JPS58223303A - Positive temperature coefficient porcelain semiconductor element - Google Patents

Positive temperature coefficient porcelain semiconductor element

Info

Publication number
JPS58223303A
JPS58223303A JP10639482A JP10639482A JPS58223303A JP S58223303 A JPS58223303 A JP S58223303A JP 10639482 A JP10639482 A JP 10639482A JP 10639482 A JP10639482 A JP 10639482A JP S58223303 A JPS58223303 A JP S58223303A
Authority
JP
Japan
Prior art keywords
semiconductor
electrode
ohmic
cover
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10639482A
Other languages
Japanese (ja)
Other versions
JPH0145721B2 (en
Inventor
丹羽 準
向井 寛克
誠 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP10639482A priority Critical patent/JPS58223303A/en
Publication of JPS58223303A publication Critical patent/JPS58223303A/en
Publication of JPH0145721B2 publication Critical patent/JPH0145721B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は正特性磁器半導体素子に関するものである。[Detailed description of the invention] The present invention relates to a positive characteristic ceramic semiconductor device.

従来この種の半導体素子としては、その半導体の表裏面
に例えばNi製のオーミック電極を設け、かつオーミッ
ク電極の表面に、これの全域を覆う例えばAgMのカバ
ー電極を設けた構造である。
Conventionally, this type of semiconductor element has a structure in which ohmic electrodes made of, for example, Ni are provided on the front and back surfaces of the semiconductor, and a cover electrode made of, for example, AgM is provided on the surface of the ohmic electrode to cover the entire area thereof.

かかる従来のものによれば、通電により半導体のうちオ
ーミック電極間の部分が発熱するのであるが、この発熱
によって半導体が割れるという問題が往々にしである。
According to such conventional devices, when electricity is applied, a portion of the semiconductor between the ohmic electrodes generates heat, and this heat generation often causes the semiconductor to crack.

一方、カバー電極は、オーミック電極に端子を接触さゼ
た際の接触抵抗の低減、ならびにその保護を目的とする
ため、その表面積はオーミック電極に比べて大きいので
、しばしばカバー電極間が電気的に短絡してしまうとい
う問題を生じる。
On the other hand, the purpose of cover electrodes is to reduce the contact resistance when a terminal is brought into contact with an ohmic electrode, as well as to protect it. Because its surface area is larger than that of an ohmic electrode, there is often an electrical gap between the cover electrodes. This causes a problem of short circuit.

そこで本発明は、半導体の表裏面に渡るカバー電極間の
絶縁距離の関係、ならびにオーミック電極の外縁と半導
体の外縁との距離および半導体の厚さの関係を所定の式
で表わされる範囲内に設定(2) することにより、上述の諸問題を解決することを目的と
するものである。
Therefore, the present invention sets the relationship between the insulation distance between the cover electrodes on the front and back surfaces of the semiconductor, the distance between the outer edge of the ohmic electrode and the outer edge of the semiconductor, and the relationship between the thickness of the semiconductor within a range expressed by a predetermined formula. (2) The purpose is to solve the above-mentioned problems by doing so.

以下本発明を具体的実施例によって詳細に説明する。ま
ず、第1図および第2図において、半導体素子の構造を
述べると、1は円板状の正特性磁器半導体、2は平面が
真円状のオーミック電極で、Niの無電解メッキで形成
されている。3は平面が真円状のカバー電極で、Agペ
ーストの塗布焼付けにより形成されている。このカバー
電極3は上記オーミック電極2より表面積を大きくして
あり、このカバー電極3によってオーミック電極2の全
表面を覆うようにしである。
The present invention will be explained in detail below using specific examples. First, in Figures 1 and 2, the structure of the semiconductor element is described. 1 is a disk-shaped positive characteristic ceramic semiconductor, 2 is an ohmic electrode with a perfect circular plane, and is formed by electroless Ni plating. ing. Reference numeral 3 denotes a cover electrode having a perfect circular plane, which is formed by applying and baking Ag paste. This cover electrode 3 has a larger surface area than the ohmic electrode 2, and is designed to cover the entire surface of the ohmic electrode 2.

次に、」二記第2図に示す実施例において、その各寸法
、即ちオーミック電極2の外縁と半導体1の外縁との間
の距離し、半導体■の厚みt、力rzH−電極3の外縁
と半導体1の外縁との間の距離を半導体10表裏面で1
1 +  ’ 2とした時の実験データを第3図および
第4図に示す。
Next, in the embodiment shown in FIG. and the outer edge of the semiconductor 1 on the front and back surfaces of the semiconductor 10.
Experimental data when 1+'2 is shown in FIGS. 3 and 4.

第3図は上記I4、tの関係により半導体lの割れ発生
率がどのように変化するかを示すもので、(3) 条件は12V直/i!I電源を使用し、通電を1分間、
1分後直ちに通電停止を1分間というON −OF F
サイクルを1・−タルで1000時間行なった。この第
3図から明らかなごとく、L/lが31を境にして割れ
発生率が有り、無しの全くの極端な結果を示している。
Figure 3 shows how the cracking incidence rate of semiconductor l changes depending on the relationship between I4 and t, and (3) the condition is 12V direct/i! Using the I power supply, turn on the power for 1 minute,
ON-OF F that immediately stops power supply for 1 minute after 1 minute.
The cycle was run for 1000 hours at 1.-tal. As is clear from FIG. 3, the results show that there is a cracking occurrence rate when L/l exceeds 31, and there is no cracking occurrence rate, which is a completely extreme result.

従って、L/L≦3msがよいことがわかる。Therefore, it can be seen that L/L≦3ms is good.

一方、第4図は−1−記7!1.βχtの関係によりカ
バー電極間の絶縁抵抗がどのように変化するかを示すも
ので、条件LSI: 24 V直流電源を使用し、80
°C395〜95%RI−1の高温、高湿度の下にチタ
ン酸バリウムよりなる絶縁体を配置し、カバー電極間の
電気絶縁抵抗を測定した。なお、上記の半導体Iを用い
るどカバー電極間の電気絶縁抵抗が測定できないので、
半導体1の代わりに上記の絶縁体を用いたのである。従
って、図中、tはこの絶縁体の厚みとしてあり、カバー
電極の材質はAgとしである。なお、この実験にはオー
ミック電極は形成してない。
On the other hand, Fig. 4 shows -1-7!1. This shows how the insulation resistance between the cover electrodes changes depending on the relationship of βχt. Conditions LSI: 24 V DC power supply, 80 V
An insulator made of barium titanate was placed at a high temperature of 395°C to 95% RI-1 and high humidity, and the electrical insulation resistance between the cover electrodes was measured. In addition, since the electrical insulation resistance between the cover electrodes cannot be measured using the above semiconductor I,
The above insulator was used instead of the semiconductor 1. Therefore, in the figure, t is the thickness of this insulator, and the material of the cover electrode is Ag. Note that no ohmic electrode was formed in this experiment.

第4図から、l11+I!> +4が’1m++以上で
あると(4) 絶縁抵抗は100MΩと大きく、安定している。
From Figure 4, l11+I! > When +4 is '1m++ or more, (4) the insulation resistance is as large as 100MΩ and is stable.

これに対し、11+βλ+Lが2mmを下回ると絶縁抵
抗が小さくなり、電極間が電気的に短絡しやすくなるこ
とがわかる。故に、7!i十m!χ十tの関係は7!1
→−7!> +t≧21麿がよいことがわかる。
On the other hand, it can be seen that when 11+βλ+L is less than 2 mm, the insulation resistance decreases and electrical short circuit between the electrodes becomes more likely. Therefore, 7! i ten meters! The relationship of χ1t is 7!1
→-7! It can be seen that +t≧21 is better.

なお、本発明において、カバー電極3が半導体lの軸心
よりずれた第5図の場合、11は第5図の寸法をいう 
(β2も同じこと)。また、半導体1は第6図のごとく
四角形状でもよく、この場合の41.p2は図示のとお
りである。カバー電極3は半導体lの表裏面で対称配置
しなくて互いにずれていもよい。
In the present invention, in the case of FIG. 5 in which the cover electrode 3 is offset from the axis of the semiconductor 1, 11 refers to the dimensions in FIG.
(Same thing for β2). Further, the semiconductor 1 may have a rectangular shape as shown in FIG. 6, and in this case, 41. p2 is as shown. The cover electrodes 3 may not be arranged symmetrically on the front and back surfaces of the semiconductor 1, but may be shifted from each other.

また、オーミック電極2は、このオーミック電極間に挾
まれた半導体部分を発熱させるのであるから、半導体1
の表裏面で対称位置に設ける。このオーミ・7り電極2
に関係する前記りは第5,6図のカバー電極3をオーミ
ック電極とすれば、そのβx  (j!>)がLとなる
Furthermore, since the ohmic electrode 2 generates heat in the semiconductor portion sandwiched between the ohmic electrodes, the semiconductor 1
Provided in symmetrical positions on the front and back sides of the This Ohmi-7 electrode 2
Regarding the above, if the cover electrode 3 in FIGS. 5 and 6 is an ohmic electrode, its βx (j!>) becomes L.

本発明の用途は発熱装置、例えば内燃機関の燃料霧化促
進装置、あるいは温風発生装置、抵抗器(5) などあらゆるものに適している。
The present invention is suitable for all kinds of heat generating devices, such as fuel atomization promoting devices for internal combustion engines, hot air generators, and resistors (5).

以上要するに、本発明は半導体の割れをなくし、かつ半
導体表裏のカバーを電極間の電気的短絡を防止できると
いう点で実用上の効果は大きい。
In summary, the present invention has great practical effects in that it can eliminate cracks in the semiconductor and prevent electrical short circuits between electrodes on the front and back covers of the semiconductor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す平面図、第2図は第1
図の側面断面図、第3図および第4図は本発明の詳細な
説明に供する特性図、第5図および第6図は本発明の他
の実施例を示す平面図である。 l・・・半導体、2・・・オーミック電極、3・・・カ
バー電極。 代理人弁理士 岡 部   隆 (6) −11= ヌ 各ゼ寄通ど
Fig. 1 is a plan view showing one embodiment of the present invention, and Fig. 2 is a plan view showing an embodiment of the present invention.
3 and 4 are characteristic diagrams for explaining the present invention in detail, and FIGS. 5 and 6 are plan views showing other embodiments of the present invention. l...Semiconductor, 2...Ohmic electrode, 3...Cover electrode. Representative Patent Attorney Takashi Okabe (6) -11=

Claims (1)

【特許請求の範囲】 正特性磁器半導体素子の表裏面に、互いに対向する位置
においてオーミック電極を設け、かつこのオーミック電
極の表面に該オーミック電極より表面積の大きいカバー
電極を設り、このカバー電極により前記オーミック電極
の全表面を覆った構造の正特性磁器半導体素子であって
、 前記オーミック電極の外縁と前記半導体の外縁との間の
距離を1.とし、前記半導体の厚みをtとした時、L/
L≦3龍の関係を満足するよう前記オーミック電極を前
記半導体の表裏面の対称位置に設け、かつ 前記カバー電極の外縁と前記半導体の伺縁との間の距離
を該半導体の表裏面で11.l>とじた時、前記tの関
連でlユ+ez→−t≧2vsvsの)1法関係を満足
して前記カバー電極を前記オーミ’)り電極の表面に設
けた正特性磁器半導体素子。 (1)
[Claims] Ohmic electrodes are provided on the front and back surfaces of the PTC ceramic semiconductor element at positions facing each other, and a cover electrode having a larger surface area than the ohmic electrode is provided on the surface of the ohmic electrode. A PTC ceramic semiconductor device having a structure in which the entire surface of the ohmic electrode is covered, wherein the distance between the outer edge of the ohmic electrode and the outer edge of the semiconductor is 1. and when the thickness of the semiconductor is t, L/
The ohmic electrodes are provided at symmetrical positions on the front and back surfaces of the semiconductor so as to satisfy the relationship L≦3, and the distance between the outer edge of the cover electrode and the raised edge of the semiconductor is 11 on the front and back surfaces of the semiconductor. .. A positive characteristic ceramic semiconductor element, wherein the cover electrode is provided on the surface of the ohm') electrode so as to satisfy the 1 law relationship of 1+ez→-t≧2vsvs when t is closed. (1)
JP10639482A 1982-06-21 1982-06-21 Positive temperature coefficient porcelain semiconductor element Granted JPS58223303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10639482A JPS58223303A (en) 1982-06-21 1982-06-21 Positive temperature coefficient porcelain semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10639482A JPS58223303A (en) 1982-06-21 1982-06-21 Positive temperature coefficient porcelain semiconductor element

Publications (2)

Publication Number Publication Date
JPS58223303A true JPS58223303A (en) 1983-12-24
JPH0145721B2 JPH0145721B2 (en) 1989-10-04

Family

ID=14432469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10639482A Granted JPS58223303A (en) 1982-06-21 1982-06-21 Positive temperature coefficient porcelain semiconductor element

Country Status (1)

Country Link
JP (1) JPS58223303A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125802A (en) * 1987-11-10 1989-05-18 Murata Mfg Co Ltd Positive temperature coefficient thermistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125802A (en) * 1987-11-10 1989-05-18 Murata Mfg Co Ltd Positive temperature coefficient thermistor
JPH0556001B2 (en) * 1987-11-10 1993-08-18 Murata Manufacturing Co

Also Published As

Publication number Publication date
JPH0145721B2 (en) 1989-10-04

Similar Documents

Publication Publication Date Title
JPH0211763Y2 (en)
JPH11222664A (en) Metal mask, formation of resistor by using this metal mask and production of resistor using this metal mask
JPH0316251Y2 (en)
JPS58223303A (en) Positive temperature coefficient porcelain semiconductor element
JP2757305B2 (en) Chip varistor
JP2004006519A (en) Multi-terminal varistor
JPS5917510B2 (en) PTC heating element and its manufacturing method
JPH02220406A (en) Multipolar varistor
JPS637601A (en) Network resistor for surface mount
JPH0322883Y2 (en)
JP2613408B2 (en) Multilayer piezoelectric actuator
JP3356508B2 (en) Thermistor sensor
JPH056641Y2 (en)
US20010004074A1 (en) Exothermic body and method of making same
JPS60225389A (en) Ignition plug
JPS5961001A (en) Resistor
JPS60138902A (en) Face bonding type voltage nonlinear resistance porcelain
JPH0347282Y2 (en)
JPH0132322Y2 (en)
JPS61234003A (en) Varistor
JPS61224600A (en) Composite element
JPH0834138B2 (en) Surge absorber
JPS5848407A (en) Method of producing positive temperature coefficient porcelain semiconductor
JPH0239401A (en) Chip resistor
JP2003234201A (en) Resistor and its manufacturing method