JPS58203220A - Pneumatic thrust bearing unit - Google Patents

Pneumatic thrust bearing unit

Info

Publication number
JPS58203220A
JPS58203220A JP8628382A JP8628382A JPS58203220A JP S58203220 A JPS58203220 A JP S58203220A JP 8628382 A JP8628382 A JP 8628382A JP 8628382 A JP8628382 A JP 8628382A JP S58203220 A JPS58203220 A JP S58203220A
Authority
JP
Japan
Prior art keywords
bearing
air
rotating shaft
pressure
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8628382A
Other languages
Japanese (ja)
Inventor
Mitsuo Nagashima
長島 光男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP8628382A priority Critical patent/JPS58203220A/en
Publication of JPS58203220A publication Critical patent/JPS58203220A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0681Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load
    • F16C32/0692Construction or mounting aspects of hydrostatic bearings, for exclusively rotary movement, related to the direction of load for axial load only

Abstract

PURPOSE:To properly determine or vary the clearance in a pneumatic bearing by mounting one of bearing members which make up the pneumatic bearing so that it can be slided in the axial direction of a rotary shaft. CONSTITUTION:A bearing member 8 of a pneumatic thrust bearing 9a is provided with a movable bearing member 11 which forms another pneumatic thrust bearing 9b in the opposed relation to the left end face of a flange 7 of a rotary shaft 1. When a pressure sensor 28 which is provided for the pneumatic thrust bearing 9a senses a pressure P and outputs it in the form of a signal P to a computing unit 29, it compares the signal with a pressure P1 corresponding to the optimum bearing clearance, in order to vary the preset pressure P2 of a pressure governor 24. As the result, the movable bearing member 11 moves to the right or left to maintain the clearance between the bearing members at the optimum value.

Description

【発明の詳細な説明】 本発明は、軸受すき間を使用条件に合わせて設定可能に
したスラスト空気軸受装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thrust air bearing device in which a bearing clearance can be set according to usage conditions.

空気軸受は、摩擦が非常に小さいため、高速用およびス
ティックスリップをきらう高精度用の回転部などに実用
的に使われ始じめている。空気軸受の長所、短所は、潤
滑剤である空気の粘性が油などの液体潤滑剤に比較して
非常に小さい点に起因しており、短所としては前記のよ
うに粘性が小さいため、軸受面の面精度を高くして軸受
すき間を小さくする必要がある。また、各々の空気軸受
の形状、大きさ、空気の使用供給圧力などの条件によっ
て具体的な数値は異dるが、空気軸受の軸受剛性は、第
1図に示すように、軸受スキ間の大小によって敏感に変
化し、軸受スキ間が所定の値にあるときピーク値を示す
。そこで、空気軸受を使用する場合は、軸受すき間の設
定が重要な問題となる。さらにまた、軸受すき間と空気
の吐出流量との関係は、第2図に示すような傾向にあり
、軸受すき間が小さい場合には、吐出流量すなわち軸受
すき間を流れる空気の流量が減少する。この軸受すき間
を流れる空気は、軸受の発熱を押える作用を持っている
ため、低速の場合は軸受すき間が小くても発熱の問題は
ないが、高速の場合には軸受すき間をある程度大きくし
て吐出流量を多くしなければ発熱してしまう。このよう
に、空気軸受においては、軸受すき間の大小が重要なポ
イントとなる。
Because air bearings have very low friction, they are beginning to be used practically in high-speed and high-precision rotating parts where stick-slip is a concern. The advantages and disadvantages of air bearings are that the viscosity of air, which is a lubricant, is very low compared to liquid lubricants such as oil. It is necessary to improve the surface accuracy of the bearing and reduce the bearing clearance. In addition, although specific numerical values differ depending on conditions such as the shape, size, and air supply pressure of each air bearing, the bearing rigidity of an air bearing is determined by the bearing gap between the bearings, as shown in Figure 1. It changes sensitively depending on the size, and shows a peak value when the bearing clearance is at a predetermined value. Therefore, when using air bearings, setting the bearing clearance becomes an important issue. Furthermore, the relationship between the bearing gap and the air discharge flow rate tends to be as shown in FIG. 2, and when the bearing gap is small, the discharge flow rate, that is, the flow rate of air flowing through the bearing gap, decreases. The air flowing through this bearing gap has the effect of suppressing heat generation in the bearing, so at low speeds there is no problem with heat generation even if the bearing gap is small, but at high speeds the bearing gap should be increased to some extent. If the discharge flow rate is not increased, heat will be generated. Thus, in air bearings, the size of the bearing gap is an important point.

本発明の目的は、前述したように空気軸受においてその
特性に大きな影響を及ぼす軸受すき間に着目し、この軸
受すき間のコントロールにより、使用条件により適した
状態で使用し得るようにしたスラスト空気軸受装置を提
供するにある。
As mentioned above, the purpose of the present invention is to focus on the bearing clearance that greatly affects the characteristics of air bearings, and to control this bearing clearance, the thrust air bearing device can be used in a state more suitable for the usage conditions. is to provide.

本発明の他の目的は、軸受すき間をコントロールするこ
とにより、特定の回転軸を低速と高速など異なった使用
条件のもとで使用し得るようにしたスラスト空気軸受装
置を提供するにある。
Another object of the present invention is to provide a thrust air bearing device that allows a specific rotating shaft to be used under different operating conditions such as low speed and high speed by controlling the bearing clearance.

かかる目的を達成するための本発明は、回転軸上の互い
に相反する側の端面にそれぞれ空気軸受を形成したスラ
スト空気軸受装置において、前記回転軸上の両端面にそ
れぞれ対向して空気軸受を形成する軸受部材のうち少な
くともいずれか一方を回転軸の軸方向へ移動可能に設け
、前記軸受部材の軸方向位置を変えることにより軸受す
き間を適宜に設定もしくは変更し得るようにしたスラス
ト空気軸受装置にある。
To achieve this object, the present invention provides a thrust air bearing device in which air bearings are formed on opposite end faces of a rotating shaft, in which air bearings are formed opposite to each other on both end faces of the rotating shaft. A thrust air bearing device in which at least one of the bearing members is movable in the axial direction of a rotating shaft, and a bearing clearance can be appropriately set or changed by changing the axial position of the bearing member. be.

なお、軸受部材を移動させる手段としては、空気またi
−を油などの流体圧力、ネジ、磁力またはこれらとバネ
の組合せなど種々の手段を採用できる。
Note that air or i
- Various means can be employed, such as fluid pressure such as oil, screws, magnetic force, or a combination of these and springs.

また、前記本発明のスラスト空気軸受装置において、空
気軸受のすき間の大小を検知する手段を付加し、その出
力信号に関連して軸受部材を自動的に移動させるように
すれば、運転中の熱変位による軸受すき間の変化を補償
したり、または指令値に従って軸受すき間を自動的に変
更するなどの適応制御が可能となる。
Further, in the thrust air bearing device of the present invention, if a means for detecting the size of the gap between the air bearings is added and the bearing members are automatically moved in relation to the output signal, it is possible to avoid heat generation during operation. Adaptive control such as compensating for changes in bearing clearance due to displacement or automatically changing bearing clearance according to command values becomes possible.

なお、軸受すき間を検知する手段は、圧力センサによる
空気軸受内の圧力検知、前述した空気軸受の吐出流量検
知ならびに回転軸の変位検知など種々の手段を採用でき
る。
Note that various means can be used to detect the bearing clearance, such as detecting the pressure inside the air bearing using a pressure sensor, detecting the discharge flow rate of the air bearing described above, and detecting the displacement of the rotating shaft.

以下本発明の一実施例を示す第3図ないし第4図につい
て説明する。1はメインモータ2によって駆動される回
転軸、3.4はラジアル空気軸受5.6を形成する軸受
部材、7は回転軸1に設けたつば、8はつば7の第3図
および第4図において右方の端面との間にスラスト空気
軸受C/ae形成する軸受部材であり、前記の各軸受部
材3,4゜8はベース10に取付けられている。
3 and 4 showing one embodiment of the present invention will be explained below. 1 is a rotating shaft driven by the main motor 2, 3.4 is a bearing member forming a radial air bearing 5.6, 7 is a collar provided on the rotating shaft 1, and 8 is a collar 7 shown in FIGS. 3 and 4. A thrust air bearing C/ae is formed between the right end face of the bearing member C/ae, and each of the aforementioned bearing members 3 and 4°8 is attached to the base 10.

前記スラスト空気軸受9aの軸受部材とには、つげ7の
第3図および第4図において左方の端面に対向してスラ
スト空気軸受9bk形成する可動軸受部材IIが設けら
れている。この可動軸受部材11はガイドビン12によ
り回転軸1の軸方向へのみ移動可能に組込まれている。
The bearing member of the thrust air bearing 9a is provided with a movable bearing member II forming a thrust air bearing 9bk facing the left end face of the boxwood 7 in FIGS. 3 and 4. This movable bearing member 11 is incorporated so as to be movable only in the axial direction of the rotary shaft 1 by means of a guide pin 12.

この可動軸受部材11には一端がその外周面に開口し他
端がつば7の左端面に向けて開口する流路13が複数個
設けられ、軸受部材8に設けた流路141r:介し7て
所定の圧力po に保たれた加圧空気を供給されるよう
になっている。なお、15は各々の流路13ごとに設け
られたシール部材である。また、軸受部材8にはつば7
の右端面に向けて開口する流路16が複数個設けられ所
定の圧力Poに保たれた加圧空気を供給されるようにな
っている。つば7の外周側には空間17が形成され、こ
の空間17は軸受部材8に設けた複数個の排出口18に
より大気へ開放されている。他方、つば7の付根側は、
軸受部材8および可動軸受部材11と回転軸1との間隙
19.20ならびに後述する間隙27により大気へ開放
されている。
The movable bearing member 11 is provided with a plurality of channels 13, one end of which opens on its outer peripheral surface and the other end of which opens toward the left end surface of the collar 7. Pressurized air maintained at a predetermined pressure po is supplied. Note that 15 is a sealing member provided for each flow path 13. Further, the bearing member 8 has a collar 7.
A plurality of passages 16 are provided which open toward the right end surface of the cylinder, and pressurized air maintained at a predetermined pressure Po is supplied thereto. A space 17 is formed on the outer peripheral side of the collar 7, and this space 17 is opened to the atmosphere through a plurality of exhaust ports 18 provided in the bearing member 8. On the other hand, the base side of the brim 7 is
It is open to the atmosphere through gaps 19 and 20 between the bearing member 8 and the movable bearing member 11 and the rotating shaft 1, as well as a gap 27, which will be described later.

前記可動軸受部材11の第3図および第4図において左
方の端面には、軸受部材8に固定されたフタ21の内面
が小さなすき間522を有して対向よ、ように’l −
v−Cいh O7p’ 2パ:1:、1に。、前言、オ
き間22に通ずる流路23が設けられ、圧力調整器24
を介して図示しない加圧空気供給源から加圧空気を供給
されるようになっている0前記すき間22の外周側は空
間25を介して排出口26により大気へ開放され、内周
側はフタ21と回転軸1との間隙27により大気へ開放
されている。
The inner surface of the lid 21 fixed to the bearing member 8 faces the left end face of the movable bearing member 11 with a small gap 522 in FIGS. 3 and 4, as shown in FIGS.
v-Ch O7p' 2p:1:, to 1. , a flow path 23 communicating with the gap 22 is provided, and a pressure regulator 24 is provided.
Pressurized air is supplied from a pressurized air supply source (not shown) through the gap 22. The outer circumferential side of the gap 22 is opened to the atmosphere via a space 25 through an exhaust port 26, and the inner circumferential side is connected to a lid. A gap 27 between the rotary shaft 1 and the rotary shaft 1 is opened to the atmosphere.

軸受部材8の軸受面には、スラスト空気軸受9a内の圧
力Pを検知する圧力センサ28が埋設されている。圧力
センサ28からの出力信号pは演算部29へ伝達される
ようになっている。演算部29は、前記圧力Pi軸受す
き間Cの値に換算するかもしくはそのまま制御用の信号
として用い、出力信号pが予じめ定めた値になるように
圧力調整器24を変化させて、可動軸受部材11の左端
のすき間22へ供給する加圧空気の圧力P2’に変え、
可動軸受部材11を右または左へ移動させることにより
、軸受すき間Cの値を変化させるようになっている。な
お、演算部29は、前記出力信号pを常に一定に保つよ
うに圧力調整器24を調整するか、さらには]′回転軸
1の回転数に応じて予    ・しめ定めた関係をもっ
て前記出力信号pt変化させるように圧力調整器24を
調整するように構成されている。
A pressure sensor 28 is embedded in the bearing surface of the bearing member 8 to detect the pressure P within the thrust air bearing 9a. The output signal p from the pressure sensor 28 is transmitted to the calculation section 29. The calculation unit 29 converts the pressure Pi into the value of the bearing clearance C or uses it as a control signal as it is, and changes the pressure regulator 24 so that the output signal p becomes a predetermined value. Change the pressure of pressurized air supplied to the gap 22 at the left end of the bearing member 11 to P2',
By moving the movable bearing member 11 to the right or left, the value of the bearing clearance C is changed. Note that the calculation unit 29 adjusts the pressure regulator 24 so as to keep the output signal p always constant, or further adjusts the output signal p according to a predetermined relationship according to the rotation speed of the rotating shaft 1. The pressure regulator 24 is configured to adjust the pressure regulator 24 to change pt.

次いで本装置の作用について説明する。第1図および第
2図に示したように、空気軸受の特性はそれぞれの空気
軸受の形状、寸法によって定まるので、予じめスラスト
空気軸受qa 、9bの最適軸受すき間C1を求め、そ
のときのスラスト空気軸受qa内の圧力Plを求めてお
く。演算部29には前記最適軸受すき間C1または圧力
P1を設定値として入力しておく。次いで流路14.1
3゜16から加圧空気を供給すると、スラスト空気軸受
9aに設けた圧力センサ28が圧力Pを感知し7てその
出力信号pl演算部29へ伝える。前記圧力Pは、軸受
すき間Cが小さいときには高く、大きい場合は低い傾向
を取るので、前記出力信号pが小さい場合には演算部2
9によって圧力調整器24の設定圧力を上げて可動軸受
部材11の左方のすき間22を増加させ、該可動軸受部
材11を第3図および第4図において右方へ移動させる
Next, the operation of this device will be explained. As shown in Figures 1 and 2, the characteristics of air bearings are determined by the shape and dimensions of each air bearing, so the optimum bearing clearance C1 of thrust air bearings qa and 9b is determined in advance, and then The pressure Pl inside the thrust air bearing qa is determined in advance. The optimum bearing clearance C1 or the pressure P1 is input into the calculation section 29 as a set value. Then the channel 14.1
When pressurized air is supplied from 3.degree. The pressure P tends to be high when the bearing clearance C is small and low when it is large, so when the output signal p is small, the calculation unit 2
9, the set pressure of the pressure regulator 24 is increased to increase the left gap 22 of the movable bearing member 11, and the movable bearing member 11 is moved to the right in FIGS. 3 and 4.

この移動により、軸受すき間Cは小さくされ、圧力Pが
上昇する。前記出力信号pが大きい場合には、前記とは
逆に可動軸受部材11を左方へ移動させて軸受すき間C
を増加させれば、圧力Pが降下する。こうして圧力Pす
なわち軸受すき間Cが演算部29に入力されている最適
軸受すき間C1になシ、圧力PがPlになると、演算部
29は圧力調整器24の設定圧力を安定させ、可動軸受
部材11′t−その位置に保持する0 このとき、第3図および第4図において左方のスラスト
空気軸受9bは前記右方のスラスト空気軸受9aと対称
的に形成されているので、荷重の片寄りを無視すればこ
の左方のスラスト空気軸受9bの軸受すき間Cも最適軸
受すき間C1になされる。なお、回転軸1に作用する荷
重が例えば右向きである場合は、左右のスラスト空気軸
受9a。
This movement reduces the bearing clearance C and increases the pressure P. When the output signal p is large, the movable bearing member 11 is moved to the left, contrary to the above, to increase the bearing clearance C.
If P is increased, the pressure P will decrease. In this way, when the pressure P, that is, the bearing clearance C is not the optimum bearing clearance C1 inputted to the calculation unit 29, and the pressure P becomes Pl, the calculation unit 29 stabilizes the set pressure of the pressure regulator 24, and the movable bearing member 11 't - Hold in that position 0 At this time, in FIGS. 3 and 4, the left thrust air bearing 9b is formed symmetrically with the right thrust air bearing 9a, so the load is not biased. If this is ignored, the bearing clearance C of this left thrust air bearing 9b will also be set to the optimum bearing clearance C1. Note that when the load acting on the rotating shaft 1 is, for example, rightward, the left and right thrust air bearings 9a.

9bの軸受すき間Cは異なったものとなるが、これらの
軸受すき間Cの変化は荷重に応じて所定の割合で変化す
る。
Although the bearing clearances C of 9b are different, these bearing clearances C change at a predetermined rate depending on the load.

そこで、スラスト空気軸受9a 、9bは、回転軸1の
つば7および軸受部材8などの加工および組立誤差を補
償して、確実に所期の特性を備えた空気軸受となって回
転軸1を支持する。
Therefore, the thrust air bearings 9a and 9b compensate for machining and assembly errors in the collar 7 and the bearing member 8 of the rotating shaft 1 to ensure that the air bearings have the desired characteristics and support the rotating shaft 1. do.

なお、本実施例のように一方のスラスト空気軸受qb側
のみを移動可能にした場合は、その移動量の1/2だけ
回転軸1が軸方向へ移動するが、可動軸受部材IIの移
動量はわずかであるから前記回転軸1の移動は無視し得
る程度のものである。
Note that when only one thrust air bearing qb side is made movable as in this embodiment, the rotary shaft 1 moves in the axial direction by 1/2 of the amount of movement, but the amount of movement of the movable bearing member II is small, so the movement of the rotating shaft 1 is negligible.

ただし、前記回転軸jの移動を押えたい場合には、左右
のスラスト空気軸受qa 、qb側を対称的に移動させ
るように構成すればよい。
However, if it is desired to suppress the movement of the rotation axis j, the left and right thrust air bearings qa and qb may be configured to move symmetrically.

前記スラスト空気軸受qa 、9bの軸受すき間Cは、
回転軸1の回転による該軸受部の昇温や他の要因により
変化することがある。この軸受すき間Cの変化により圧
力Pが変化し、出力信号pが変化する。この出力信号p
が変化すると演算部29によって圧力調整器24が作動
され、可動軸受部材+1’に移動させて軸受すき間Cを
最適軸受すき間C1に保つ。そこで、スラスト空気軸受
qa、qbは、運転中の熱変位などによる変化を補償し
て回転軸1を所期の状態で支持し続ける。
The bearing clearance C of the thrust air bearing qa, 9b is:
It may change due to the temperature rise of the bearing part due to rotation of the rotating shaft 1 or other factors. Due to this change in the bearing clearance C, the pressure P changes, and the output signal p changes. This output signal p
When this changes, the pressure regulator 24 is activated by the calculating section 29, and the movable bearing member +1' is moved to maintain the bearing clearance C at the optimum bearing clearance C1. Therefore, the thrust air bearings qa and qb continue to support the rotating shaft 1 in the desired state by compensating for changes due to thermal displacement during operation.

また、演算部29に設定する最適軸受すき間Cle回転
軸10回転数の変化に応じた値、たとえは回転数が高い
場合には軸受すき間Cを大きくして空気の吐出流量を多
くして冷却機能を増加させるような値に修正するように
構成しておけば、回転数の変化にも対応した状態で運転
することができる。
In addition, the optimal bearing clearance C is set in the calculation unit 29 as a value corresponding to changes in the rotational speed of the rotating shaft 10. For example, when the rotational speed is high, the bearing clearance C is increased to increase the air discharge flow rate and perform cooling function. If the engine is configured to be corrected to a value that increases the number of revolutions, it is possible to operate the engine in a state that corresponds to changes in the rotational speed.

第5図は本発明の他の実施例を示すもので、可動軸受部
材11の移動を送りモ〜り30とそれにより正逆転され
るネジ31にて行なうようにしたものである。
FIG. 5 shows another embodiment of the present invention, in which the movable bearing member 11 is moved by a feed motor 30 and a screw 31 which is rotated forward and backward by the feed motor.

なお、可動軸受部材11を移動させる手段としては、前
述した実施例のほか、シリンダ方式による油圧力、磁力
、バネなどの他の手段を採用でき、また、場合によって
は手動で設定するようにしてもよい。また、軸受すき間
Cの検知は、圧力センサ28に限られるものでなく、こ
の軸受すき間Cと加圧空気の吐出流量とは第2図に示し
たように各々の空気軸受けおいて一定の関係を有するの
で、吐出流量から軸受すき間c4−検知するようにして
もよく、さらにまた回転軸1の軸方向移動量から検知す
るなど種々の手段を採用し得ることは言うまでもない。
As a means for moving the movable bearing member 11, in addition to the above-mentioned embodiments, other means such as hydraulic pressure using a cylinder system, magnetic force, spring, etc. can be adopted, and in some cases, manual setting may be used. Good too. Furthermore, the detection of the bearing clearance C is not limited to the pressure sensor 28, and the bearing clearance C and the discharge flow rate of pressurized air have a certain relationship in each air bearing as shown in FIG. Therefore, it goes without saying that various means such as detecting the bearing clearance c4- from the discharge flow rate or detecting from the amount of axial movement of the rotating shaft 1 can be employed.

以上述べたように本発明によれば、空気軸受の長所をよ
り完全に発揮させることができると共に、使用条件に適
した状態で使用することができ、1つの回転軸を高速と
低速などの異なる条件のもとでも使用でき、また軸受す
き間を自動的にコントロールするように構成すれば運転
中の熱膨張などによる軸受すき間の変化を補償して常に
最適状態に保ったり、さらには回転数の変化にも自動的
に対応して広範囲の回転数に対して最適状態が得られる
などの効果が得られる。
As described above, according to the present invention, the advantages of air bearings can be more fully demonstrated, and they can be used in conditions suitable for the usage conditions, and one rotating shaft can be used at different speeds such as high speed and low speed. It can also be used under various conditions, and if configured to automatically control the bearing clearance, it can compensate for changes in the bearing clearance due to thermal expansion during operation and maintain the optimum condition at all times, and even changes in rotational speed. It also automatically responds to various conditions, providing the optimum conditions over a wide range of rotational speeds.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は空気軸受の軸受すき間と軸受静剛性との関係の
一例を示す曲線図、第2図は空気軸受の軸受すき間と加
圧空気の吐出流量との関係の一例を示す曲線図、第3図
は本発明の一実施例を示す断面図、第4図は第3図の要
部拡大図、第5図は本発明の他の実施例を示す要部断面
図である。 1・・・回転軸、 7・・・つば、 8・・・軸受部材
、qa 、9b・・・スラスト空気軸受、11・・・可
動軸受部材、  +2・・・ガイドビン、+3.14.
16.23・・・流路、  18.26・・・排出口、
22・・・すき間、 24・・・圧力調整器、28・・
・圧力センサ、 29・・・演算部、30・・・送りモ
ータ、  31・・・ネジ。 出願人 東芝機械株式会社
Figure 1 is a curve diagram showing an example of the relationship between the bearing clearance of an air bearing and bearing static rigidity, Figure 2 is a curve diagram showing an example of the relationship between the bearing clearance of an air bearing and the discharge flow rate of pressurized air; 3 is a sectional view showing one embodiment of the present invention, FIG. 4 is an enlarged view of the main part of FIG. 3, and FIG. 5 is a sectional view of the main part showing another embodiment of the invention. DESCRIPTION OF SYMBOLS 1...Rotating shaft, 7...Brim, 8...Bearing member, qa, 9b...Thrust air bearing, 11...Movable bearing member, +2...Guide bin, +3.14.
16.23... Channel, 18.26... Outlet,
22... Gap, 24... Pressure regulator, 28...
・Pressure sensor, 29...Calculation unit, 30...Feed motor, 31...Screw. Applicant: Toshiba Machine Co., Ltd.

Claims (1)

【特許請求の範囲】 1、 回転軸上の互いに相反する側の端面にそれぞれ空
気軸受を形成したスラスト空気軸受装置において、前記
回転軸上の両端面にそれぞれ対向して空気軸受を形成す
る軸受部材のうち少なくともいずれか一方を回転軸の軸
方向へ移動可能に設けたことを特徴とする空気軸受装置
。 2、移動側の軸受部材が、前記空気軸受の圧力に対向す
る流体用力の変化によって移動可能になされている特許
請求の範囲第1項記載のスラスト空気軸受装置。 3、移動側の軸受部材が、ねじによって移動可能になさ
れている特許請求の範囲第1項記載のスラスト空気軸受
装置。 4、移動側の軸受部材が、予じめ定められた2位置間を
移動可能に設けられ、かつ回転軸の回転数に応じて一方
の位置から他方の位置へ自動的に移動可能に構成されて
いる特許請求の範囲第1.2または3項記載のスラスト
空気軸受装置。 5、回転軸上の互いに相反する側の端面にそれぞれ空気
軸受を形成したスラスト空気軸受装置において、前記回
転軸上の両端面にそれぞれ対向して空気軸受を形成する
軸受部材のうち少なくともいずれか一方を回転軸の軸方
向へ移動可能に設けると共に、前記空気軸受のすき間の
大小を検知する手段を設け、同手段からの出力信号に関
連して前記軸受部材を移動させ得るようにしたことに’
%徴とするスラスト空気軸受装置。 6、空気軸受のすき間の大小を検知する手段が、前記空
気軸受内の圧力を検知する圧力センサである特許請求の
範囲第7項記載のスラスト空気軸受装置。 7、 空気軸受のすき間の大小を検知する手段が、前記
空気軸受への空気の吐出流量から検知するようになって
いる特許請求の範囲第7項記載のスラスト空気軸受装置
。 8、空気軸受のすき間の大小を検知する手段が、回転軸
の変位から検知するようになっている特許請求の範囲第
7項記載のスラスト空気軸受装置。
[Claims] 1. In a thrust air bearing device in which air bearings are formed on opposing end surfaces of a rotating shaft, a bearing member that forms air bearings on opposite end surfaces of the rotating shaft. An air bearing device characterized in that at least one of the two is movable in the axial direction of a rotating shaft. 2. The thrust air bearing device according to claim 1, wherein the moving side bearing member is movable by a change in fluid force opposing the pressure of the air bearing. 3. The thrust air bearing device according to claim 1, wherein the moving side bearing member is made movable by a screw. 4. The bearing member on the moving side is provided so as to be movable between two predetermined positions, and configured to be movable automatically from one position to the other position according to the rotation speed of the rotating shaft. A thrust air bearing device according to claim 1.2 or 3. 5. In a thrust air bearing device in which air bearings are formed on opposite end faces of the rotating shaft, at least one of the bearing members that form air bearings on opposite end faces of the rotating shaft. movable in the axial direction of the rotating shaft, and means for detecting the size of the gap between the air bearings, and the bearing member can be moved in response to an output signal from the means.
Thrust air bearing device with % characteristics. 6. The thrust air bearing device according to claim 7, wherein the means for detecting the size of the gap in the air bearing is a pressure sensor that detects the pressure within the air bearing. 7. The thrust air bearing device according to claim 7, wherein the means for detecting the size of the gap between the air bearings is configured to detect from the flow rate of air discharged to the air bearings. 8. The thrust air bearing device according to claim 7, wherein the means for detecting the size of the gap in the air bearing is detected from the displacement of the rotating shaft.
JP8628382A 1982-05-21 1982-05-21 Pneumatic thrust bearing unit Pending JPS58203220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8628382A JPS58203220A (en) 1982-05-21 1982-05-21 Pneumatic thrust bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8628382A JPS58203220A (en) 1982-05-21 1982-05-21 Pneumatic thrust bearing unit

Publications (1)

Publication Number Publication Date
JPS58203220A true JPS58203220A (en) 1983-11-26

Family

ID=13882498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8628382A Pending JPS58203220A (en) 1982-05-21 1982-05-21 Pneumatic thrust bearing unit

Country Status (1)

Country Link
JP (1) JPS58203220A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168019A (en) * 1988-12-21 1990-06-28 Kayaba Ind Co Ltd Hydraulic thrust bearing
JPH02271105A (en) * 1989-04-13 1990-11-06 Isuzu Motors Ltd Bearing device for high speed rotation axis
GB2526340A (en) * 2014-05-21 2015-11-25 Gsi Group Ltd Gas bearing spindles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930193A (en) * 1972-07-31 1974-03-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930193A (en) * 1972-07-31 1974-03-18

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168019A (en) * 1988-12-21 1990-06-28 Kayaba Ind Co Ltd Hydraulic thrust bearing
JPH02271105A (en) * 1989-04-13 1990-11-06 Isuzu Motors Ltd Bearing device for high speed rotation axis
GB2526340A (en) * 2014-05-21 2015-11-25 Gsi Group Ltd Gas bearing spindles
GB2526340B (en) * 2014-05-21 2020-05-20 Novanta Tech Uk Limited Gas bearing spindles

Similar Documents

Publication Publication Date Title
KR100798045B1 (en) Hydraulic bearing device
EP2297469B1 (en) Fluid servo and applications
US4884942A (en) Thrust monitoring and balancing apparatus
US4343592A (en) Static shroud for a rotor
US5388917A (en) Spindle unit
US3926442A (en) Sliding ring seal
US6851862B2 (en) Gas lubricated thrust bearing
US4732174A (en) Spool-type flow adjusting valve
US5207560A (en) Fluid flow machine with variable clearances between the casing and a fluid flow guiding insert in the casing
CA2333991A1 (en) A system for delivering pressurized lubricant fluids to an interior of a rotating hollow shaft
JP2003056307A (en) Turbo machine
WO2008050470A1 (en) Preload adjustment method and device for rolling bearing
EP0252045A2 (en) Thrust monitoring and balancing apparatus
JPS58203220A (en) Pneumatic thrust bearing unit
JPS58196319A (en) Pneumatic bearing device
EP2233700B1 (en) Self balancing face seals and gas turbine engine systems involving such seals
US2858839A (en) Precision pneumatic speed sensing governor
US4373858A (en) Flow regulating shaft seal for an air motor
US20090074561A1 (en) Axial thrust offloading device
US3076656A (en) Hydrodynamic seal especially for pumps, compressors and turbines
CN108608015A (en) A kind of gas eddy wheel drive high speed water lubrication dynamic and static pressure bearing rotor system
CN209387290U (en) The device of ultrahigh speed liquid film shear property and hydrostatic bearing characteristic test can be achieved
JPH05138408A (en) High speed main shaft device
JP3100916B2 (en) Rotary type hydrostatic bearing device
US3687511A (en) Device for infinitely variable adjustment of the play of an antifriction bearing for a spindle or the like