JPS58193407A - Device for measuring distribution of height of body surface - Google Patents

Device for measuring distribution of height of body surface

Info

Publication number
JPS58193407A
JPS58193407A JP7524182A JP7524182A JPS58193407A JP S58193407 A JPS58193407 A JP S58193407A JP 7524182 A JP7524182 A JP 7524182A JP 7524182 A JP7524182 A JP 7524182A JP S58193407 A JPS58193407 A JP S58193407A
Authority
JP
Japan
Prior art keywords
sample
height
lens
pinhole
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7524182A
Other languages
Japanese (ja)
Inventor
Kanji Koname
木滑 寛治
Shinobu Hase
長谷 忍
Tadasuke Munakata
楝方 忠輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7524182A priority Critical patent/JPS58193407A/en
Publication of JPS58193407A publication Critical patent/JPS58193407A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Abstract

PURPOSE:To measure the distribution of the height of the surface of a body in atmospheric air without contact and without destruction, by forming the image of the surface of a sample, placing a pinhole in the image surface, and selectively receiving light from a part having a specified height. CONSTITUTION:A parallel beam from a laser 1 is reflected by a surface 8 of a cube mirror 2, converged by a lens 4, and irradiated on the surface of a sample 5. The reflected light from the surface of the sample 5 is made to be a parallel beam by a lens 4, and reflected by a surface 9 of the mirror 2. The image is formed at the position of a pinhole 11 by a lens 10. The light passed the hole 11 is detected by a light detector 12. In this case, when the height of the surface of the sample 5 is located at the position of the focal point of the lens 4, the image of the laser spot formed on the hole 11 is small. Then the mirror 2 is vibrated and rotated, and the laser beam is scanned on the sample 5. When the laser beam scans the part where the surface height of the sample 5 agrees with the focal point position of the lens 4, a pulse shaped output appears at the output terminal of the detector 12.

Description

【発明の詳細な説明】 本発明は、半導体集積回路等一般に物体表面の高さ分布
の測定装置に係り、非接触が短時間に高さ分布が、等高
線図の形で計測できる装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for measuring the height distribution on the surface of an object, such as a semiconductor integrated circuit, and more particularly, to a device that can measure the height distribution in the form of a contour map in a non-contact manner in a short time.

従来、物体表面の高さ分布の計測は、(1)  探針掃
引方法、(2)立体視走査形電子顕微鏡、あるいは、(
3干渉顕鏡などを用いて行わ、れていた。(1)は試料
物体の表面をダイヤモンド針等で接触掃引するもので、
試料の一部を破壊する。(2)Fi、電子線で試料表面
を走査するため、電子線による試料の損傷の恐れがあり
、かつ真空中に試料を置かなければならないという制限
がある。またC)は、非接触かつ大気中で測定できる方
法であるが計測に時間かがかること及び、間接計測であ
るため、データ、処理が複雑になるといった問題がある
Conventionally, the height distribution on the surface of an object can be measured using (1) a probe sweep method, (2) a stereoscopic scanning electron microscope, or (
This was done using a 3-interference microscope. (1) is a method in which the surface of the sample object is touched and swept with a diamond needle, etc.
Destroy part of the sample. (2) Since the surface of the sample is scanned with Fi and electron beams, there is a risk of damage to the sample due to the electron beam, and there are limitations in that the sample must be placed in a vacuum. C) is a method that allows measurement in the atmosphere without contact, but there are problems in that the measurement takes time and that the data and processing are complicated because it is an indirect measurement.

本発明の目的は1.物体表面の高さ分布を、大気中で、
非接触、非破壊で計測し、しかも、等高線図を直接に計
測と同時に得る高き分布計測装置を提供することにある
The purpose of the present invention is 1. The height distribution of the object surface in the atmosphere,
It is an object of the present invention to provide a high-level distribution measuring device that measures non-contact and non-destructively and also directly obtains a contour map at the same time as the measurement.

上記目的を達成するために、本発明では、細く絞ったレ
ーザビームを試料表面で2次元的に走査する。試料表面
の高さの計測は、試料表面でレーザビームを走査したと
き、特定の高さをもつ試料の位置で、レーザビームスポ
ットが最も小さくなリ、他の位置ではこれよりも大きく
なることを利用する。すなわち試料表面の儂をレンズ系
によって結儂しその像面にピンホールを置ことにより、
特定の高さ部分がらの光を選択的、に受光し、その位置
を知ることを特徴とする。
In order to achieve the above object, the present invention scans the sample surface two-dimensionally with a narrowly focused laser beam. Measurement of the height of a sample surface is based on the fact that when a laser beam is scanned across the sample surface, the laser beam spot will be the smallest at a sample position with a specific height, and will be larger at other positions. Make use of it. In other words, by focusing the surface of the sample using a lens system and placing a pinhole on the image plane,
It is characterized by selectively receiving light from a specific height and knowing its position.

以下、本発明の一実施例を第1図により説明する。本実
施例は主として、レーザ1、キューブミラー2、レンズ
4、試料台6、レンズ10、ピンホール11、光検出器
12、信号処理回路13、および等高線図表示器14か
ら構成される。
An embodiment of the present invention will be described below with reference to FIG. This embodiment mainly includes a laser 1, a cube mirror 2, a lens 4, a sample stage 6, a lens 10, a pinhole 11, a photodetector 12, a signal processing circuit 13, and a contour map display 14.

レーザ1からの平行ビームは、キューブミラー2の面8
で反射され、レンズ4によって絞られ、試料5の表面を
照射する。試料5の表面からの反射光はレンズ4で平行
ビームとなり、キューブミラー2の面9で反射され、レ
ンズIOKよって、ピンホール11の位置に結儂される
。ピンホール11を通過した光は光検出器12によって
検出される。この場合、レーザスポットによって照射さ
れる試料5の表面高さが、レンズ4の焦点位置にあれば
ピンホール11上に結儂されるレーザスポットの儂は小
さく、レンズ10y&:通過する光のほとんどが、ピン
ホール11を通過し、光検出器12によって検出される
。しかし、レーザスポットによって照射される試料5の
表面高さがレンズ4の焦点位置にない場合は、ピンホー
ル11上に結儂されるレーザスポットの儂はピンホール
11の穴の大きさよりも大きくなり、レンズ10を通過
する光のごく一部がピンホール11を通過し、光検出器
12で検出される。
The parallel beam from the laser 1 is directed to the surface 8 of the cube mirror 2.
It is reflected by the lens 4, focused by the lens 4, and illuminates the surface of the sample 5. The reflected light from the surface of the sample 5 is turned into a parallel beam by the lens 4, reflected by the surface 9 of the cube mirror 2, and focused at the position of the pinhole 11 by the lens IOK. The light passing through the pinhole 11 is detected by a photodetector 12. In this case, if the surface height of the sample 5 irradiated by the laser spot is at the focal point of the lens 4, the laser spot focused on the pinhole 11 will be small, and most of the light passing through the lens 10y&: , passes through the pinhole 11 and is detected by the photodetector 12. However, if the height of the surface of the sample 5 irradiated by the laser spot is not at the focal point of the lens 4, the size of the laser spot focused on the pinhole 11 will be larger than the hole size of the pinhole 11. , a small portion of the light passing through the lens 10 passes through the pinhole 11 and is detected by the photodetector 12.

したがって、キューブミラー2を駆動系3によって、振
動回転させて試料5の上でレーザビームを走査すること
によって、光検出器12の出力端には、第2図の波形2
1で示すように試料5の表面高さが、レンズ4の焦点位
置、に一致する部分をレーザビームが走査したときパル
ス状の出力が現れる。
Therefore, by vibrating and rotating the cube mirror 2 by the drive system 3 and scanning the laser beam on the sample 5, the output end of the photodetector 12 receives the waveform 2 shown in FIG.
As shown at 1, when the laser beam scans a portion where the surface height of the sample 5 coincides with the focal position of the lens 4, a pulse-like output appears.

この場合、キューブミラー2の効果により、ピンホール
11上でのレーザスポットの儂の位置は、レーザビーム
走査により変化しない。
In this case, due to the effect of the cube mirror 2, the position of the laser spot on the pinhole 11 does not change due to laser beam scanning.

次にこの波形を、信号処理回路13により、例えば、第
2図波形21中に示した破線の高さで識別して2値化す
ることによって波形22のように成形し、等高線図表示
器14(たとえばオシログラフ)の輝度信号とし、駆動
系3の駆動信号を表示器14の例えば横軸の走査信号と
する。一方、試料駆動系7によって、試料台6を、紙面
と垂直方向に掃引し、駆動系7の掃引信号を表示器14
の例えば縦軸の走査信号とする。
Next, the signal processing circuit 13 identifies and binarizes this waveform by the height of the broken line shown in the waveform 21 in FIG. (for example, an oscilloscope), and the drive signal of the drive system 3 is a horizontal axis scanning signal of the display 14, for example. On the other hand, the sample stage 6 is swept by the sample drive system 7 in a direction perpendicular to the paper surface, and the sweep signal of the drive system 7 is displayed on the display 14.
For example, let it be a scanning signal along the vertical axis.

このような動作により、表示器14には、試料5の表面
で、レンズ4の焦点位置の高さに対応する等高線図が表
示される。種々の高さに対応する等直線図を得るために
は、駆動系15によって試料台6の高さを段階的に変化
させて、上記の動作をくり返す。
By such an operation, a contour map corresponding to the height of the focal position of the lens 4 on the surface of the sample 5 is displayed on the display 14. In order to obtain isoline maps corresponding to various heights, the height of the sample stage 6 is changed stepwise by the drive system 15, and the above operation is repeated.

以上のml?明の如く、本実施例によれば、物体表面の
高さ分布ヲ轡高線図の形で、非接触、短時間に計測する
ことが可能である。
More than ml? As is clear, according to this embodiment, it is possible to measure the height distribution of the surface of an object in the form of a contour diagram without contact and in a short time.

本発明によれば、一般に、物体表面の高さの分布を等i
I#l線図の形で直接計測できしか亀、試料物体に非接
触、非破壊で能率良く計測することがで−きるので、例
えば、半導伴集積回路の製造プロセスにおける製品の全
数検査にも適用しつるという効果がある。
According to the present invention, the height distribution of the object surface is generally equal to i
Direct measurement in the form of an I#l diagram enables efficient, non-contact, non-destructive measurement of the sample object, so it is useful, for example, for 100% inspection of products in the manufacturing process of semiconductor integrated circuits. It also has a vine effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す装置の構成図、第2図
は第1図の実施例における光検出器出力および信号処理
回路出力の波形図である。
FIG. 1 is a block diagram of an apparatus showing an embodiment of the present invention, and FIG. 2 is a waveform diagram of a photodetector output and a signal processing circuit output in the embodiment of FIG.

Claims (1)

【特許請求の範囲】[Claims] 1、レーザからの平行ビームをキューブミラーによって
反射させ、レンズ系によって細く絞り、試料物体表面を
照射し、試料物体からの反射光をし/ズ系およびキュー
ブミラーによって結像させる光学系において、キューブ
ミラーを振動回転することによってレーザビームを試料
物体表面で走査し、かつ結儂面にピンホール及び光検出
器の組合わせを置くことにより、上記光検出器は、上記
試料物体表面の特定高さからの反射光を選択的に受光す
ることにより物体表面の高さ分布を求めることを%徴と
する物体表面の高さ分布測定装置。
1. In an optical system, a parallel beam from a laser is reflected by a cube mirror, narrowed down by a lens system, irradiated onto the surface of a sample object, and the reflected light from the sample object is imaged by a lens system and a cube mirror. By scanning a laser beam over the surface of the sample object by vibrating and rotating a mirror, and placing a combination of a pinhole and a photodetector on the convergence plane, the photodetector can detect a specific height of the surface of the sample object. A height distribution measuring device on the surface of an object that measures the height distribution on the surface of the object by selectively receiving reflected light from the object.
JP7524182A 1982-05-07 1982-05-07 Device for measuring distribution of height of body surface Pending JPS58193407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7524182A JPS58193407A (en) 1982-05-07 1982-05-07 Device for measuring distribution of height of body surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7524182A JPS58193407A (en) 1982-05-07 1982-05-07 Device for measuring distribution of height of body surface

Publications (1)

Publication Number Publication Date
JPS58193407A true JPS58193407A (en) 1983-11-11

Family

ID=13570523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7524182A Pending JPS58193407A (en) 1982-05-07 1982-05-07 Device for measuring distribution of height of body surface

Country Status (1)

Country Link
JP (1) JPS58193407A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS626108A (en) * 1985-05-31 1987-01-13 ザ リンカーン エレクトリック カンパニー Sweep type flying-spot contour determining device
US4775235A (en) * 1984-06-08 1988-10-04 Robotic Vision Systems, Inc. Optical spot scanning system for use in three-dimensional object inspection

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775235A (en) * 1984-06-08 1988-10-04 Robotic Vision Systems, Inc. Optical spot scanning system for use in three-dimensional object inspection
JPS626108A (en) * 1985-05-31 1987-01-13 ザ リンカーン エレクトリック カンパニー Sweep type flying-spot contour determining device

Similar Documents

Publication Publication Date Title
US4641967A (en) Particle position correlator and correlation method for a surface scanner
US4895446A (en) Particle detection method and apparatus
US3790287A (en) Surface inspection with scanned focused light beams
JP3874421B2 (en) Scanning system for inspecting surface anomalies
JP4306800B2 (en) Optical scanning system for surface inspection
JPS6258143A (en) Method of optically detecting defect of semiconductor material
JPH0143901B2 (en)
JPH06167457A (en) Surface inspection device
JP2594685B2 (en) Wafer slip line inspection method
JPH0228803B2 (en)
JPS58193407A (en) Device for measuring distribution of height of body surface
US4528455A (en) Non-destructive testing system with dual scanning
JP2000193434A (en) Foreign substance inspecting device
JPH023447B2 (en)
JPS61132845A (en) Surface detect inspecting device
JPS63304179A (en) Inspecting device for semiconductor device by light induced current
JPS6367508A (en) Method and instrument for measuring coordinates of tape end
WO1992001923A1 (en) Optical scatter imaging
SU1173883A1 (en) Method for measuring concentration and spectrum of aerosol particle dimensions
JP2913409B2 (en) Detection sensitivity correction method for face plate defect detection device
JPH0621179A (en) Erasing method for eliminated area of ic chip
JPH03128445A (en) Foreign matter inspection device
JPH09257718A (en) Apparatus for inspecting foreign matter and method using the same
JPH0712529A (en) Shape inspection apparatus of bonding wire
JPH08261927A (en) Intra-crystal flaw detecting device