are increased or decreased gradually along the incident propagating direction of the leaked surface wave in the reflectors 5, 6. Further, the interval of grating of the reflectors is determined so that the distance from the center of the reed screen electrode closest to the reflectors between the reed screen electrodes 2, 4 to the reflecting point of the reflectors is N/2(N is an integral number) of the wavelength of the leakage surface wave all times.

Description

【発明の詳細な説明】 本発明は、複数個のすだれ状電極および反射器を備えた
弾性表面波フィルタに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface acoustic wave filter comprising a plurality of interdigital electrodes and reflectors.

弾性表面波を用いたフィルタは、圧電基板上に各種電極
を形成して構成され、従来のコイル、コ  。
Filters using surface acoustic waves are constructed by forming various electrodes on a piezoelectric substrate, and are constructed using conventional coils and coils.

ンデンサを組合せたWフィルタにくらべ、小形軽量であ
り、かつLSI用に開発された各種の微細加工技術を駆
使することによυ高周波化が可能であるという長所を有
している。そのためこれらの特徴を生かしたものとして
最近IQ)h帯の弾性表面波フィルタを自動車電話やコ
ードレス電話等の移動機に用いる為の研究・開発がさか
んに行なわれている。移動機用フィルタには、小形軽量
化の他に電源の消費電力を出来る限シ少くする目的で低
−損失化が特に要求される。小形軽量化はたとえば90
0 MHzフィルタで6111Iφ×2■のパッケージ
内に収納される為殆んど問題とはならないが、低損失化
に対してはフィルタ自体の構造等の工夫が必要になって
くる。
Compared to a W filter combined with a capacitor, it has the advantage of being smaller and lighter, and it is possible to achieve higher frequencies by making full use of various microfabrication techniques developed for LSI. Therefore, in order to take advantage of these characteristics, research and development of IQ)h band surface acoustic wave filters for use in mobile devices such as car telephones and cordless telephones has recently been carried out. Filters for mobile devices are particularly required to have low loss in order to reduce the power consumption of the power supply as much as possible, in addition to being small and lightweight. For example, 90 for smaller size and lighter weight.
Since this is a 0 MHz filter and is housed in a 6111Iφ×2■ package, this is hardly a problem, but in order to reduce the loss, it is necessary to consider the structure of the filter itself.

圧電基板上に入力用と出力用のすだれ状電極を対向させ
だ2電極形フイルタでは、各すだれ状電極でインピーダ
ンス整合をとっても最小6dBの損失が発生し、圧電基
板上に並列に配置した3個のすだれ状電極のうち、両側
のすだれ状電極を接続して入力用とし、真中のすだれ状
電極を出力用とした3電極形フイルタでは、インピーダ
ンス整合をとっても最小3dBの損失が発生することは
よく知られている。さらに損失を改善する方法として、
原理、的に損失零であり単方向性電極を用いるタイプが
提案されている。単方向性電極としては3相励振形が一
般的である。これは電極の1区間内に3本の励振位相の
異なる電極指を適当に配置するf、       j 
+=に1表面波を一方向に0み伝搬611うとするもの
であるが、位相の異なった3本の電極を形成するには電
極指間の立体交叉が必要となり、作成工程が複雑になる
欠点がある。そのため90度の移相器を用い対数の少な
い一方向性電極を1グループとして分布状に配置し、各
グループからの信号が同相で加わわるようにしてW極の
立体交叉をなくしかつ低損失化を目指したグループ形も
提案されている。しかしグループ形も移相器を用いのみ
所定の値を与えるものでなければならないが、よく近づ
けることは極めて難しい。したがって原理的KtN失が
零であっても実際のデバイスでは数dBの損失が発生す
る。たとえば移動機用として使用されると思われるIG
Hz帯のフィルタで、最も損失の少ないものの実現例は
、1979年のアイドルシイ−(Ili)’3F、)主
催のウルトラ・ソニックス・シンポジウム(Ultra
sonics Symposium) のプロシーデイ
ンダス(Proceed ing!I ) 533頁に
掲載されているビー・アールボッタ(B、R,、Pot
ter)氏による論文の中で示されているものであるが
、それでも挿入損失は3.8dBと比較的大きい。
In a two-electrode filter with input and output interdigital electrodes facing each other on a piezoelectric substrate, a minimum loss of 6 dB occurs even if impedance matching is achieved for each interdigital electrode. In a three-electrode filter in which the interdigitated electrodes on both sides are connected for input and the middle interdigitated electrode is used for output, it is common for a minimum loss of 3 dB to occur even with impedance matching. Are known. As a way to further reduce losses,
A type that has zero loss in principle and uses unidirectional electrodes has been proposed. A three-phase excitation type is generally used as a unidirectional electrode. This involves appropriately arranging three electrode fingers with different excitation phases within one section of the electrode f, j
The idea is to propagate one surface wave in one direction at +=, but in order to form three electrodes with different phases, three-dimensional intersections between electrode fingers are required, which complicates the creation process. There are drawbacks. Therefore, unidirectional electrodes with a small number of logarithms are arranged in a distributed manner as one group using a 90 degree phase shifter, and the signals from each group are added in the same phase to eliminate stereoscopic crossover of the W pole and reduce loss. Group formats aiming for this have also been proposed. However, the group type must also be able to provide a predetermined value only by using a phase shifter, but it is extremely difficult to approximate it well. Therefore, even if the KtN loss is zero in principle, a loss of several dB occurs in an actual device. For example, IG that is likely to be used for mobile devices
An example of a filter with the least loss in the Hz band was the 1979 Ultra Sonics Symposium sponsored by Ili'3F.
B. R. Botta (B, R,, Pot
However, the insertion loss is still relatively large at 3.8 dB.

したがって出来る限シ損失発生の原因となるような移相
器を使用しないで低損失化を実現する方法が提案されて
きた。その中の一つが3電極形フイルタの両側のすだれ
状電極の外側に格子間隔の等しい弾性表面波反射器を置
き、本来逃げて行き損失となる表面波を出来る限り反射
させ再び信号として取シ出そうとする方法である。しか
しこの場合、よシ多くの表面波を反射させようとして反
射素子の数を増していくと反射器が狭帯域となり、その
結果中心周波数附近のみ急峻に損失が下がり広帯域フィ
ルタに適用することは困難であった。
Therefore, methods have been proposed to reduce the loss as much as possible without using a phase shifter that causes loss. One of them is to place surface acoustic wave reflectors with equal lattice spacing outside the interdigital electrodes on both sides of a three-electrode filter to reflect as much of the surface waves as possible, which would otherwise escape and become a loss, and extract them again as a signal. This is a method of trying to do so. However, in this case, as the number of reflecting elements increases in an attempt to reflect more surface waves, the reflector becomes narrow band, and as a result, the loss drops sharply only near the center frequency, making it difficult to apply to a wide band filter. Met.

そこで広帯域であシかつある程度の反射波強度が得られ
るような反射格子を3電極形フイルタに設けることがで
き、帯域内で一様に低損失化が実のである。本発明のフ
ィルタは、圧電基板上に、電気信号を音響信号へ変換す
る為の少なくとも1個以上のすだれ状電極からなる入力
変換器と、音曽信号を電気信号へ変換するだめの少くと
も1個以上のすだれ状電極から成る出力変換器とを設け
、さらに前記入力変換器より放射されかつ前記出力変換
器で電気信号へ変換されずに伝搬する漏洩表面波を出力
変換器の方向へ反射させかつ前記漏洩表面波の入射伝搬
方向に沿って格子間隔を徐々に増加もしくは減少せしめ
た反射器を複数個設けた構成となっており、%KNを2
以上の整数とし、前記出力変換器を構成するすだれ状電
極の中で最も前記反射器に近いすだれ状電極の中心部か
ら前記反射器の反射点までの距離が、常に前記漏洩表面
波の波長のN/2倍となるように前記反射器の格子間隔
を定めると効果が太きい。
Therefore, it is possible to provide a three-electrode filter with a reflection grating that can provide a certain level of reflected wave intensity over a wide band, and the loss can be uniformly reduced within the band. The filter of the present invention includes, on a piezoelectric substrate, an input transducer comprising at least one interdigital electrode for converting an electric signal into an acoustic signal, and at least one transducer for converting an acoustic signal into an electric signal. an output transducer consisting of a plurality of interdigital electrodes; In addition, the configuration includes a plurality of reflectors in which the grating spacing is gradually increased or decreased along the incident propagation direction of the leaky surface wave, and the %KN is set to 2.
The distance from the center of the interdigital electrode closest to the reflector to the reflection point of the reflector is always equal to the wavelength of the leaky surface wave. If the grating spacing of the reflector is determined to be N/2 times larger, the effect will be greater.

次に本発明について図面を参照しながら説明する。第1
図は本発明になる弾性表面波フィルタの一尖施例を示す
平面図で、1は圧電基板、2.3.4はすだれ状電極で
図に示す様にすだれ状電極3を電気信号入力用端子IN
、すだれ状電極2.4を結線して電気信号出力用端子0
(JTとした3電極形フイルタを構成している。5.6
は反射格子間隔が徐々に変化している弾性表面波反射器
で、たとえば基板に溝を堀ったグループ、あるいは金属
蒸着からなる金属ストリップ等で構成されている。3電
極形フイルタでは、入力側および出力側でインピーダン
ス整合がなされている場合、入力側から入射し九Poな
るパワーの電気信号のうちP o /2の信号は出力側
より取り出されるが、残りはすだれ状電極2,4かも圧
電基板1の端へ向りて各Po/4のパワーの漏洩表面波
として放射されフィルタ損失の原因となる。そのため5
,6に示すような反射器を設けることにより表面波を再
びすだれ状電極2.4に戻すことができ、損失をかなシ
改善することが可能となる。さらにこの反射器は反射格
子が徐々に増加もしくは減少しているため、従来の等間
隔な反射器とくらべ極めて広帯域なものとすることがで
きる。しかしこの場合、漏洩表面波がすだれ4    
  状電極4に入射し、反射器6によシ反射され再びす
だれ状電極4を伝搬する際、すだれ状電極4の中心軸0
.−0.で入射波と反射波の位相が常に同相となるのが
望ましい。そのだめ各反射素子の位置は上記条件を満足
する裸足められねばならない。
Next, the present invention will be explained with reference to the drawings. 1st
The figure is a plan view showing a one-cusp embodiment of the surface acoustic wave filter according to the present invention, in which 1 is a piezoelectric substrate, 2, 3, 4 are interdigital electrodes, and as shown in the figure, the interdigital electrode 3 is used for inputting electrical signals. Terminal IN
, connect the interdigital electrodes 2.4 to electrical signal output terminal 0.
(It constitutes a 3-electrode filter with JT. 5.6
is a surface acoustic wave reflector in which the reflection grating spacing gradually changes, and is composed of, for example, a group of grooves cut into a substrate, or a metal strip made of vapor-deposited metal. In a 3-electrode filter, when impedance matching is performed on the input side and the output side, a signal of P o /2 of the electrical signal with a power of 9 Po that enters from the input side is extracted from the output side, but the rest is The interdigital electrodes 2 and 4 are also radiated toward the ends of the piezoelectric substrate 1 as leaky surface waves with a power of Po/4, causing filter loss. Therefore 5
By providing a reflector as shown in , 6, the surface waves can be returned to the interdigital electrode 2.4 again, making it possible to significantly improve the loss. Furthermore, since this reflector has a reflection grating that gradually increases or decreases, it can be made to have a much wider band than a conventional reflector with regular intervals. However, in this case, the leaky surface waves
When it enters the interdigital electrode 4, is reflected by the reflector 6, and propagates through the interdigital electrode 4 again, the central axis 0 of the interdigital electrode 4
.. -0. It is desirable that the phases of the incident wave and reflected wave are always in phase. Therefore, the position of each reflective element must be such that it satisfies the above conditions.

第2図は各反射素子の位置を決めるために、第1図00
「0.および反射器6のみを改めて示したもので、10
は反射器、11は1番目の反射素子、12は   −i
 + 1番目の反射素子である。i番目とi+1番目の
反射素子によシ反射される表面波の周波数fi。
Figure 2 shows how to determine the position of each reflective element in Figure 1.00.
"0." and reflector 6 are shown again, 10
is a reflector, 11 is the first reflective element, and 12 is −i
+ 1st reflective element. Frequency fi of the surface waves reflected by the i-th and i+1-th reflecting elements.

波長λi速度Vとするとこれらの間には次の関係が成り
立つ。
When the wavelength λi is the velocity V, the following relationship holds between them.

fiなる表面波の中心軸0.−0.より反射素子までの
往復の伝搬路の平均値はχ!す11+χiである。すだ
れ状電極に入射する表面波と反射器10によシ反射され
、再びすだれ状電極を伝搬する表面波が中心軸0.−0
.で常に同相となるためにはχ1−H1l+χi = 
Nλ;(2)なる式が必要十分条件である。ここでNは
正の整数である。
The central axis of the surface wave fi is 0. -0. The average value of the round-trip propagation path to the reflective element is χ! It is 11+χi. The surface wave incident on the interdigital electrode is reflected by the reflector 10, and the surface wave that propagates through the interdigital electrode again is aligned with the center axis 0. -0
.. In order to always have the same phase, χ1−H1l+χi =
The expression Nλ; (2) is a necessary and sufficient condition. Here, N is a positive integer.

式(1)と式(2)を組合せると なる漸化式が得られ、これを変形して次式が得られる ここでDは中心軸0.−0.に最も近い反射素子のo、
−0,からの距離である。又i番目とi + 1番目の
反射素子によりて反射される表面波の周波数fiは式(
4)を式(1)へ代入して得られとなる。
By combining equations (1) and (2), a recurrence equation is obtained, and by transforming this equation, the following equation is obtained. Here, D is the central axis 0. -0. o of the reflective element closest to
-0, is the distance from. The frequency fi of the surface waves reflected by the i-th and i+1-th reflecting elements is expressed by the formula (
4) into equation (1).

したがって広帯域フィルタの下限周波数をFl、上限周
波数をF、とするとこれらの帯域の波を反射させるため
の反射素子の数mとDの関係は、式(4)、で与られ、
F、 Ftが決まるとDとmの関係が求められる。ここ
でυは表面波速度である。数値計算例としてF、 = 
910MHz、 F2= 940PJi11z、Y−Z
LiNbOa基板を用いるとしてυ=3488%を式(
6)へ代入し、mとDの関係を求めたのが第3図で、実
線はDの値、破線はDと反射器の長さの和りを示してい
る。
Therefore, if the lower limit frequency of the broadband filter is Fl and the upper limit frequency is F, the relationship between the number m of reflective elements for reflecting waves in these bands and D is given by equation (4),
Once F and Ft are determined, the relationship between D and m is determined. Here υ is the surface wave velocity. As an example of numerical calculation, F, =
910MHz, F2=940PJi11z, Y-Z
Assuming that a LiNbOa substrate is used, υ=3488% is calculated using the formula (
6) to find the relationship between m and D. The solid line shows the value of D, and the broken line shows the sum of D and the length of the reflector.

この図では、第2図の中心軸0.−0.よシたとえば3
828μmと401.5μmの間に10対の不等間隔反
射格子をおけば、中心軸0.−〇、を通過する910M
Hzから940 MHzの周波数の表面波と反射格子に
よシ反射され再び中心軸0.−0.に戻る同じ帯域の表
面波は周波数によらず常に同相となり、反射器がガい場
合に本来逃げていく表面波の一部あるいは全部を出力変
換器から電気信号として取シ出すことが出来る。
In this figure, the center axis 0. -0. For example, 3
If 10 pairs of unevenly spaced reflection gratings are placed between 828 μm and 401.5 μm, the center axis will be 0. −〇、910M passing through
A surface wave with a frequency of Hz to 940 MHz is reflected by the reflection grating and returns to the center axis 0. -0. The surface waves in the same band that return to the surface are always in phase regardless of the frequency, and part or all of the surface waves that would normally escape if the reflector is weak can be extracted as an electrical signal from the output converter.

以上のように反射器の反射素子の位置を式(4)の様に
与えれば、式(5)で示す周波数の表面波は、中心軸0
1−0.で入射表面波と反射表面波の位相が周波数によ
らず常に同相となり、その結果として広帯域フィルタの
損失を帯域内で一様に改善するこ釉 とが可能となる。さらに単方向性電極を用いたフィルタ
のように移相器も必要としないだめ−極めて損失の低い
フィルタの実現が容易となる。
As mentioned above, if the position of the reflective element of the reflector is given as in equation (4), the surface wave with the frequency shown in equation (5) will be
1-0. The phases of the incident surface wave and the reflected surface wave are always in phase regardless of the frequency, and as a result, it becomes possible to improve the loss of the broadband filter uniformly within the band. Furthermore, unlike filters using unidirectional electrodes, a phase shifter is not required, making it easy to realize a filter with extremely low loss.

第4図は本発明になる弾性表面波フィルタの別の実施例
を示す平面図で圧電基板21上にすだれ状電極23から
なる入力変換器とすだれ状電極22.24を接続してな
る出力変換器が設けられている。又25〜30は反射素
子間隔が表面波伝搬方向に沿って変化している6個の反
射器である。第1図の実施例では漏洩表面波を反射させ
るための反射器はすだれ状電極の片側に1個のみであり
、反射素子数が少ない場合反射される表面波の強度があ
まり強くならないこともあシうる。そこで第3図に示す
ように反射素子数が異なると反射器を設置する場所が変
わる点を利用すれば、すだれ状電極22゜24の片側に
反射素子数の異なる反射器を互いに重イ・      
さならないように複数個設けることが出来、すだれ状電
極へ反射される表面波の強度を著しく増大させることが
できる。第4図の実施例では、反射器25 、28の反
射素子数をflJ、同26 、29をm2、同27゜3
0をm3としたとき互いの反射器が重さらないようにI
TI <m2 <mlの条件が満足されている。この場
合、入力変換器よシ放射されかつ出力変換器で電気信号
に変換されない漏洩表面波は3個の反射器で反射され再
び出力変換器へ到達する為極めて損失の少ないフィルタ
を実現する仁とが出来る。尚本実施例では、すだれ状電
極の片側に3個の反射器を設けた場合であるが、反射器
の個叡を2個以上順次増加させれは、フィルタの損失を
より一層低減させることが出来る。さらに第1図、第4
図の実施例では、3電極形フイルタについてのべたが、
2を極形フィルタの場合にも実施例でのべた反射器で漏
洩表面波を反射せしめれば、フィルタの損失をより低減
できることは言うまでもない。
FIG. 4 is a plan view showing another embodiment of the surface acoustic wave filter according to the present invention, and is an output converter formed by connecting an input transducer consisting of an interdigital electrode 23 and interdigital electrodes 22 and 24 on a piezoelectric substrate 21. A container is provided. Further, reference numerals 25 to 30 indicate six reflectors in which the spacing between reflective elements changes along the surface wave propagation direction. In the embodiment shown in Fig. 1, there is only one reflector on one side of the interdigital electrode for reflecting leaky surface waves, and if the number of reflecting elements is small, the intensity of the reflected surface waves may not be very strong. I can do it. Therefore, if we take advantage of the fact that the location of the reflector will change depending on the number of reflective elements as shown in FIG.
It is possible to provide a plurality of such electrodes so that the interdigital electrodes do not cause damage, and the intensity of the surface waves reflected to the interdigital electrodes can be significantly increased. In the embodiment shown in FIG. 4, the number of reflective elements of the reflectors 25 and 28 is flJ, and the number of reflection elements of the reflectors 26 and 29 is m2, and the number of reflection elements is 27°3.
When 0 is m3, I
The condition TI < m2 < ml is satisfied. In this case, the leaky surface waves radiated from the input transducer and not converted into electrical signals by the output transducer are reflected by the three reflectors and reach the output transducer again, making it possible to realize a filter with extremely low loss. I can do it. In this example, three reflectors are provided on one side of the interdigital electrode, but if the number of reflectors is increased by two or more, the loss of the filter can be further reduced. I can do it. Furthermore, Figures 1 and 4
In the example shown in the figure, a three-electrode filter is described, but
It goes without saying that even in the case of a pole-shaped filter (2), if the leakage surface waves are reflected by the reflector shown in the embodiment, the loss of the filter can be further reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明になる弾性表面波フィルタの一実施例を
示す平面図で 1 圧電基板、23,4すだれ状電極、5.6  反射
器を示し、 第2図は弾性表面波反射器の反射素子の位置を定めるだ
めのモデル図で 10 弾性表面波反射器、11  i番目反射素子、1
2i+1番目の反射素子 を示す。 又第3図は、計算例として下限周波数910■h、上限
周波数950 M)I zでY−Z LiNbC)s基
板を用いた時の反射器の反射素子数と反射器のすだれ状
電極からの距離を示したものである。 第4図は本発明になる弾性表面波フィルタの別の実施例
を示す平面図で 21 圧電基板、22.23.24  すだれ状電極、
25〜30反射器 を示す。 楽3図 D      70      20     30 
     4−D万−射昆番の対数 几 ■ 手続補正書 特許庁長官 殿 1、事件の表示   昭和57年 特 許願第1078
19号2、発明の名称  弾性表面波フィルタ3、補正
をする者 事件との関係       出 願 人東京都港区芝7
i、 l ’ ■33番12′1(423)   日本
電気株式会社 代表者 関本忠弘 4、代理人 5、補正の対象 明細書の発明の詳細な説明の欄 6、補正の内容 (1)明細書4頁19行目に「ビー・アルボツタ」とあ
るのを[ビー・アール・ボッタ」と補正する。 (2)q細書9頁5行目にr x t+t  (−4F
4−) ’ D Jとあるのを[X申=(+P−+−)
lD」と補正する。 (3)  明細書10頁5行目に「実線はDの値、破線
はDと反射器の長さの和りを示している」とあるのを[
D及びDと反射器の長さの和りが示されている」と補正
する。 (4)−明細書12頁12行目に12電極形フイルタ」
とあるのを[2電極形フイルタ及び4を種以上の多電極
形フィルタ」と補正する。 1−
Fig. 1 is a plan view showing an embodiment of the surface acoustic wave filter according to the present invention, showing 1 piezoelectric substrate, 23, 4 interdigital electrodes, and 5.6 reflector, and Fig. 2 shows the surface acoustic wave reflector. In the model diagram for determining the position of the reflective element, 10 surface acoustic wave reflector, 11 i-th reflective element, 1
The 2i+1th reflective element is shown. Also, Figure 3 shows, as a calculation example, the number of reflective elements in the reflector and the number of reflections from the interdigital electrodes of the reflector when using a Y-Z LiNbC)s substrate with a lower limit frequency of 910 h and an upper limit frequency of 950 M)Iz. It shows the distance. FIG. 4 is a plan view showing another embodiment of the surface acoustic wave filter according to the present invention.21 Piezoelectric substrate, 22.23.24 Interdigital interdigital electrode,
25-30 reflectors are shown. Raku 3D 70 20 30
4-Dman-Shikonban logarithm 几■ Procedural amendment Commissioner of the Patent Office 1, Indication of case 1981 Patent application No. 1078
No. 19 No. 2, Title of the invention: Surface acoustic wave filter 3, Relationship with the person making the amendment case: Applicant: 7, Shiba, Minato-ku, Tokyo
i, l' ■No. 33 12'1 (423) NEC Corporation Representative Tadahiro Sekimoto 4, Agent 5, Column 6 for detailed explanation of the invention in the specification subject to amendment, Contents of amendment (1) Description On page 4, line 19, the phrase "Be Arbotta" is corrected to "Be R Botta." (2) r x t+t (-4F
4-) ' D J [X = (+P-+-)
ld”. (3) On page 10, line 5 of the specification, it says, "The solid line shows the value of D, and the broken line shows the sum of D and the length of the reflector."
The sum of D and D and the length of the reflector is shown.'' (4) - 12-electrode filter on page 12, line 12 of the specification
The statement "2-electrode filter, and 4 is a multi-electrode filter with more than one type" is corrected. 1-

Claims (2)

【特許請求の範囲】[Claims] (1)  圧電基板上に、電気信号を音響信号へ変換す
る為の少くとも1個以上のすだれ状電極からなる入力変
換器と、音響信号を電気信号へ変換するための少くとも
1個以上のすだれ状電極から成る出力変換器とを設け、
さらに前記入力変換器よシ放射されかつ前記出力変換器
で電気信号へ変換されずに伝搬する漏洩表面波を出力変
換器の方へ反射させかつ前記漏洩表面波の入射伝搬方向
に沿って格子間隔を徐々に増加もしくは減少せしめた反
射器を複数個設けたととを特徴とする弾性表面波フィル
タ。
(1) On a piezoelectric substrate, there is an input transducer consisting of at least one interdigital electrode for converting an electric signal into an acoustic signal, and an input transducer consisting of at least one interdigital electrode for converting an acoustic signal into an electric signal. and an output converter consisting of interdigital electrodes,
Further, the leaky surface waves radiated from the input transducer and propagating without being converted into electrical signals by the output transducer are reflected toward the output transducer, and the grating spacing is arranged along the incident propagation direction of the leaky surface waves. A surface acoustic wave filter comprising: a plurality of reflectors that gradually increase or decrease .
(2)Nを2個以上の整数とし、前記出力変換器を構成
するすだれ状電極の中で最も前記反射器に近いすだれ状
電極の中心部から前記反射器の反射点までの距離が、常
に前記漏洩表面波の波長のN/2倍となる様に前記反射
器の格子間隔を定めたことを特徴とする特許請求の範囲
第1項記載の弾性表面波フィルタ。
(2) N is an integer of 2 or more, and the distance from the center of the interdigital electrode closest to the reflector among the interdigital electrodes constituting the output converter to the reflection point of the reflector is always 2. The surface acoustic wave filter according to claim 1, wherein the lattice spacing of the reflector is determined to be N/2 times the wavelength of the leaky surface wave.
JP10781982A 1982-06-23 1982-06-23 Surface acoustic wave filter Pending JPS58223912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10781982A JPS58223912A (en) 1982-06-23 1982-06-23 Surface acoustic wave filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10781982A JPS58223912A (en) 1982-06-23 1982-06-23 Surface acoustic wave filter

Publications (1)

Publication Number Publication Date
JPS58223912A true JPS58223912A (en) 1983-12-26

Family

ID=14468834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10781982A Pending JPS58223912A (en) 1982-06-23 1982-06-23 Surface acoustic wave filter

Country Status (1)

Country Link
JP (1) JPS58223912A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61230419A (en) * 1985-04-03 1986-10-14 Toyo Commun Equip Co Ltd Two-port idt excitation type resonator and resonance filter
JPH06501441A (en) * 1990-11-09 1994-02-17 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー Process and apparatus for providing flexible closure material for attachment to receptacles
US6140890A (en) * 1997-11-12 2000-10-31 Nec Corporation Saw filter with multiple reflector pairs
KR100689716B1 (en) * 1999-09-20 2007-03-09 후지쯔 가부시끼가이샤 Surface acoustic wave reflector
JP4534307B2 (en) * 2000-05-24 2010-09-01 パナソニック株式会社 Surface acoustic wave filter
JP2013168996A (en) * 2009-04-23 2013-08-29 Panasonic Corp Antenna duplexer and electronic apparatus mounted with the same
US20140159833A1 (en) * 2012-03-14 2014-06-12 Panasonic Corporation Elastic wave device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678219A (en) * 1979-11-30 1981-06-27 Hitachi Ltd Elastic surface wave device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678219A (en) * 1979-11-30 1981-06-27 Hitachi Ltd Elastic surface wave device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61230419A (en) * 1985-04-03 1986-10-14 Toyo Commun Equip Co Ltd Two-port idt excitation type resonator and resonance filter
JPH06501441A (en) * 1990-11-09 1994-02-17 ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー Process and apparatus for providing flexible closure material for attachment to receptacles
US6140890A (en) * 1997-11-12 2000-10-31 Nec Corporation Saw filter with multiple reflector pairs
KR100689716B1 (en) * 1999-09-20 2007-03-09 후지쯔 가부시끼가이샤 Surface acoustic wave reflector
JP4534307B2 (en) * 2000-05-24 2010-09-01 パナソニック株式会社 Surface acoustic wave filter
JP2013168996A (en) * 2009-04-23 2013-08-29 Panasonic Corp Antenna duplexer and electronic apparatus mounted with the same
US8723620B2 (en) 2009-04-23 2014-05-13 Panasonic Corporation Antenna sharer with a ladder filter
US20140159833A1 (en) * 2012-03-14 2014-06-12 Panasonic Corporation Elastic wave device
US9287849B2 (en) * 2012-03-14 2016-03-15 Skyworks Panasonic Filter Solutions Japan Co., Ltd. Elastic wave device

Similar Documents

Publication Publication Date Title
JPH027527B2 (en)
JP3606944B2 (en) SAW filter
KR20190095876A (en) Elastic wave device, radio-frequency front-end circuit, and communication apparatus
JPS5925525B2 (en) surface acoustic wave resonator
JPS58223912A (en) Surface acoustic wave filter
US3654574A (en) Acoustic-wave transmitting system having curvilinear transducers
US3990023A (en) Elastic surface wave device
JP3385169B2 (en) Surface acoustic wave multimode filter
JP3695353B2 (en) Transversal surface acoustic wave filter
JP2013168864A (en) Elastic surface wave element and electronic component
US5818310A (en) Series-block and line-width weighted saw filter device
JPS5972816A (en) Elastic surface wave device
JP3298251B2 (en) Surface acoustic wave device
US3697899A (en) Acoustic surface wave transmission device
CN215773066U (en) Novel surface acoustic wave filter reflection grating structure and surface acoustic wave filter
WO1999046856A1 (en) Surface acoustic wave filter
US4166987A (en) Surface acoustic wave multistrip coupler
SU1346060A3 (en) Band-pass filter on surface acoustic waves
JPS5997216A (en) Acoustic surface wave filter
JPH03145316A (en) Non-reversible surface wave tranceduser
JP2003133889A (en) Longitudinally coupled surface acoustic wave resonator filter
JPS58156211A (en) Surface acoustic wave resonator type filter
JP4843862B2 (en) Surface acoustic wave device
SU726651A1 (en) Narrow-band filter based on acoustic surface waves
JPS585605B2 (en) surface acoustic wave transducer