JPS58221276A - Sputtering device - Google Patents

Sputtering device

Info

Publication number
JPS58221276A
JPS58221276A JP10302382A JP10302382A JPS58221276A JP S58221276 A JPS58221276 A JP S58221276A JP 10302382 A JP10302382 A JP 10302382A JP 10302382 A JP10302382 A JP 10302382A JP S58221276 A JPS58221276 A JP S58221276A
Authority
JP
Japan
Prior art keywords
target
reactive gas
shield
sputtering
partial pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10302382A
Other languages
Japanese (ja)
Inventor
Tadayoshi Kinoshita
木下 忠良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP10302382A priority Critical patent/JPS58221276A/en
Publication of JPS58221276A publication Critical patent/JPS58221276A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0063Reactive sputtering characterised by means for introducing or removing gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Abstract

PURPOSE:To assure the required amt. of the reactive gas in the erosion area near a target and to minimize the amt. of the reactive gas near a substrate, by forming the ejection ports for the reactive gas and a target shield into one body and disposing the same at the distance near the target. CONSTITUTION:A target 1 adhered onto a backing plate 201 is supported isolatedly by means of a support base 2 disposed on the base plate 12 of a bell-jar 11. A target shield 4 is disposed around the plate 12 and the target 1 isolatedly from the base 2. Ar is introduced through an introducing valve 9, and a reactive gas is ejected through an introducing valve 8 and an introducing pipe 801 directly to the target 1 from plural ejection ports 401 provided to the shield 4. Abnormal electric discharge is thus prevented and the partial pressure of the reactive gas is decreased.

Description

【発明の詳細な説明】 発明の技術分野 本発明はスパッタリング装置に係り、特にターゲットシ
ールドの構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a sputtering apparatus, and particularly to the structure of a target shield.

発明の技術的背景とその問題点 された粒子を基板側に付着させて薄膜化する方法である
。真空蒸着では困難な酸化物、窒化物、炭化物等の薄膜
が容易に形成できる利点がある。ところで実際には、磁
石を用いてターゲット上に直交電磁界の場を作り、ガス
のイオン化効率をあげ膜のスパッタ速度をはやくしたマ
グネトロン方式が一般的であり、実用化されて工業的応
用も広がっている。プラズマを作るためのガスにはアル
ゴン(以下Arと称する)を用いるのが一般的である。
Technical background of the invention and its problems This is a method of attaching particles to a substrate to form a thin film. It has the advantage that thin films of oxides, nitrides, carbides, etc., which are difficult to form using vacuum evaporation, can be easily formed. In reality, however, the magnetron method, which uses magnets to create orthogonal electromagnetic fields on the target to increase the gas ionization efficiency and speed up the sputtering speed of the film, is common, and has been put into practical use and its industrial applications are expanding. ing. Argon (hereinafter referred to as Ar) is generally used as a gas for creating plasma.

形成する膜の種類により酸化物のときは酸素(以下02
と称する)、窒化物のときは窒素、炭化物のときはメタ
ン等の反応ガスをAr1C付加した形で導入する。
Depending on the type of film to be formed, oxygen (hereinafter 02
In the case of nitrides, nitrogen is introduced, and in the case of carbides, a reactive gas such as methane is introduced in the form of Ar1C added.

スパッタリングによる膜のうち、たとえば酸化物の膜を
形成するには次の2つの方法が利用される。
Among films formed by sputtering, the following two methods are used to form, for example, an oxide film.

一つは金属ターゲットを用いて02とArとの混合ガス
雰囲気中でスパッタリングする。モラ一つはその物質の
酸化物から作ったターゲットを用いてArでスパッタリ
ングする。一般に前者はArに占める020割合によっ
て金属から酸化物へと変化し、02の量も多く必要とす
る。後者は高純度で均質な酸化物ターゲットが作りにく
い等の欠点もめるが、安定な酸化物ではAr雰囲気中で
スパッタリングでき制御が容易である。しかし分解しや
すい酸化物では反応性ガス即ち02の導入を必要とする
One is sputtering using a metal target in a mixed gas atmosphere of O2 and Ar. One method is sputtering with Ar using a target made from an oxide of the material. Generally, the former changes from a metal to an oxide depending on the proportion of 020 in Ar, and requires a large amount of 02. Although the latter has drawbacks such as difficulty in producing a highly pure and homogeneous oxide target, stable oxides can be sputtered in an Ar atmosphere and can be easily controlled. However, easily decomposed oxides require the introduction of a reactive gas, ie 02.

たとえばZnO,TJO,、8nO,、Ta、O,等は
Olの分離AIじゃすく組成がその化学量論性からずれ
て、絶縁体から半導体へと変化したりする。これを防止
するために0□とArとの混合ガス雰囲気中でスパッタ
リングする。
For example, in ZnO, TJO, 8nO, Ta, O, etc., the composition of the separated AI film deviates from its stoichiometry and changes from an insulator to a semiconductor. To prevent this, sputtering is performed in a mixed gas atmosphere of 0□ and Ar.

ところが、一般に反応性ガスとArとの混合ガス雰囲気
中の反応性ガスの量は付着した膜が化学量論性を保つた
めと、ターゲット表面の分解を抑えるためとに充分な量
が必要である。しかしスパッタリング装置内特に膜を形
成する基板とターゲットとの間の反応性ガスの量を増す
と膜の形成速度が遅くなる。この−例として第1図にT
a、O,の酸素分圧とスパッタリング速度との関係を示
す。
However, in general, the amount of reactive gas in the mixed gas atmosphere of reactive gas and Ar must be sufficient to maintain the stoichiometry of the deposited film and to suppress decomposition of the target surface. . However, increasing the amount of reactive gas in the sputtering apparatus, particularly between the substrate on which the film is to be formed and the target, slows down the film formation rate. As an example of this, T
The relationship between the oxygen partial pressure of a, O, and the sputtering rate is shown.

この時のスパッタリングの条件はo2とArとの混合ガ
スの圧力が2.66X10−’Pa、スパッタリングの
パワーがitcw、ターゲットが直径20oIIII+
の円板で行なった場合においてである。
The sputtering conditions at this time are that the pressure of the mixed gas of o2 and Ar is 2.66X10-'Pa, the sputtering power is itcw, and the diameter of the target is 20oIII+.
This is the case when the test was carried out using a disc.

また、一般にマグネトロン方式でのターゲット表面では
磁界がターゲットと平行になる場所がプラズマの濃度が
般も高くなりスパッタリングが集中する。通常ここをエ
ロージョンエリアト称シ、この領域はほとんどターゲッ
ト近傍で厚さも通常敷部である。この領域が特に分解も
生じゃすい。
Furthermore, in general, on the target surface in the magnetron method, the concentration of plasma is generally high at the location where the magnetic field is parallel to the target, and sputtering is concentrated. This area is usually called the erosion area, and this area is mostly near the target and is usually thick. This area is especially prone to decomposition.

即ち反応性ガス量が不足するとここが導電性となりアー
ク放電のような異常放電が生じその結果スプラッシュが
生じて膜中に混入したりひいてはターゲット表面が溶融
しクラックを生じる。そこでスパッタリング法による膜
の形成速度が遅くなっても、スパッタリング装置内の反
応性ガス量を増してターゲット表面近傍のエロージョン
エリアの反応性ガスの必要量を確保せねばならない。即
ちスパッタリング装置内の反応性ガス分圧が必要以上高
くなり膜の形成速度が遅くなる。
That is, if the amount of reactive gas is insufficient, this region becomes conductive and abnormal discharge such as arc discharge occurs, resulting in splash that is mixed into the film and eventually melts the target surface and causes cracks. Therefore, even if the rate of film formation by sputtering is slow, the amount of reactive gas in the sputtering apparatus must be increased to ensure the required amount of reactive gas in the erosion area near the target surface. That is, the reactive gas partial pressure within the sputtering apparatus becomes higher than necessary, and the film formation rate becomes slow.

ところで、真空排気の手段として通常油拡散ポンプを使
用する。これは拡散前をボイルしてジェットより噴出さ
せて気体分子を排気するという原理である。特に反応性
ガスに0.を用いた場合従来技術のスパッタリング装置
においては、高温になった拡散前と02 とが反応し油
の劣化をはやめるという欠点がある。その上、拡散前に
酸化に強いシリコーン系を用いてもこのような劣化はさ
け難く拡散前の頻繁な交換を必要とする。たとえば第1
図に示す酸素分圧1.33X10  Paの量を導入し
てスパッタリングを続けると拡散前の寿命は酸素を使用
しないときの略1/4〜略IAとなる。即ち02の量が
増えると拡散前の寿命は短くなる問題が反応性ガスにO
lを用いた場合はあった。
Incidentally, an oil diffusion pump is usually used as a means for evacuation. This is the principle of boiling the gas before diffusion and ejecting it from a jet to exhaust gas molecules. Especially for reactive gases. When using a conventional sputtering apparatus, there is a drawback that the heated pre-diffusion reacts with the 02 and the deterioration of the oil is stopped. Moreover, even if a silicone system resistant to oxidation is used before diffusion, such deterioration is difficult to avoid and frequent replacement is required before diffusion. For example, the first
If sputtering is continued by introducing the amount of oxygen partial pressure 1.33×10 Pa shown in the figure, the lifetime before diffusion becomes approximately 1/4 to approximately IA of that when oxygen is not used. In other words, as the amount of O2 increases, the life before diffusion becomes shorter.
There were cases where l was used.

発明の目的 本発明はターゲット近傍のエロージョンエリアでのアー
ク放電等の異常放電を防止するために必要以上に反応性
ガス分圧を高くした反応性ガスとArとの混合ガス雰囲
気中でのスパッタリングによる膜形成速度が遅れる欠点
を解消するためになされたもので、反応性ガスの噴出口
とターゲットシールドとを一体化してこの一体化物をタ
ーゲットの至近距離に配置しターゲット近傍のエロージ
ョンエリアの反応性ガスの必要量は確保しスパッタリン
グ装置内特に基板附近の反応性ガス量を最小にしたスパ
ッタリング装置を提供するものである、。
Purpose of the Invention The present invention is based on sputtering in a mixed gas atmosphere of reactive gas and Ar with a reactive gas partial pressure higher than necessary in order to prevent abnormal discharge such as arc discharge in the erosion area near the target. This was done in order to eliminate the drawback of slow film formation speed, by integrating the reactive gas nozzle and the target shield, and placing this integrated product close to the target to reduce the reactive gas in the erosion area near the target. The purpose of the present invention is to provide a sputtering apparatus that secures the necessary amount of reactive gas and minimizes the amount of reactive gas within the sputtering apparatus, especially near the substrate.

発明の概要 本発明のスパッタリング装置によれば反応性ガスの噴出
口とターゲットシールドとを一体化してなり、ターゲッ
トの至近距離にこの一体化物を配置しターゲット近傍の
エロージョンエリアの反応性ガスの必要量を確保しつつ
スパッタリング装置特に基板附近の反応性ガス量が最小
に々る。これにより、スパッタリングによる膜の形成速
度が速められた。
Summary of the Invention According to the sputtering apparatus of the present invention, a reactive gas ejection port and a target shield are integrated, and this integrated structure is placed close to the target to reduce the required amount of reactive gas in the erosion area near the target. The amount of reactive gas in the sputtering equipment, especially near the substrate, is minimized while ensuring the same. This increased the rate of film formation by sputtering.

発明の実施例 以下第2図を参照して本発明のスパッタリング装置の一
実施例を説明する。
Embodiment of the Invention An embodiment of the sputtering apparatus of the present invention will be described below with reference to FIG.

バッキングプレート(201)上に接着されたターゲッ
ト(1)を支持する絶縁された導体からなるターゲラ)
支持台(2)カヘルジャーαθのベースプレートαの上
に配設される。そしてバッキングプレート(201)と
ターゲット(1)の周囲にはターゲット支持台(2)と
絶、練性を保ちつつターゲットシールド責4)が配設さ
れる。このターゲットシールド責4)バターゲット(1
)への放電のまわりこみを防止するものであおり、この
基板ホルダー(6)はホルダー支持棒(7)によってベ
ースプレート(17J上に配置されている。そして、A
rはAr導入弁(9)からスパッタリング装置内に導入
されるが、反応性ガスたとえば02は反応ガス導入弁(
8)から導入され反応性ガス導入管(801)を通って
ターゲットシールド(4)に設けられた図示していない
複数の噴出口から直接ターゲット(1)に反応性ガスを
噴きつける。このようにするとターゲット(1)近傍の
エロージョンエリアの反応性ガス濃度は必要量が確保さ
れ、基板(5)とターゲット(1)との反応性ガス分圧
は従来方法より下がり、膜形成速度が従来方法よりも速
くなった。またスパッタリング装置内の真空排気は排:
′祇口(3)を通して図示していない油拡散ポンプを用
いて行なわれる。
Targeter consisting of an insulated conductor supporting a target (1) glued onto a backing plate (201)
Support stand (2) is arranged on the base plate α of the Kaheru jar αθ. A target shield 4) is disposed around the backing plate (201) and the target (1), keeping the target support stand (2) and the target shielding structure stable. This target shield responsibility 4) Ba target (1
), and this substrate holder (6) is placed on the base plate (17J) by a holder support rod (7).
r is introduced into the sputtering apparatus from the Ar introduction valve (9), but the reactive gas, for example 02, is introduced from the reactive gas introduction valve (9).
8) and passes through a reactive gas introduction pipe (801), and is sprayed directly onto the target (1) from a plurality of spout ports (not shown) provided in the target shield (4). In this way, the required concentration of reactive gas in the erosion area near the target (1) is ensured, the partial pressure of the reactive gas between the substrate (5) and the target (1) is lower than in the conventional method, and the film formation rate is increased. Faster than the conventional method. Also, the vacuum evacuation inside the sputtering equipment is:
'This is carried out using an oil diffusion pump (not shown) through the opening (3).

次に第3図および第4図を参照してターゲットシールド
責4)の複数の噴出口を説明する。第3図においてター
ゲットシールド(4)の円筒部(404)には複数の噴
出口(401)が設けられている。さらに円筒部(40
4)のターゲット支持台(2)側には外縁部(402)
が形成されている。この外縁部(402)上にはターゲ
ット支持台(2)に取り付ける支持孔(403)が設け
られている。第4図において、ターゲットシールド(4
)は両端が開口された円筒であり、円筒内にはバッキン
グプレート(201)に接着N(101)−で接着され
たターゲット(1)とパッキングブL/ −ト(201
)とが挿入されている。このターゲットシールド(4)
とターゲラ) (1)との間隙は略2〜3暉程度である
。また、ターゲットシールド(4)の円筒部(404)
の壁は中空(405)で、反応性ガス導入管(801)
を通り直径略1〜2mの噴出孔(401)からターゲッ
ト(1)に反応性ガスを噴きつけることができる。たと
えば直径が略200Mの大きさの円板状のターゲラ) 
(1)には噴出孔(401)の数を8〜16度が一番高
くなりマグネトロン方式のターゲット表面近傍にあるエ
ロージョンエリアにも効率的に反応性ガスが供給され、
従来方法にくらべ最小の反応性ガス量で、アーク放電等
の異常放電を防止する目的が達成される。この方法によ
れば従来の場合の反応性ガス分圧よりも低くてもターゲ
ット表面の分解を抑える効果が得られた。た゛とえば従
来1.33X10  Paであったものが本発明では6
.65XIOPaでも良かった。即ち、ターゲット近傍
での反応性ガス分圧の必要量を確保し、基板とターゲッ
ト近傍との反応性ガス分圧を従来よりもおすよることに
よりスパッタリングによる膜形成速度が従来のものより
も速くなった。また同一電力でのスパッタリング速度も
向上し、特に反応性ガスに02を用いる場合は排気系の
拡散油の寿命も長くなった。
Next, the plurality of ejection ports of the target shield element 4) will be explained with reference to FIGS. 3 and 4. In FIG. 3, a plurality of jet ports (401) are provided in the cylindrical portion (404) of the target shield (4). Furthermore, the cylindrical part (40
There is an outer edge (402) on the target support stand (2) side of 4).
is formed. A support hole (403) for attaching to the target support stand (2) is provided on this outer edge (402). In Figure 4, the target shield (4
) is a cylinder with both ends open, and inside the cylinder are a target (1) glued to a backing plate (201) with adhesive N(101)- and a packing plate L/-t (201).
) is inserted. This target shield (4)
The gap between (1) and Targera) is approximately 2 to 3 degrees. In addition, the cylindrical part (404) of the target shield (4)
The wall is hollow (405), and the reactive gas introduction tube (801)
The reactive gas can be sprayed onto the target (1) from the spray hole (401) having a diameter of approximately 1 to 2 m. For example, a disc-shaped Targera with a diameter of approximately 200 m)
(1) The number of ejection holes (401) is the highest at 8 to 16 degrees, and reactive gas is efficiently supplied to the erosion area near the target surface of the magnetron method.
The purpose of preventing abnormal discharges such as arc discharges is achieved with a minimum amount of reactive gas compared to conventional methods. According to this method, the effect of suppressing the decomposition of the target surface was obtained even if the partial pressure of the reactive gas was lower than that in the conventional case. For example, the conventional pressure was 1.33×10 Pa, but with the present invention it is 6.
.. 65XIOPa would have been fine. In other words, by securing the necessary amount of reactive gas partial pressure near the target and applying a higher reactive gas partial pressure between the substrate and the target than before, the film formation rate by sputtering becomes faster than conventional methods. Ta. Furthermore, the sputtering speed with the same power was improved, and the life of the diffusion oil in the exhaust system was also extended, especially when 02 was used as the reactive gas.

次に第5図を参照して本発明の他の実施例を説明する。Next, another embodiment of the present invention will be described with reference to FIG.

第5図のターゲットシールド責4)は一実施例のターゲ
ットシールド(4)と基本的には同じであり、唯形が長
方形となっただけである。このターゲットシールド(4
)は、長方形の大形ターゲットについて適用するための
ものである。
The target shield (4) in FIG. 5 is basically the same as the target shield (4) of the embodiment, except that the shape is rectangular. This target shield (4
) is intended to be applied to large rectangular targets.

また本発明の一実施例では反応性ガスとArと導入管(
soi)から導入しても良いのは言うまでもない 発明の効果 本発明のスパッタリング装置(でよれば反応性ガスの噴
出口とターゲットシールドとが一体化になり、ターゲッ
トの至近距離にこの一体化物を配置することが出来るの
で必要最小限の反応性ガスをターゲット供給することが
できるようになった。
Furthermore, in one embodiment of the present invention, the reactive gas, Ar and the inlet pipe (
It goes without saying that the sputtering apparatus of the present invention may be introduced from the sputtering device (according to the sputtering device of the present invention), the reactive gas outlet and the target shield are integrated, and this integrated product is placed at a close distance to the target. This makes it possible to supply the minimum necessary amount of reactive gas to the target.

これにより、ターゲット近傍のエロージョンエリアにお
いて発生するーγ−り放電等の異常放電を防止しスパッ
タリング装置内の反応性ガス分圧を下げることができス
パッタリングによる膜の形成速度が速められた。
This prevents abnormal discharges such as -gamma discharges occurring in the erosion area near the target, lowers the reactive gas partial pressure in the sputtering apparatus, and increases the speed of film formation by sputtering.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は’rato、の酸素ガス圧とスパッタ速度との
関係を示す図、第2図は本発明の一実施例のスパッタリ
ング装置の構成図、第3図は第2図の要部拡大図、第4
図は第2図の要部拡大模式図、第5図は角形ターゲット
に使用する本発明の他の実施ff1Jのターゲットシー
ルドの斜視図である。 (1)・・・ターゲット、(2)・・・ターゲット支持
台、(4)・・・ターゲットシールド、醤・・・ベース
プレート、(401)・・・噴出口。 代理人 弁理士 則 近 憲 佑 (ほか1名)(11
) 第  3  因 第1図 第2図 第  4  図 第  5  図 μ/ l、o/ δL μj
Fig. 1 is a diagram showing the relationship between 'rato' oxygen gas pressure and sputtering speed, Fig. 2 is a block diagram of a sputtering apparatus according to an embodiment of the present invention, and Fig. 3 is an enlarged view of the main parts of Fig. 2. , 4th
The figure is an enlarged schematic view of the main part of FIG. 2, and FIG. 5 is a perspective view of a target shield according to another embodiment ff1J of the present invention used for a rectangular target. (1)...Target, (2)...Target support, (4)...Target shield, sauce...Base plate, (401)...Ejection port. Agent Patent attorney Kensuke Chika (and 1 other person) (11
) Third factor Figure 1 Figure 2 Figure 4 Figure 5 μ/ l, o/ δL μj

Claims (1)

【特許請求の範囲】[Claims] ベースプレート上に配置された導体からなるターゲット
支持台と、このターゲット支持台に配置されたターゲッ
トと、このターゲットへの放電のまわりこみを防止する
ターゲットシールドとを備えたスパッタリング装置にお
いて、前記ターゲットシールドはガスを噴出する複数の
噴出口を具備していることを特徴とするスパッタリング
装置。
In a sputtering apparatus, the target shield includes a target support made of a conductor placed on a base plate, a target placed on the target support, and a target shield that prevents electric discharge from going around the target. A sputtering device characterized by having a plurality of spouting ports that spout out.
JP10302382A 1982-06-17 1982-06-17 Sputtering device Pending JPS58221276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10302382A JPS58221276A (en) 1982-06-17 1982-06-17 Sputtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10302382A JPS58221276A (en) 1982-06-17 1982-06-17 Sputtering device

Publications (1)

Publication Number Publication Date
JPS58221276A true JPS58221276A (en) 1983-12-22

Family

ID=14343040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10302382A Pending JPS58221276A (en) 1982-06-17 1982-06-17 Sputtering device

Country Status (1)

Country Link
JP (1) JPS58221276A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2705690A1 (en) * 1993-04-22 1994-12-02 Balzers Hochvakuum Installation provided with a gas inlet device, for the treatment of substrates in a vacuum container, and method for this treatment.
JPH06346234A (en) * 1993-06-08 1994-12-20 Anelva Corp Sputtering device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2705690A1 (en) * 1993-04-22 1994-12-02 Balzers Hochvakuum Installation provided with a gas inlet device, for the treatment of substrates in a vacuum container, and method for this treatment.
CH687258A5 (en) * 1993-04-22 1996-10-31 Balzers Hochvakuum Gas inlet arrangement.
US5622606A (en) * 1993-04-22 1997-04-22 Balzers Aktiengesellschaft Gas inlet arrangement
JPH06346234A (en) * 1993-06-08 1994-12-20 Anelva Corp Sputtering device

Similar Documents

Publication Publication Date Title
CA1223549A (en) Method and apparatus for reactive vapour deposition of compounds of metal and semi-conductors
US5487787A (en) Apparatus and method for plasma deposition
KR100277321B1 (en) Reactive sputtering apparatus and process for forming thin film using same
CA1321772C (en) Apparatus for the application of thin layers to a substrate by means of cathode sputtering
KR100278190B1 (en) Thin film forming apparatus and process for forming thin film using same
US5490910A (en) Circularly symmetric sputtering apparatus with hollow-cathode plasma devices
KR950005350B1 (en) Reaction sputtering apparatus
EP2692898A1 (en) Plasma cvd apparatus, plasma cvd method, reactive sputtering apparatus, and reactive sputtering method
KR100221048B1 (en) Sputtering apparatus
US11674213B2 (en) Sputtering apparatus including gas distribution system
JPH0641733A (en) Reactive sputtering device
JPS58221276A (en) Sputtering device
JPH04214007A (en) Method and apparatus for producing oxide superconducting film
JPH03166366A (en) Method and device for reactive sputtering
JPH07238370A (en) Sputtering film forming device
US5631050A (en) Process of depositing thin film coatings
JP2005272941A (en) Sputtering source and deposition system
JP2001140066A (en) Thin film deposition method and deposition system
JP3808148B2 (en) Composite sputtering cathode and sputtering apparatus using the cathode
JPH04331795A (en) Production of polycrystalline thin film
JPS63307254A (en) Apparatus for forming thin oxide film
JPH06272037A (en) Formation of thin film and apparatus therefor
JPS63103066A (en) Sputtering device of planar magnetron system
EP0790328A1 (en) Thin film deposition
JPS6046369A (en) Opposed target type sputtering apparatus