JPS58206057A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPS58206057A
JPS58206057A JP57089042A JP8904282A JPS58206057A JP S58206057 A JPS58206057 A JP S58206057A JP 57089042 A JP57089042 A JP 57089042A JP 8904282 A JP8904282 A JP 8904282A JP S58206057 A JPS58206057 A JP S58206057A
Authority
JP
Japan
Prior art keywords
graphite
positive electrode
discharge
active mass
fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57089042A
Other languages
Japanese (ja)
Inventor
Hisaaki Otsuka
大塚 央陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57089042A priority Critical patent/JPS58206057A/en
Publication of JPS58206057A publication Critical patent/JPS58206057A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/5835Comprising fluorine or fluoride salts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve voltage drop in initial discharge stage and increase discharge capcity by adding to a positive electrode noncovalent bond graphite intercalation compound intercalating metal fluoride and fluorine between graphite layers. CONSTITUTION:A light metal as a negative active mass, nonaqueous solution prepared by dissolving an inorganic salt in an organic solvent as an electrolyte, and graphite fluoride as a positive active mass are used. Noncovalent bond graphite intercarlation compound intercalating metal fluoride and fluorine between graphite layers is added to the positive electrode. Graphite fluoride having larger electrochemical equivalent is used as a main active mass, and CeF(MFm)n having good conductivity and reactivity as active mass, and high potential is added to the positive electrode, and a battery is assembled. Removal or decrease of nonreactive conductive mass, capacity increase by discharge reaction of CeF(MFm)n, and mixed potential of both active mass improve voltage performance in initial discharge stage. Graphite fluoride is nonconductive before discharge but becomes conductive by discharge inorder to form graphite, then conductivity of the positive electrode is increased.

Description

【発明の詳細な説明】 本発明は、負極にリチウム、ナトリウム、アルミニウム
、マグネシウム等の軽金属、電解液としてγ−ブチロラ
クト/、ディメトキシエタン、プロピレンカーボネイト
等の非プロトン性有機溶媒にホウフッ化リチウム、過塩
素酸リチウムなどの無機塩を溶解させた非水系電解液を
用い、正極の主活物質として、フッ化黒鉛((CFりn
SO<1≦1を用いる非水電解液電池の正極への添加剤
に関するもの1である。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses light metals such as lithium, sodium, aluminum, and magnesium as a negative electrode, and lithium borofluoride as an aprotic organic solvent such as γ-butyrolact/, dimethoxyethane, and propylene carbonate as an electrolyte. Using a non-aqueous electrolyte in which an inorganic salt such as lithium perchlorate is dissolved, graphite fluoride ((CF) is used as the main active material of the positive electrode.
This article relates to an additive to the positive electrode of a non-aqueous electrolyte battery using SO<1≦1.

この電池の正極活物質である7〕化黒鉛は化学的に極め
て安定で、電気化学当量が大きく、しかも放電反応((
CF ) n+ne −n(:+nF −)  により
電導性の良い炭素を生成するので、高エネルギー密度で
貯蔵性が良く、内部抵抗が放電後半でも上昇しにくく、
平坦な放電電圧の電池を構成するに極めて適した材料と
して知られている。
The positive electrode active material of this battery, 7] graphite, is chemically extremely stable, has a large electrochemical equivalent, and has a discharge reaction ((
CF)n+ne-n(:+nF-) generates carbon with good conductivity, so it has high energy density and good storage properties, and internal resistance does not increase easily even in the latter half of discharge.
It is known as a material that is extremely suitable for constructing batteries with a flat discharge voltage.

また、フッ化黒鉛は共有績き性の黒鉛層間化合物に属し
、非電導性であるので、正極を構成する場合、多くの正
極活物質の場合と同様に導電剤を混合して正極の電子電
導性を付与する必要がある。
In addition, fluorinated graphite belongs to the covalent graphite intercalation compound and is non-conductive, so when composing the positive electrode, a conductive agent is mixed in to conduct the electronic conduction of the positive electrode, as is the case with many positive electrode active materials. It is necessary to give gender.

通常は正極重量の6〜20%の炭素粉を添加し結着剤と
ともに混合して成型するが、その際導電剤の占める体積
は、多い場合には正極の3o%程度にも及んでおり、活
物質の充填量をさらに多くして容量増大を計る余地を残
している。また、フッ化黒鉛正極の放電特性のうち、改
良を要する問題として放電初期電圧が若干不安定で、・
ト坦電圧に達する1でに−ぽ電圧が降下する現象がある
Usually, carbon powder is added in an amount of 6 to 20% of the weight of the positive electrode, mixed with a binder, and molded, but at this time, the volume occupied by the conductive agent is as much as 30% of the positive electrode. There is still room to increase the capacity by increasing the amount of active material filled. In addition, among the discharge characteristics of the fluorinated graphite positive electrode, the initial discharge voltage is slightly unstable, which requires improvement.
There is a phenomenon in which the -po voltage drops at 1 when the -po voltage reaches the flat voltage.

この挙動の原因は未だ定説はないが、フッ化黒鉛の分子
の外層に存在する>CF2− cv3基の放電反応の影
響が放電初期において支配的であるとする説もある。そ
の原因はさておき、その改良に関して、二酸化マンガン
など初期電圧が比較的高い活物質を添加するなどの方法
が提案されているが、貯蔵中にフッ化黒鉛との相互作用
を来し、性能が劣化する問題があった。
Although there is still no established theory as to the cause of this behavior, there is a theory that the influence of the discharge reaction of >CF2-cv3 groups present in the outer layer of the fluorinated graphite molecules is dominant in the initial stage of discharge. Putting aside the cause, methods have been proposed to improve it, such as adding active materials with a relatively high initial voltage such as manganese dioxide, but these interact with fluorinated graphite during storage and degrade performance. There was a problem.

本発明は、フッ化黒鉛を正極の主活物質とする非水電解
液電池の上記問題の解決、すなわち、放電初期電圧の降
下現象の改善、及び一層の放電容量の増大を計ったもの
である。
The present invention aims to solve the above-mentioned problems of nonaqueous electrolyte batteries using fluorinated graphite as the main active material of the positive electrode, that is, to improve the drop phenomenon of the initial discharge voltage and further increase the discharge capacity. .

本発明は、上記電池の正極:に導電剤、補助活物質を兼
ね、しかも放電電圧がフッ化黒鉛より若干高い物質、す
なわち、金属フッ化物とフッ素が黒鉛層間に挿入された
非共有結合性黒鉛層間化合物を添加することにより、放
電初期電圧の改良と放電容量の増大を計ったものである
The present invention uses a material that serves as a conductive agent and an auxiliary active material in the positive electrode of the battery, and has a discharge voltage slightly higher than that of fluorinated graphite, that is, non-covalent graphite in which metal fluoride and fluorine are inserted between graphite layers. By adding an intercalation compound, the initial discharge voltage is improved and the discharge capacity is increased.

上記の黒鉛層間化合物は金属フッ化物と炭素をフッ素ガ
スの存在下で加熱して得られるもので、CeF(MFm
)n (Mは非遷移元素2mはその原子価)で表わされ
る。非共有結合性黒鉛層間化合物には他にCeM’Fm
 (M′は遷移元素)で表わされるものがあり、何れも
炭素よりはるかに高電導性の材料として注目されており
、後者が大気中では化学的に不安定であり取扱いや電池
材料どしての性質に難点があるのに対し、前者は化学的
に安定であり、しかもフッ素を層間に持つのでこれが電
池の活物質としての反応を行い、理論的な放電容量はフ
ッ化黒鉛に較べて小さく、単独の活物質としては魅力に
乏しいが、放電電位が若干高く、放電初期から安定して
いる点が特徴である。F述のCeF(MFm)n型化合
物の代表的なものとして、CeF(AQF  )n 、
CeF(MgF2)nなどがあり、これとフッ化黒鉛と
の放電特性をリチウムを対極として有機電解液中で比較
し、その類型的な概念図を示すと第1図のようになる。
The above graphite intercalation compound is obtained by heating metal fluoride and carbon in the presence of fluorine gas.
)n (M is a non-transition element, 2m is its valence). Other non-covalent graphite intercalation compounds include CeM'Fm.
(M' is a transition element), and both are attracting attention as materials with much higher conductivity than carbon, and the latter is chemically unstable in the atmosphere, making it difficult to handle and use as a battery material. However, the former is chemically stable and has fluorine between its layers, which reacts as an active material in batteries, and its theoretical discharge capacity is smaller than that of fluorinated graphite. Although it is not very attractive as a single active material, it is characterized by a slightly high discharge potential and stability from the initial stage of discharge. Typical examples of CeF(MFm) n-type compounds mentioned in F are CeF(AQF)n,
There are materials such as CeF(MgF2)n, and the discharge characteristics of these and graphite fluoride are compared in an organic electrolyte using lithium as a counter electrode, and a typical conceptual diagram is shown in FIG. 1.

第1図においてAはC@F(MFm)、Bは(CF)n
を示しており、前述の双方の放電特性の相異が定性的な
概念として理解されよう。
In Figure 1, A is C@F(MFm), B is (CF)n
The above-mentioned difference in discharge characteristics between the two can be understood as a qualitative concept.

壕だ、双方の活物質とも、放電反応にフッ素のみが関与
する点で共通し、しかも化学的に安定な材料であること
から、双方を正極中に混在させて貯蔵した場合にも自己
消耗反応はなく、放電に際しては比較的高電位のCeF
(MFm)nの放電が優先しながらも、(CF)nの放
電が並行して進行して混成電位を示し、放電初期の電圧
を(CF)nを単独で用いた場合よ抄高めることが出来
る。
Both active materials have in common that only fluorine is involved in the discharge reaction, and since they are chemically stable materials, self-depletion reactions occur even when both are mixed and stored in the positive electrode. CeF is relatively high potential during discharge.
Although the discharge of (MFm)n takes priority, the discharge of (CF)n proceeds in parallel and shows a hybrid potential, making it possible to increase the voltage at the initial stage of discharge compared to when (CF)n is used alone. I can do it.

本発明は前述のようなフッ化黒鉛及びCe F (MF
’m)11の諸性質に注目し、双方の長所を活し、短所
を補うことによって成立したものであり、電気化学当量
の大きいフッ化黒鉛を主活物質とし、これに導電性が良
く、活物質としても反応し、しかも高電位を有するCe
F(MFm)nを添加した正極を用いて電池を構成する
ことにより、炭素等の非反応性導電剤の省略もしくは減
量と、CeF(MFm)nの放電反応による容置の増大
、並びに双方の活物質の混成電位による放電初期電圧特
性の改良を果したものである。また、フッ化黒鉛は未放
電状態では非伝導性ながら、放電により炭素を生成して
正極の電導性を向上させるが、それに加えてCeF(M
Fm)nの放電生成物であるCe(LiF)(MFm)
n も未放電状態と大差ない電導性を有するので、放電
の後半から終期にかけても電池の内部抵抗を低く維持で
き、終止電圧降下の少い平坦な電圧特性が得られる。
The present invention uses fluorinated graphite and CeF (MF
'm) It was established by focusing on the properties of 11, taking advantage of the strengths of both, and compensating for the weaknesses.The main active material is graphite fluoride, which has a large electrochemical equivalent, and has good conductivity. Ce reacts as an active material and has a high potential
By constructing a battery using a positive electrode to which F(MFm)n is added, it is possible to omit or reduce the amount of non-reactive conductive agents such as carbon, increase the capacity due to the discharge reaction of CeF(MFm)n, and increase the capacity of both. This improves the initial discharge voltage characteristics due to the mixed potential of the active material. In addition, although fluorinated graphite is nonconductive in the undischarged state, it generates carbon during discharge and improves the conductivity of the positive electrode.
Ce(LiF)(MFm) which is a discharge product of Fm)n
Since n also has conductivity that is not much different from that in the undischarged state, the internal resistance of the battery can be maintained low even from the latter half to the final stage of discharge, and flat voltage characteristics with little final voltage drop can be obtained.

第2図は本発明の効果を実験的に確認するために構成し
た電池の断面図である。第2図において11はステンレ
ススチール製の封目板、2は1に溶接された同材質の負
極集電ネット、3は2に圧着されたリチウム負極、4は
ポリプロピレン不織布のセパレータ、5は7ノ化黒鉛(
(CFx)n)を主成分としフッ素樹脂粉末とCeF(
MFm)n 、及びアセチレンプラックを後述の如く種
々の配合割合で混合して加圧成型した正極、6はチタン
製のIF極集電ネットで正極5に圧入されている。7は
ステンレススチール製の電池ケース、8は゛ポリプロピ
レン製のガスケットで、封口は電池ケース7の開口部の
内方への折りまげにより果している。電池内にはプロピ
レンカーボネイトとディメトキシエタンとを1=1の容
量比率で混合した溶媒にホウフッ化リチウムを1モル/
l溶解させた電解液が注入されている。
FIG. 2 is a sectional view of a battery constructed to experimentally confirm the effects of the present invention. In Fig. 2, 11 is a sealing plate made of stainless steel, 2 is a negative electrode current collector net made of the same material welded to 1, 3 is a lithium negative electrode crimped to 2, 4 is a separator made of polypropylene nonwoven fabric, and 5 is a 7-hole graphite (
(CFx)n) as the main component, fluororesin powder and CeF(
MFm)n and acetylene plaque are mixed and pressure-molded in various proportions as described below, and a positive electrode 6 is press-fitted into the positive electrode 5 with an IF electrode current collector net made of titanium. 7 is a battery case made of stainless steel, 8 is a gasket made of polypropylene, and the sealing is accomplished by folding the opening of the battery case 7 inward. Inside the battery, 1 mole of lithium borofluoride was added to a solvent mixed with propylene carbonate and dimethoxyethane at a volume ratio of 1=1.
A dissolved electrolyte is injected.

上記の構成による直径20闘、厚さ1.6胴の電池を、
正極の配合処方を次表の如く種々かえて試作した。
A battery with the above configuration with a diameter of 20 mm and a thickness of 1.6 mm,
Prototypes were made with various positive electrode formulations as shown in the table below.

第3図及び第4図はこれらA〜Iの電池を温度20°C
,30kQで定抵抗放電を行った結果を示したものであ
る。第3図は、正極の生活物質として(CF)nを用い
、これに06F(AnF3)。、1.あるいは03F(
MgF2)。、。3を種々の添加量で配合したものの比
較図で、添加量が多い程初期心圧が高く、改善効果は著
しい。又30 M It係以下の添加量では放電容量は
大きくなるが、46重址チ以上では却って容量は減少す
る。最適配合穢は電池に要求される特性によって異るが
、一般的には放電電圧が高く、電圧平坦性に擾れ、人容
惜のものを良とするので、5〜30重量係重量別か適切
と考えられる。またA、Fの比較から、2種の添加剤の
間には添加効果に大差がないと解釈できる。
Figures 3 and 4 show batteries A to I at a temperature of 20°C.
, shows the results of constant resistance discharge at 30 kQ. In FIG. 3, (CF)n is used as a positive electrode material, and 06F (AnF3) is used. , 1. Or 03F (
MgF2). ,. This is a comparison diagram of various additive amounts of No. 3. The larger the amount added, the higher the initial heart pressure, and the improvement effect is remarkable. Further, if the amount added is less than 30 M It, the discharge capacity increases, but if it is more than 46 M It, the capacity decreases. The optimal combination of impurities differs depending on the characteristics required of the battery, but generally the discharge voltage is high, the voltage flatness is affected, and it is preferable to have something that is unforgiving, so it should be 5 to 30% by weight. considered appropriate. Furthermore, from the comparison of A and F, it can be interpreted that there is no significant difference in the effect of addition between the two types of additives.

第4図は(CF。、 7)nを生活物質とした場合の活
物質兼導電剤の添加効果を示したもので、(CF)nと
(02F ) nの混在しだ(<1:’Fo、7)nに
オイテも(cp’、)=を主活物質とした第3図と同様
の改善効の結果を得た。
Figure 4 shows the effect of adding an active material and conductive agent when (CF., 7)n is used as a living material, and it is a mixture of (CF)n and (02F)n (<1:' For Fo, 7) n, the same improvement effect as in FIG. 3 was obtained using (cp', )= as the main active material.

以上の如く、本発明の効果は極めて顕著である。第As described above, the effects of the present invention are extremely significant. No.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCeF(MFm)nと(CF)nの正極活物質
としての放電特性の概念図、第2図は本発明の効果を確
認するため構成した電池の断面図、第3′e図及び第4
図は本発明による電池と比較電池の放 圧電特性図であ
る。                (V)+   
i=を口を反、2−負才上丼訃ット、3 、・ノチガム
A勘り斗・・・乞ノeLr−ノ、よ 正”jh’h、t
・−・止層Iし鮫キ、、、)、?・・・・ざυ−ス。 式狸人・ぺ糸井理す 中屋獣胃+sb゛f糸庵 1図 畝e容量 − 12図 の         製 1)巳 味 唾         に Wと
Figure 1 is a conceptual diagram of the discharge characteristics of CeF(MFm)n and (CF)n as positive electrode active materials, Figure 2 is a cross-sectional view of a battery constructed to confirm the effects of the present invention, and Figure 3'e. and fourth
The figure is a discharge piezoelectric characteristic diagram of a battery according to the present invention and a comparative battery. (V)+
i = の 口 , 2 - Negative Saidon 訃 t, 3 , ・Nochigam A Kanarito... beg no eLr-ノ, yo positive"jh'h, t
・-・Stopping layer Ishisameki,,,),? ...Then. Shikitanukijin Risu Peitoi Nakaya beast stomach + sb゛f Itoan 1 figure ridge e capacity - 12 figures of production 1) W and Mimi saliva

Claims (1)

【特許請求の範囲】[Claims] (1)負極活物質として軽金属、電解液として有機溶媒
に無機塩を溶解した非水溶液、正極の主活物質としてフ
ッ化黒鉛をそれぞれ用い、金属フッ化物と7ノ素が黒鉛
層間に挿入された非共有結合性黒鉛層間化合物を正極に
添加した非水電解液電池。 営)非共有結合性黒鉛層間化合物の添加量が、正極重量
の5〜30%である特許請求の範囲第1項記載の非水電
解液電池。
(1) A light metal was used as the negative electrode active material, a non-aqueous solution of an inorganic salt dissolved in an organic solvent was used as the electrolyte, and fluorinated graphite was used as the main active material of the positive electrode, and metal fluoride and 7 elements were inserted between the graphite layers. A non-aqueous electrolyte battery with a non-covalent graphite intercalation compound added to the positive electrode. 2. The nonaqueous electrolyte battery according to claim 1, wherein the amount of the non-covalent graphite intercalation compound added is 5 to 30% of the weight of the positive electrode.
JP57089042A 1982-05-25 1982-05-25 Nonaqueous electrolyte battery Pending JPS58206057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57089042A JPS58206057A (en) 1982-05-25 1982-05-25 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57089042A JPS58206057A (en) 1982-05-25 1982-05-25 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPS58206057A true JPS58206057A (en) 1983-12-01

Family

ID=13959833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57089042A Pending JPS58206057A (en) 1982-05-25 1982-05-25 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPS58206057A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4686161A (en) * 1985-09-16 1987-08-11 Allied Corporation Method of inhibiting voltage suppression lithium/fluorinated carbon batteries
EP0886332A1 (en) * 1997-06-19 1998-12-23 Matsushita Electric Industrial Co., Ltd. Nonaqueous secondary lithium battery with a negative electrode comprising (CF)n
JP2006302593A (en) * 2005-04-19 2006-11-02 Matsushita Electric Ind Co Ltd Lithium primary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4686161A (en) * 1985-09-16 1987-08-11 Allied Corporation Method of inhibiting voltage suppression lithium/fluorinated carbon batteries
EP0886332A1 (en) * 1997-06-19 1998-12-23 Matsushita Electric Industrial Co., Ltd. Nonaqueous secondary lithium battery with a negative electrode comprising (CF)n
US6120707A (en) * 1997-06-19 2000-09-19 Matsushita Electric Industrial Co., Ltd. Secondary battery
JP2006302593A (en) * 2005-04-19 2006-11-02 Matsushita Electric Ind Co Ltd Lithium primary battery

Similar Documents

Publication Publication Date Title
US4197366A (en) Non-aqueous electrolyte cells
JPS62290072A (en) Organic electrolyte secondary battery
JPH11312518A (en) Negative electrode for lithium secondary battery and lithium secondary battery using the same
JPH1092467A (en) Nonaqueous electrolyte secondary battery
JPH10188977A (en) Lithium secondary battery
JP2005183632A (en) Electrochemical device and electric double layer capacitor or battery using the same
JPH02148665A (en) Electrolyte for lithium secondary battery
JPS58206057A (en) Nonaqueous electrolyte battery
JP2830365B2 (en) Non-aqueous electrolyte secondary battery
JPH09293533A (en) Nonaqueous electrolyte secondary battery
JPH04171659A (en) Nonaqueous-electrolyte secondary battery
JPS5816303B2 (en) dench
JPH0620721A (en) Nonaqueous secondary battery
JP2692932B2 (en) Non-aqueous secondary battery
JP2584246B2 (en) Non-aqueous secondary battery
JPS61179063A (en) Lithium secondary battery
JPH053114B2 (en)
JPS62217567A (en) Nonaqueous electrolyte battery
JPS60160566A (en) Nonaqueous electrolyte battery
JP3316221B2 (en) Non-aqueous electrolyte battery
JPH0582167A (en) Nonaqueous electrolyte battery
JPH03291864A (en) Secondary cell
JPS6352749B2 (en)
JPH0350385B2 (en)
JPS58123663A (en) Nonaqueous electrolyte battery