JPS5819424A - Controlling method for cooling of bottom tuyere of converter - Google Patents

Controlling method for cooling of bottom tuyere of converter

Info

Publication number
JPS5819424A
JPS5819424A JP11712581A JP11712581A JPS5819424A JP S5819424 A JPS5819424 A JP S5819424A JP 11712581 A JP11712581 A JP 11712581A JP 11712581 A JP11712581 A JP 11712581A JP S5819424 A JPS5819424 A JP S5819424A
Authority
JP
Japan
Prior art keywords
cooling
blowing
flow rate
converter
tuyeres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11712581A
Other languages
Japanese (ja)
Other versions
JPS6140006B2 (en
Inventor
Akira Yamane
明 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11712581A priority Critical patent/JPS5819424A/en
Publication of JPS5819424A publication Critical patent/JPS5819424A/en
Publication of JPS6140006B2 publication Critical patent/JPS6140006B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/48Bottoms or tuyéres of converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To cool and protect the bottom bricks of the tuyeres in the bottom of a converter effectively over the entire period of converter blowing by controlling the flow rate of blowing of fluid for cooling according to the change in the cooling conditions of the tuyeres decided from the flow rate and pressure of blowing of the fluid for cooling from the bottom of the converter. CONSTITUTION:In tuyeres of double construction, for example, double-ply pipe tuyeres provided to a bottom blown converter, a porous solidified shell 2 known as a mushroom is formed along the annular flow passage 1 for fluid for cooling on the inner side of the furnace. In this invention, the state of formation of the mushroom during blowing is detected precisely from the flow rate and pressure of blowing of the fluid for cooling. The flow rate of blowing of the fluid for cooling is controlled according to the change in the shape of the mushroom, whereby the shape and size of the mushroom are maintained always in an optimum state over the entire period of blowing and the tuyeres are cooled effectively.

Description

【発明の詳細な説明】 仁の発明は、転炉の炉底羽口の乍却制御法に関シ、とく
に転炉吹錬の全期間にわたって炉底羽口ならびに誼羽口
近傍の炉底れんがの効果的な冷却保護を達成しようとす
るものである。
[Detailed Description of the Invention] Jin's invention relates to a method for controlling the flow of the bottom tuyere of a converter, and in particular to a method for controlling the flow of the bottom tuyere and the bottom bricks near the bottom tuyere during the entire period of converter blowing. The aim is to achieve effective cooling protection for

−・般に、底吹き転炉や上、底吹き転炉など底吹き機能
をそなえる転炉においては、炉底に設けた羽口の溶損防
止の九めに羽口構造を二重管や三重管などの多重管とし
、この多重管の環状すき間から冷却用流体として九とえ
ばプロパンなどの炭化水素系ガスやOO2ガスないしは
液体CO□などを吹込んでその熱分解による吸熱反応を
利用して炉底羽口の冷却保liを行っている。
- Generally, in converters equipped with a bottom blowing function, such as bottom blowing converters, top blowing converters, and bottom blowing converters, double pipe or A multiple tube such as a triple tube is used, and a cooling fluid such as a hydrocarbon gas such as propane, OO2 gas, or liquid CO□ is injected through the annular gap of the multiple tube, and an endothermic reaction due to thermal decomposition is utilized. Cooling and maintenance of the hearth bottom tuyeres is carried out.

この種構造の羽口たと又は底吹き転炉に設けた三重管羽
目においては、第1図および第一図にその断面および平
面金示したように炉内側の冷却用流体の流路である環状
流路lに沿ってマツシュルームと呼ばれる多孔質の凝固
殻コが形成されるが、このマツシュルーム−〇形状およ
び大きさが冷却る。
A tuyere of this kind of structure or a triple pipe siding installed in a bottom-blown converter has an annular shape, which is a flow path for the cooling fluid inside the furnace, as shown in Fig. 1 and its cross section and plan view. A porous solidified shell called a pine mushroom is formed along the flow path 1, and this pine mushroom-〇 shape and size cools.

すなわち冷却用流体の冷却能を最大限に発揮するには該
冷却用流体の流れを均一なものとすることが肝要である
が、このためにはマッシュルームが形状、大きさとも理
想的に形成される必要があり、かくしてはじめて羽口お
よび羽口近傍の炉底れんがの溶損を最小限に抑えること
ができると考えら詐るのである。
In other words, in order to maximize the cooling ability of the cooling fluid, it is important to make the flow of the cooling fluid uniform, but for this purpose, the mushrooms must be ideally formed in both shape and size. It is false to think that only in this way can melting damage of the tuyere and the bottom bricks near the tuyere be minimized.

従って上記の目的を達成するには、吹錬全期間にわたっ
てマツシュルームの形成状態を正確に把握することが肝
要となる0 しかしながら従来は、吹錬中におけるマツシュルームの
形状判断はできなくて、吹錬終了後出湯して炉内を空に
したのちの目視による観察によらざるを得す、従って効
果的な羽口の冷却さらにはその制御を行うことはできな
かったのであるOこの発明は上記の問題を有利に解決す
るもので、吹錬中におけるマツシュルームの形成状態を
冷却用流体の吹込み流量、および圧力から的確に把握し
、その形状変化に応じて冷却用流体の吹込み流量を調節
することにより、吹錬全期間にわたってマツシュルーム
の形状、大きさを常に最適な状態に維持して、効果的な
羽口冷却を可能ならしめたものである。
Therefore, in order to achieve the above objective, it is important to accurately grasp the formation state of the pine mushroom during the entire blowing period.However, in the past, it was not possible to judge the shape of the pine mushroom during the blowing process, and the blowing process was completed. This invention had no choice but to perform visual observation after the furnace was emptied by pouring out the hot water, and therefore it was not possible to effectively cool the tuyere or to control it. This method advantageously solves the problem by accurately grasping the formation state of the pine mushroom during blowing from the blowing flow rate and pressure of the cooling fluid, and adjusting the blowing flow rate of the cooling fluid according to changes in the shape. As a result, the shape and size of the pine mushroom are always maintained in an optimal state throughout the blowing period, allowing for effective tuyere cooling.

すなわちこの発明は、底吹き愼舵をそなえる転炉の炉底
に設けた多重管羽口により酸化性精錬ガスを転炉内に収
容した金属溶湯中に吹込み、かつ該羽目をその環状すき
間から冷却用流体を吹込んで冷却するに当り、既往の吹
錬実績に基く羽口冷却能を最大とする冷却用流体の流量
と圧力との関係について理想流量特性曲線を予め求めて
おき、この理想流量特性曲線に対する実操業における冷
却用流体の流量および圧力の偏差から該羽口の冷却状況
を判定し、該偏差に応じて冷却用流体の吹込み量を調節
することにより該偏差を減じて羽口冷却能を高めること
を特徴とする転炉の炉底羽口の冷却制御法である。
That is, this invention blows oxidizing refining gas into the molten metal contained in the converter through multiple tube tuyeres provided at the bottom of a converter equipped with a bottom blowing rudder, and blows the tuyere into the molten metal contained in the converter through the annular gap. When injecting a cooling fluid for cooling, an ideal flow rate characteristic curve is determined in advance for the relationship between the flow rate and pressure of the cooling fluid that maximizes the tuyere cooling capacity based on past blowing results, and this ideal flow rate is determined in advance. The cooling status of the tuyere is determined from the deviation of the flow rate and pressure of the cooling fluid in actual operation with respect to the characteristic curve, and the tuyere is adjusted to reduce the deviation by adjusting the amount of cooling fluid blown in according to the deviation. This is a cooling control method for the bottom tuyere of a converter, which is characterized by increasing the cooling capacity.

以下この発明を由来するに至った実験結果に基いてこの
発明を具体的に説明する。なお冷却用流体としては冷却
用ガスを用いた場合について示す。
This invention will be specifically explained below based on the experimental results that led to this invention. Note that the case where a cooling gas is used as the cooling fluid will be shown.

さてたとえば三重管羽口をそなえた底吹き転炉において
は、酸化性精錬ガスを吹込む中心流路および冷却用ガス
を吹込む環状流路の圧力をそれぞn測定しているが、と
くにマツシュルームの形成と関係の深い環状流路の圧力
に注目すると、環状流路圧は冷却用ガスの流量および吹
錬経過時間によって変動している。この圧力変動の原因
は、冷却能の増減、鋼浴温度の変化および溶鋼中炭素含
有量の減少に伴う凝固温度の変化などによってマツシュ
ルームの形状、大きさが変化するためと考えられる。
For example, in a bottom-blown converter equipped with triple-tube tuyeres, the pressures in the central passage through which the oxidizing refining gas is blown and the annular passage through which the cooling gas is blown are measured. Focusing on the pressure in the annular channel, which is closely related to the formation of , the annular channel pressure fluctuates depending on the flow rate of the cooling gas and the elapsed blowing time. The cause of this pressure fluctuation is thought to be that the shape and size of the pine mushroom change due to changes in cooling capacity, changes in steel bath temperature, and changes in solidification temperature due to decrease in carbon content in molten steel.

そこで発明者らはこの環状流路の圧力変動に注目し、逆
に環状流路圧を検出することからマツシュルームの形成
状態を把握できないものかと考え、出湯後の目視観察に
よりマツシュルームが最適と認められたチャージにおけ
る冷却用ガスの吹込み条件を吹込み流量と圧力との関係
で整理してみた0その結果を第3図にプロットして示す
Therefore, the inventors focused on the pressure fluctuations in this annular flow path, and thought that by detecting the pressure in the annular flow path, it might be possible to grasp the formation state of pine mushrooms, and through visual observation after pouring the hot water, it was confirmed that pine mushrooms were the most suitable. The conditions for blowing the cooling gas in the charged charge were summarized in terms of the relationship between the blowing flow rate and the pressure.The results are plotted and shown in Figure 3.

同図より明らかなように各測定点は多少のバラツキはあ
るものの、ほぼ直線上にのることがわかった。
As is clear from the figure, each measurement point was found to lie approximately on a straight line, although there was some variation.

このことは、冷却用ガスの吹込み条件を1掲の直線に沿
う流量および圧力に制御することによって効果的な羽目
冷却を行えることを示唆するものであり、実際後述する
ように1掲の直線で示される流量、圧力の下に冷却用ガ
スの吹込みを行うことにより高い冷却能の下に効果的な
羽口の保護が達成されたのである。
This suggests that effective wing cooling can be achieved by controlling the blowing conditions of the cooling gas to the flow rate and pressure along the first straight line. By injecting the cooling gas at the flow rate and pressure shown by , effective protection of the tuyeres was achieved with high cooling performance.

この明細書では、1掲したように理想的な形状大きさの
マツシュルームを形成して最大の冷却能をもたらす冷却
ガスの吹込み条件を与える直線を理想流量特性曲線と呼
びMNで示す。なお効果的な羽口冷却をもたらす冷却用
ガスの吹込み条件は、MNで示される吹込み流量および
圧力を厳密に満足させる必要はなく、ある程度の幅をも
って貯容される。そこでこの発明では第参図に示したよ
うにMNを挾んで許容幅だけ離れて平行に二本の直線を
引き、これらをそれぞれマツシュルーム過小限界曲線M
SLマツシュルーム過大限界曲線MLLと名付け、これ
らの両曲線MSL・MLLで挾まれた領域を適正領域と
して、冷却ガスの吹込み条件がこの適正領域内にあれば
マツシュルームの形状、大きさは良好で効果的な羽口冷
却が達成できると判定する。
In this specification, the straight line that provides the blowing conditions for the cooling gas that forms a pine mushroom with an ideal shape and size and provides the maximum cooling capacity is referred to as the ideal flow rate characteristic curve and is denoted by MN in this specification. Note that the blowing conditions for the cooling gas that bring about effective tuyere cooling do not need to strictly satisfy the blowing flow rate and pressure indicated by MN, but are stored within a certain range. Therefore, in this invention, as shown in Figure 1, two straight lines are drawn parallel to each other by an allowable width apart from MN, and these lines are connected to the pine mushroom under-limit curve M.
The SL pine mushroom excessive limit curve MLL is named, and the area between these two curves MSL and MLL is defined as the appropriate area.If the cooling gas injection conditions are within this appropriate area, the shape and size of the pine mushroom will be good and effective. It is determined that the tuyere cooling can be achieved.

これらの曲線MN、MSLおよびMLLの求め方の一例
を次に述べる。
An example of how to obtain these curves MN, MSL, and MLL will be described below.

(1)マツシュルームの形状が理想的と認められたとき
の操業データを微多く収集する。
(1) Collect a small amount of operational data when the shape of the pine mushroom is recognized as ideal.

(2)理想流量特性曲線をy−az+bの形の直線式で
近似するものとし、各操業データの圧力(xn)。
(2) The ideal flow rate characteristic curve is approximated by a linear equation of the form y-az+b, and the pressure (xn) of each operation data.

流量(yn)をx、y座標とする点(xn、y1)のy
−ax+bに対する距離Dnをそれぞれ求める。
y of point (xn, y1) with flow rate (yn) as x, y coordinates
The distance Dn with respect to -ax+b is determined.

(3)で表わされるSを最小Sminにするときの係数
a、bの値(a1、b1)を求め、このy=a1x+b
1で表される直線をMNとする。
Find the values (a1, b1) of the coefficients a and b when S expressed in (3) is made the minimum Smin, and find this y=a1x+b
Let the straight line represented by 1 be MN.

(4)(NF:自由度)なるσを求め、上記y=a1x
+b1に平行で±σだけ離れた二本の直線を引き、これ
らをMSL−MLLとする。
(4) Find σ (NF: degree of freedom), and calculate the above y=a1x
Draw two straight lines parallel to +b1 and separated by ±σ, and define these as MSL-MLL.

なお、0のとりかたは、種々の方法が考えられるが、こ
こでは一つの基準として標準偏差?全採用し、ここに自
由度N、は、Ny−a −/ (N:データ数)で求め
られる。
There are various ways to calculate 0, but here we will use standard deviation as one standard. The degree of freedom N is calculated as Ny-a −/ (N: number of data).

かくして実操業において測定した冷却用ガスの圧力(x
n)と流量(yn)をx、y座標とする点(xn。
Thus, the pressure of the cooling gas measured in actual operation (x
A point (xn) where the x and y coordinates are the flow rate (yn) and the flow rate (yn).

yn)が”SLとMLLとに挾まれた適正領域内にあれ
ば、マツシュルームの形状、大きさは良好と判定し、ま
たこの領域からはずれた場合で”SLより上側にある場
合はマツシュルーム過小’ ILLより下側にある場合
はマツシュルーム過大と判定して冷却用ガスの吹込み流
量を調節することによりマ □ツシュルームを良好な形
状、大きさに修正するのである。
If yn) is within the appropriate area between SL and MLL, the shape and size of the pine mushroom is determined to be good, and if it deviates from this area, it is determined that ``if it is above SL, the pine mushroom is undersized.'' If it is below ILL, it is determined that the pine mushroom is too large, and the □ pine mushroom is corrected to a favorable shape and size by adjusting the blowing flow rate of the cooling gas.

以下第j図ム、Bを参照してマツシュルームの形成状態
を判定しながら冷却用ガスの吹込み流量を調節して炉底
羽口の冷却制御を行う要領について説明する。第5図A
、Bにはそれぞれ容量250トンの上、底吹き転炉につ
いて求めたMN、MSLおよびMLLを示し、当初冷却
用ガスの吹込み流量社7NM/minであった。
Hereinafter, with reference to FIG. Figure 5A
, B show the MN, MSL, and MLL determined for a top and bottom blowing converter with a capacity of 250 tons, respectively, and the cooling gas injection flow rate was initially 7 NM/min.

(イ)まずマツシュルームの大きさが過小になりつつあ
る場合、すなわち第5図Aに示したところにおいて圧力
と流量で示される座標点がMNからしだいに遠ざかって
図中aで示される位置に移動し、適正領域から逸脱する
おそれが生じた場合には次のような措置をとる。
(b) First, when the size of the pine mushroom is becoming too small, that is, at the location shown in Figure 5A, the coordinate point indicated by the pressure and flow rate gradually moves away from MN and moves to the position indicated by a in the figure. However, if there is a risk of deviating from the appropriate range, the following measures will be taken.

冷却ガスの流量を10Nm/minまで増加させる。Increase the cooling gas flow rate to 10 Nm/min.

すると座標点は圧力上昇を伴って図中すの位置に移動し
、その後時間の経過とともに冷却効果が増大して、マツ
シュルームが成長し、それに伴って圧力が上昇(矢印0
)してぃきやがて座標点はMN上の6点にくる。この時
点で冷却ガス流量を元の7Nm/minに減じて・点に
戻すのである。
Then, the coordinate point moves to the position shown in the figure as the pressure increases, and then as time passes, the cooling effect increases, the pine mushroom grows, and the pressure increases accordingly (arrow 0).
) Eventually the coordinate point will come to 6 points on MN. At this point, the cooling gas flow rate is reduced to the original 7 Nm/min and returned to the point.

(ロ)一方マッシュルームの形状が過大になりつつめる
場合は、次のような措置をとnばよい。
(b) On the other hand, if the shape of the mushroom becomes too large, the following measures may be taken.

すなわち座標点が第5図すに示したところにおいてa′
の位置に移動し、MLLの下方のマツシュルーム過大領
域に入るおそれが生じた場合には、まず冷却ガスの流量
を7Nm/minから4Nm/minまで下げる。する
と座標点は圧力降下を伴ってb′点に移動するが、この
ままの流量に保持しておくとマツシュルームはしだいに
小さくなって圧力が減少(矢印C′)する結果、座標点
はNIB上のd′点に移行する0そしてこの時点で流量
を7NIB/minに増大してe′点に戻すのである。
That is, at the coordinate point shown in Figure 5, a'
If there is a risk of entering the excessive mushroom area below the MLL, first lower the flow rate of the cooling gas from 7 Nm/min to 4 Nm/min. Then, the coordinate point moves to point b' with a pressure drop, but if the flow rate is maintained as it is, the pine mushroom will gradually become smaller and the pressure will decrease (arrow C'), so the coordinate point will move to point b' on the NIB. At this point, the flow rate is increased to 7 NIB/min and returned to point e'.

かくして吹錬全期間にわ九ってマツシュルームの形状、
大きさを適正に維持でき、高い冷却能の下に効果的な羽
目冷却が容易に達成できるのである。
Thus, during the whole blowing period, the shape of the pine mushroom,
The size can be maintained appropriately, and effective blade cooling can be easily achieved with high cooling capacity.

以上、この発明法管上、底吹き転炉における炉底羽口の
冷却制御に適用した場合につき主に説明したが、その他
底吹き転炉、不活性ガスのみ管底吹きする転炉(LD 
−KG)およびムOD転炉など底吹き愼罷をそなえる転
炉いずれに対しても適用できるのはいうまでもない。さ
らにこの発明法は、三重管羽口だけでなく、三重管羽口
その他これらに類する冷却用流体の吹、込み機能をもつ
ものであればいずれに対しても勿論適用できる。
Above, we have mainly explained the case where this invention method is applied to the cooling control of the bottom tuyere in tube top and bottom blowing converters.
Needless to say, the present invention can be applied to any converter equipped with bottom blowing, such as OD converter (-KG) and MuOD converter. Furthermore, the method of the present invention can of course be applied not only to triple-pipe tuyeres but also to triple-pipe tuyeres and any other similar type of tuyeres as long as they have cooling fluid blowing and pouring functions.

以上述べたようにこの発明によれば、底吹き嶺mat−
そなえる転炉においてその吹錬全期間にわたり、底吹き
羽口の環状流路に沿って生成するマツシュルームの形状
、大きさを冷却用流体の吹込み流量の調節によって常に
理想形に制御できるので、高い冷却能の下で炉底羽口お
よびその近傍の炉底れんがの溶損を最小限に抑制するこ
とができ、従って羽口の寿命延長に役立つ。
As described above, according to the present invention, the bottom blowing ridge mat-
The shape and size of the pine mushrooms produced along the annular flow path of the bottom blowing tuyere can be controlled to the ideal shape at all times during the entire blowing period in the converter equipped with the converter, by adjusting the blowing flow rate of the cooling fluid. Under the cooling capacity, melting damage of the bottom tuyeres and the bottom bricks in the vicinity thereof can be suppressed to a minimum, thus helping to extend the life of the tuyeres.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそnぞれマツシュルームの形成状
態を底吹き転炉の炉底羽口と共に示した断面図および平
面図、第3図は理想形のマツシュルームが得られたとき
の冷却用ガスの吹込み流量と圧力との関係を示したグラ
フ、第参図は好適なマツシュルームか形成される流量特
性の適正領域を示した図、そして第5図A、Bはそれぞ
れ冷却用ガスの吹込み流量調節による炉底羽口の冷却制
御要領の説明図である。 特許出願人  川崎製鉄株式会社 第1図 第8図 圧力 リIcwpti 圧り惰4−q 第5図 (A) 反かりAfn−q 圧力癩−q
Figures 1 and 2 are a sectional view and a plan view showing the state of formation of a pine mushroom together with the bottom tuyere of a bottom blowing converter, respectively, and Figure 3 is a diagram showing the cooling process when an ideal pine mushroom is obtained. Figure 5 is a graph showing the relationship between the blowing flow rate and pressure of the cooling gas, Figure 5 is a diagram showing the appropriate range of flow rate characteristics to form a suitable pine mushroom, and Figures 5A and B are the graphs showing the relationship between the blowing flow rate and pressure of the cooling gas. FIG. 2 is an explanatory diagram of a procedure for controlling cooling of the bottom tuyere by adjusting the blowing flow rate. Patent applicant: Kawasaki Steel Corporation Figure 1 Figure 8 Pressure re-Icwpti Pressure inertia 4-q Figure 5 (A) Warp Afn-q Pressure leprosy-q

Claims (1)

【特許請求の範囲】[Claims] 1、底吹き慎能會そなえる転炉の炉底に設は九多重管羽
目により酸化性精錬ガスを転炉内に収容した金属溶湯中
に吹込み、かつ該羽口をその環状すき間から冷却用流体
を吹込んで冷却するに当り、既往の吹錬実績に基く羽口
冷却能を最大とする冷却用流体の流量と圧力との間係に
ついて理想流量特性曲線を予め求めておき、この理想流
量特性曲線に対する実操業における冷却用流体の流量お
よび圧力の偏差から骸羽口の冷却状況を判定し、該偏差
に応じて冷却用流体の吹込み量を調節することにより該
偏差上域じて羽口q却能を高めふことを特徴上する1炉
の炉底羽口の冷却制御法0
1. The bottom of the converter equipped with a bottom-blowing facility is equipped with a nine-layer pipe system that blows oxidizing refining gas into the molten metal contained in the converter, and cools the tuyere through its annular gap. When injecting cooling fluid for cooling, an ideal flow rate characteristic curve is determined in advance for the relationship between the flow rate and pressure of the cooling fluid that maximizes the tuyere cooling capacity based on past blowing results, and this ideal flow rate is The cooling status of the shell tuyere is determined from the deviation of the flow rate and pressure of the cooling fluid in actual operation with respect to the characteristic curve, and the tuyeres are adjusted in the upper region of the deviation by adjusting the amount of cooling fluid blown in according to the deviation. A method for controlling the cooling of the bottom tuyere of a furnace, which is characterized by increasing the cooling capacity of the furnace.
JP11712581A 1981-07-28 1981-07-28 Controlling method for cooling of bottom tuyere of converter Granted JPS5819424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11712581A JPS5819424A (en) 1981-07-28 1981-07-28 Controlling method for cooling of bottom tuyere of converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11712581A JPS5819424A (en) 1981-07-28 1981-07-28 Controlling method for cooling of bottom tuyere of converter

Publications (2)

Publication Number Publication Date
JPS5819424A true JPS5819424A (en) 1983-02-04
JPS6140006B2 JPS6140006B2 (en) 1986-09-06

Family

ID=14704050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11712581A Granted JPS5819424A (en) 1981-07-28 1981-07-28 Controlling method for cooling of bottom tuyere of converter

Country Status (1)

Country Link
JP (1) JPS5819424A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644269A1 (en) * 1993-09-21 1995-03-22 The Gas Research Institute Process for controlling the forming of an accretion on an oxy-fuel tuyere
AT407751B (en) * 1999-09-22 2001-06-25 Voest Alpine Ind Anlagen METHOD FOR INFLATING GAS AND SOLIDS UNDER BATH
JP2006274282A (en) * 2005-03-28 2006-10-12 Jfe Steel Kk Observation of bottom-blown tuyere in converter and method for controlling pressure
WO2010142407A1 (en) * 2009-06-09 2010-12-16 Sms Siemag Aktiengesellschaft Method for operating a bottom purging system of a bof converter
US10176900B2 (en) 2012-10-10 2019-01-08 Xyleco, Inc. Equipment protecting enclosures

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02183601A (en) * 1989-01-10 1990-07-18 Maspro Denkoh Corp Microwave device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644269A1 (en) * 1993-09-21 1995-03-22 The Gas Research Institute Process for controlling the forming of an accretion on an oxy-fuel tuyere
AT407751B (en) * 1999-09-22 2001-06-25 Voest Alpine Ind Anlagen METHOD FOR INFLATING GAS AND SOLIDS UNDER BATH
JP2006274282A (en) * 2005-03-28 2006-10-12 Jfe Steel Kk Observation of bottom-blown tuyere in converter and method for controlling pressure
JP4497004B2 (en) * 2005-03-28 2010-07-07 Jfeスチール株式会社 Monitoring and pressure control method for converter bottom blowing tuyere
WO2010142407A1 (en) * 2009-06-09 2010-12-16 Sms Siemag Aktiengesellschaft Method for operating a bottom purging system of a bof converter
US10176900B2 (en) 2012-10-10 2019-01-08 Xyleco, Inc. Equipment protecting enclosures
US10589251B2 (en) 2012-10-10 2020-03-17 Xyleco, Inc. Equipment protecting enclosures

Also Published As

Publication number Publication date
JPS6140006B2 (en) 1986-09-06

Similar Documents

Publication Publication Date Title
US4392509A (en) Furnace valve
JPS5819424A (en) Controlling method for cooling of bottom tuyere of converter
US6017380A (en) Top-blown refining method in converter featuring excellent decarburization and top-blown lance for converter
CA1217336A (en) Annular tuyere and method
ISO et al. Development of Bottom-Blowing Nozzle for Combined Blowing Converter
US2789046A (en) Process of making steel from pig iron
JPS5837110A (en) Refining method of converter
JP4765372B2 (en) Gas blown tuyere
US2323695A (en) Method of controlling the strainsensitivity of bessemer steel
JP3590991B2 (en) Gas injection nozzle for molten metal refining vessel
JPH0678867B2 (en) Oxygen gas tuyere stable operation method
JPH0372376B2 (en)
CN114364471B (en) Crystallizer for continuous casting of metal products and corresponding casting method
JP2561032Y2 (en) Lance for steel making
JP2809058B2 (en) Refining method in converter type refining vessel
JPH0243312A (en) Method for cooling bottom blowing tuyere of refining furnace
JPH10273714A (en) Bottom blowing tuyere
JPS58120708A (en) Converter for refining of metal
JPH0613253Y2 (en) Blowing tuyere
JP2007224399A (en) Bottom-blow tuyere to be used in smelting vessel
JPS6057936B2 (en) Continuous casting method for low carbon white cast iron material
JPS59174256A (en) High-speed continuous casting method
JPH08283822A (en) Method for protecting bottom-blowing tuyere for refining
JPS6136051B2 (en)
GB2157713A (en) Production and/or refining of metal by top blowing in conjunction with a stirring gas