JPS58190065A - Floating gate type nonvolatile memory device - Google Patents

Floating gate type nonvolatile memory device

Info

Publication number
JPS58190065A
JPS58190065A JP57072971A JP7297182A JPS58190065A JP S58190065 A JPS58190065 A JP S58190065A JP 57072971 A JP57072971 A JP 57072971A JP 7297182 A JP7297182 A JP 7297182A JP S58190065 A JPS58190065 A JP S58190065A
Authority
JP
Japan
Prior art keywords
floating gate
gate
drain
source
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57072971A
Other languages
Japanese (ja)
Other versions
JPS634954B2 (en
Inventor
Akira Ando
安東 亮
Hirokazu Miyoshi
三好 寛和
Akira Nishimoto
西本 章
Masaharu Tokuda
徳田 正治
Moriyoshi Nakajima
盛義 中島
Hiroshige Takahashi
高橋 広成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57072971A priority Critical patent/JPS58190065A/en
Publication of JPS58190065A publication Critical patent/JPS58190065A/en
Publication of JPS634954B2 publication Critical patent/JPS634954B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation

Abstract

PURPOSE:To obtain a floating gate type nonvolatile memory device wherein writing efficiency is favorable by decreasing the drain voltage at the time of write and the integration degree is high by a method wherein the interval between the source and drain of single-layer gate MOS transistor constituted in parallel is formed wide. CONSTITUTION:The first polycrystalline Si film serving as a floating gate 4 is so formed that at least one of right and left edges not on the source and drain sides of the floating gate 4 is positioned on a channel. A control gate 6, the second gate insulation film 5, the flating gate 4, and the first gate insulation film 3 are successively etching-removed, and thus the partial interval L1 between the source and drain of the channel region 10 wherein the floating gate 4 exists is formed smaller than the interval L2 between the source and drain of a chennel 11 wherein this floating gate 4 does not exist.

Description

【発明の詳細な説明】 この発明は浮遊ゲート型不揮発性メモリ装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a floating gate nonvolatile memory device.

従来例によるこの種のメモリ装置の概要構成を第1図(
、) 、 (b)に示しである0これらの各図において
、符号(1)ハシリコン半導体基板、(2)は素子間分
離のための比較的厚い酸化シリコン膜(以下フィールド
絶縁膜と略称する)、(3)は基板(1)上に形成され
た比較的薄いゲート酸化シリコン膜(以下第1ゲート絶
縁膜と略称する)、(4)は周囲を絶縁物で覆って浮遊
ゲートとなる第1の多結晶シリコン膜(以下浮遊ゲート
と略称する)、(5)はこの浮遊ゲート(4)上に形成
さね、た比較的薄いゲート酸化シリコン膜(以下第2ゲ
ート絶縁膜と略称する)、(6)はこの第2ゲート絶縁
膜(5)を含む上面に形成されて制御電極となる第2の
多結晶シリコン膜(以下制御ゲートと略称する)、(7
)はソースおよびドレインとなる基板(1)とは反対の
導電型の不純物拡散領域、(8)はフィールド絶縁膜(
2)上に延在する浮遊ゲート延在部、(9)はこれらの
上部を覆う層間絶縁膜である。
The schematic configuration of a conventional memory device of this type is shown in Figure 1 (
, ) , (b) In each of these figures, (1) is a silicon semiconductor substrate, and (2) is a relatively thick silicon oxide film for isolation between elements (hereinafter abbreviated as field insulating film). , (3) is a relatively thin gate silicon oxide film (hereinafter referred to as the first gate insulating film) formed on the substrate (1), and (4) is a first gate insulating film whose periphery is covered with an insulator to become a floating gate. A polycrystalline silicon film (hereinafter referred to as a floating gate), (5) is formed on this floating gate (4), and a relatively thin gate silicon oxide film (hereinafter referred to as a second gate insulating film), (6) is a second polycrystalline silicon film (hereinafter abbreviated as control gate) formed on the upper surface including the second gate insulating film (5) and serving as a control electrode;
) is an impurity diffusion region of the opposite conductivity type to that of the substrate (1), which becomes the source and drain, and (8) is a field insulating film (
2) The floating gate extension extending above (9) is an interlayer insulating film covering the upper part thereof.

しかして前記構成にあって、情報の書き込みは浮遊ゲー
ト(4)に電子を充電して行ない、またその消去は浮遊
ゲート(4)から電子を放出して行なう。
In the above structure, information is written by charging the floating gate (4) with electrons, and data is erased by emitting electrons from the floating gate (4).

すなわち、省き込みはドレイン(7)および制御ゲート
(6)に同時に比較的高い電圧を印加し、ドレイ/近傍
のチャネル部にアバランシェを生起させて高エネルギの
電子を発生させ、この高エネルギの電子の一部を制御ゲ
ート(6)に印加されている高電圧電界により、第1ゲ
ート絶縁膜(3)の禁止帯のエネルギギャップを越えて
浮遊ゲート(4)に到達させ、この浮遊ゲート(4)全
帯電させることにより行ない、また消去は紫外線、もし
くは紫外線の波長に近い光の照射に↓す、浮遊ゲート(
4)中の電子を放出させること(工り行なう。そしてこ
のときの浮遊ゲート(4)中の電子の有無にエリ、制御
ゲート(6)からみたメモリトランジスタのしきい値電
圧の相違によりデータ記憶を行なうのである。
In other words, in the process of saving, a relatively high voltage is simultaneously applied to the drain (7) and the control gate (6) to cause avalanche in the drain/nearby channel area to generate high-energy electrons. A part of the floating gate (4) is caused to cross the energy gap of the forbidden band of the first gate insulating film (3) and reach the floating gate (4) by the high voltage electric field applied to the control gate (6). ) The floating gate (
4) Release the electrons in the floating gate (4). At this time, the presence or absence of electrons in the floating gate (4) depends on the difference in the threshold voltage of the memory transistor as seen from the control gate (6). This is what we do.

しかし乍らこの↓うな従来構成においては、メモリセル
面積を小さくする目的で、浮遊ゲート(4)のソースお
工びドレイン(7)とは反対側のエツジの少なくとも一
方をチャネル上に位置するように形成して、ゲート電極
、ソースおよびドレインを共通とする浮遊ゲート型不揮
発性モストランジスタと一部ゲートモストランジスタと
を並列構成させ、この状態で浮遊ゲート型不揮発性モス
トランジスタへの書き込みを行なうと、一層ゲートモス
トランジスタも同時にアバランシェを起こし、ドレイン
電圧が低下してこの1き込み効率が悪くなるという欠点
があった。
However, in this conventional configuration, in order to reduce the memory cell area, at least one of the edges of the floating gate (4) on the side opposite to the source and drain (7) is located on the channel. When a floating gate non-volatile MOS transistor with a common gate electrode, source and drain is formed in parallel with a partially gated MOS transistor, writing to the floating gate non-volatile MOS transistor is performed in this state. However, the gate MOS transistor also suffers from avalanche at the same time, resulting in a decrease in drain voltage and a deterioration in the single input efficiency.

この発明は従来のこのような欠点に鑑み、並列構成さn
、る一層ゲートモストランジスタのソース、ドレイン間
隔を広く形成させて、書き込み時のドレイン電圧の低下
させ、これに工って書き込み効率がよく、かつ高集積度
の浮遊ゲート型不揮発性メモリ装置B−を提fJ(t、
ようとするものである。
In view of these drawbacks of the conventional technology, the present invention has been developed to
, the gap between the source and drain of the gate MOS transistor is widened to reduce the drain voltage during writing, thereby achieving high writing efficiency and high integration floating gate type nonvolatile memory device B- Provide fJ(t,
This is what we are trying to do.

以下、この発明装置の実施例につき、第2図(、)、(
b)ないしpAd図(a) + (+))を参照して詳
細に説明する0 第2図(a) * (b)はこの発明の一実施例装置を
示している。この一実施例では、まずシリコン半導体基
板(1)上に、比較的厚いフィールド絶縁膜(2)を生
成させ、写真製版技術にjt)ソース、ドレインおよび
チャネル領域を蝕刻除去して開孔し、かつ開孔部の基板
(1)面を酸化して比較的薄い第1ゲート絶縁膜(3)
を形成する。
2 (,), (
FIG. 2(a)*(b) shows an apparatus according to an embodiment of the present invention, which will be described in detail with reference to FIGS. In this embodiment, first, a relatively thick field insulating film (2) is formed on a silicon semiconductor substrate (1), and holes are formed by etching away the source, drain and channel regions using photolithography. The surface of the substrate (1) in the opening is oxidized to form a relatively thin first gate insulating film (3).
form.

次に浮遊ゲート(4)となる第1の多結晶シリコン膜を
生成させ、写真製版技術により浮遊ゲートのソース、ド
レイン側でない左右の幅を決定するように同腹を蝕刻除
去するが、このとき浮遊ゲート(4)のソース、ドレイ
ン側でない左右のエツジの少なくとも一方はチャネル上
に位置するように形成する。
Next, a first polycrystalline silicon film that will become the floating gate (4) is generated, and the same side of the floating gate (4) is etched away using photolithography to determine the width of the left and right sides of the floating gate other than the source and drain sides. At least one of the left and right edges of the gate (4), which are not on the source or drain side, is formed so as to be located on the channel.

ついで比較的薄い第2ゲート絶縁膜(5)、および制御
ゲート(6)となる第2の多結晶シリコン膜を生成サセ
、シかるのちにソース、ドレイン間隔を決定するように
、写真製版技術に、l:9制御ゲート(6)、第2ゲー
ト絶縁膜(5)、浮遊ゲート(4)、および第1ゲート
絶縁膜(3)全、順次自己整合エツチングで蝕刻除去す
る0そしてこの際、浮遊ゲート(4)の存在するチャネ
ル領域(10)の一部のソース、ドレイン間隔(I、+
)k、この浮遊ゲート(4)の存在しないチャ;トル領
114(11)のソース、ドレイン間隔(L2)よりも
小さく形成する0またソース、ドレイン間隔が(Ls)
で決定される領域から、チャネル上の浮遊ゲート(4)
のエツジまでの距離(I4)は、少なくとも1μm程度
以上のマスク合わせ余裕全必要とする。
Next, a relatively thin second gate insulating film (5) and a second polycrystalline silicon film that will become the control gate (6) are produced and then processed using photolithography to determine the spacing between the source and drain. , l:9 control gate (6), second gate insulating film (5), floating gate (4), and first gate insulating film (3) are all sequentially etched away by self-aligned etching. Source and drain spacing (I, +
)k, this floating gate (4) does not exist;
floating gate (4) on the channel from the area determined by
The distance (I4) to the edge requires a mask alignment margin of at least about 1 μm or more.

さらに続いて基板(1)とは反対の導電型による不純物
を拡散してソースおよびドレイン(7)の形成。
Further, impurities having a conductivity type opposite to that of the substrate (1) are diffused to form a source and a drain (7).

ゲート電極などとアルミ配線間の層間絶縁膜(9)など
を形成するのであり、この工うにして構成されるこの一
実施例での浮遊ゲート型不揮発性モスメモリ装置では、
1つのメモリセルとして、浮遊ゲート型不揮発性モスト
ランジスタと、一層ゲートモストランジスタとが、ゲー
ト電極、ソースお工びドレイン全共通する並列された回
路となるのである。
An interlayer insulating film (9) etc. is formed between the gate electrode and the aluminum wiring, and in this embodiment of the floating gate type non-volatile MOS memory device constructed in this way,
As one memory cell, a floating gate type nonvolatile MOS transistor and a single-layer gate MOS transistor form a parallel circuit in which the gate electrode, source, and drain are all common.

と\で通常、モストランジスタにおいては、ON状態で
のアバランシェの発生會決める1つの原因としてソース
、ドレイン間隔があり、この間隔が小さくなるとソース
、ドレイン間の電界強度が増して、アバランシェを発生
し易くなる。前記一実施例装置では、誉色込みに際して
従来と同様にドレイン(7)お工び制御ゲート(6)に
同時に比較的高い電圧を印加するが、実際にドレインに
印加される電圧では、並列に設けられている一部ゲート
モストランジスタがアバランシェを起こさない程度に広
くソース、ドレイン間隔(Lx)’ir決定するのであ
る。しかし浮遊ゲート(4)の存在するチャネル領域の
ソース、ドレイン間隔をも、一層ゲートモストランジス
タのソース、ドレイン間隔(Ls)と同じに形成すると
、浮遊ゲート(4)下のチャネル領域にあってもアバラ
ンシェが発生せず、はとんど書き込みが行なわれなくな
るので、この浮遊ゲート(4)の存在するチャネル領域
の一部のソース、ドレイン間隔(Ls)を狭<シ、こ\
にアバランシェを発生させて誉き込みを行なうのである
Normally, in a MOS transistor, one of the factors that determines the occurrence of avalanche in the ON state is the distance between the source and drain, and as this distance becomes smaller, the electric field strength between the source and drain increases, causing avalanche. It becomes easier. In the device of the above embodiment, a relatively high voltage is simultaneously applied to the drain (7) and the control gate (6) at the same time as in the conventional case, but the voltage actually applied to the drain is applied in parallel. The source-drain spacing (Lx)'ir is determined to be wide enough to prevent the provided partially gated MOS transistor from causing avalanche. However, if the spacing between the source and drain of the channel region where the floating gate (4) exists is also formed to be the same as the spacing between the source and drain (Ls) of the single-layer gate MOS transistor, even if the spacing between the source and drain in the channel region under the floating gate (4) is Since avalanche does not occur and writing is rarely performed, it is recommended to narrow the distance between the source and drain (Ls) in a part of the channel region where this floating gate (4) exists.
This is done by generating an avalanche.

また前記浮遊ゲート(4)に電子が充電された省き込み
状態と、電子がない消去状態でのゲート電圧(VD)、
ソース、ドレイン電流(Iam)相互の関係を第3図に
示す。この第3図において、(A)は浮遊ゲート(4)
に電子のない状態、■)は同電子のある状態であり、(
A)l(B)共に途中に彎曲点が存在するが、こカニ浮
遊ゲート型不揮発性モストランジスタと、一層ゲートモ
ストランジスタとが並列にっながっているためである。
In addition, the gate voltage (VD) in the omitted state in which the floating gate (4) is charged with electrons and in the erased state in which there are no electrons;
FIG. 3 shows the relationship between the source and drain currents (Iam). In this Figure 3, (A) is the floating gate (4)
■) is a state in which there is no electron, and (■) is a state in which there is an electron in (
There is a curved point in the middle of both A, I, and B, but this is because the floating gate nonvolatile MOS transistor and the single-gate MOS transistor are connected in parallel.

たソし、こ\で浮遊ゲート型不揮発性モストランジスタ
の消去状態でのしきい値電圧と、一層ゲートモストラン
ジスタのしきい値電圧とi、t”ix同じに形成するこ
とに工り、囚においては彎曲点をもたなくなる。従っで
あるゲート電圧(vu)を設定することで、2種類の異
なったソース、ドレイン間電流(Ids)によりデータ
記憶を行ない得るのである。
Here, we designed the threshold voltage of the floating gate non-volatile MOS transistor in the erased state to be the same as the threshold voltage of the single-layer gate MOS transistor, i, t"ix, and Therefore, by setting a certain gate voltage (vu), data can be stored using two different source-drain currents (Ids).

なお、曲記−実施例では、浮遊ゲート(4)のソース、
ドレイン側でない左右のエツジが双方共にチャネル上に
位置する場合について述べたが、次の第4図に示す他の
実施例のように、浮遊ゲート(4)のソース、ドレイン
側でない左右のエツジの一方のみをチャネル上に位置さ
せるようにしてもよいものである。
Note that in the embodiment, the source of the floating gate (4),
Although we have described the case where both the left and right edges that are not on the drain side are located on the channel, as in another embodiment shown in FIG. Only one of them may be located on the channel.

すなわち、この第4図実施例において、前記第2図実施
例と同一符号は同一または相当部分を示しているが、こ
の場合、浮遊ゲート(4)の、ソース、ドレイン間隔が
(Ll)で決められる領域から、チャネル上に位置する
ソース、ドレイン側でないエツジまでの距離B、)と、
フィールド絶縁膜(2)上に位置する浮遊ゲート(4)
の、ソース、ドレイン側でないエツジから、フィールド
絶縁膜(2)のエツジまでの距離(L4)とは、前記と
同様に少なくとも1μm程度以上のマスク合わせ余裕を
必要としている。そしてこの第4図実施例においても、
前記第2図実施例と同様の効果が得られる0以上詳述し
たようにこの発明によれば、浮遊ゲートのソース、ドレ
イン側の左右のエツジの少なくとも一方を、フィールド
絶縁膜上に位置させる必要がないように構成したから、
書き込み効率を向上できると共に、併せて浮遊ゲートの
面積金車さくし得て、装置の集積度を向上できるなどの
特長がある0
That is, in this embodiment of FIG. 4, the same reference numerals as in the embodiment of FIG. a distance B,) from the region where the source is located to the edge located on the channel but not on the source or drain side;
Floating gate (4) located on field insulation film (2)
The distance (L4) from the edge other than the source/drain side to the edge of the field insulating film (2) requires a mask alignment margin of at least about 1 μm as described above. Also in the embodiment shown in FIG. 4,
According to the present invention, at least one of the left and right edges on the source and drain sides of the floating gate must be located on the field insulating film. Because I configured it so that there is no
It has the advantage of not only improving writing efficiency but also reducing the area of the floating gate and improving the degree of device integration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、および(b)は従来例Vcよる浮遊ゲー
ト型不揮発性メモリ装置の平面、および同I b −I
b線部の断面図、第2図(a)、お工び(b)Fiこの
発明に係わる浮遊ゲート型不揮発性メモリ装置の一実施
例を示す平面、お工び同nb −ub m部の断面図、
第3図は同上Va−Ida特性金示す特性図示第4図(
a)、お工び(b)は同上他の実施例を示す平面、お工
び■b−IVb線部の断面図である。 (1)・・・・シリコン半導体基板、(2)・・・・フ
ィールド絶縁膜、(4)・・・・浮遊グー)、(6)・
・・・制御ゲート、(7)・・・・ソース、ドレインと
なる不純物拡販領域。 代理人 疼 野 侶 − 第2図 第3図
FIGS. 1(a) and 1(b) are plane views of a floating gate nonvolatile memory device according to a conventional example Vc, and a plane view of a floating gate nonvolatile memory device according to a conventional example Vc, and
Fig. 2(a) is a sectional view of the section line b; cross section,
Figure 3 shows the same Va-Ida characteristics as shown in Figure 4 (
Figures a) and (b) are plan views showing other embodiments of the same as the above, and cross-sectional views taken along the line b-IVb. (1)...Silicon semiconductor substrate, (2)...Field insulating film, (4)...Floating goo), (6)...
... control gate, (7) ... impurity sales area for sources and drains. Agent Ishino - Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 浮遊ゲートのソース、ドレイン側でないエツジ部の少な
くとも一方を、フィールド絶縁膜エツジとかさねるか、
もしくはチャネル上に位置させると共に、このフィール
ド絶縁膜エツジとかさねるか、もしくはチャネル上に位
置させた浮遊ゲートのソース、ドレイン側でないエツジ
部でのソース、ドレイン間隔よジも、浮遊ゲートの存在
する領域でのソース、ドレイン間隔の少なくとも一部を
狭く形成したことを特徴とする浮遊ゲート型不揮発性メ
モリ装置。
Either overlap at least one of the edges of the floating gate that is not on the source or drain side with the edge of the field insulating film, or
Or, in addition to being located on the channel, the source of the floating gate located over the edge of this field insulating film, or the source and drain spacing at the edge portion other than the drain side, is also located in the area where the floating gate exists. What is claimed is: 1. A floating gate nonvolatile memory device characterized in that at least part of the distance between the source and the drain is formed narrowly.
JP57072971A 1982-04-29 1982-04-29 Floating gate type nonvolatile memory device Granted JPS58190065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57072971A JPS58190065A (en) 1982-04-29 1982-04-29 Floating gate type nonvolatile memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57072971A JPS58190065A (en) 1982-04-29 1982-04-29 Floating gate type nonvolatile memory device

Publications (2)

Publication Number Publication Date
JPS58190065A true JPS58190065A (en) 1983-11-05
JPS634954B2 JPS634954B2 (en) 1988-02-01

Family

ID=13504777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57072971A Granted JPS58190065A (en) 1982-04-29 1982-04-29 Floating gate type nonvolatile memory device

Country Status (1)

Country Link
JP (1) JPS58190065A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192872A (en) * 1991-09-13 1993-03-09 Micron Technology, Inc. Cell structure for erasable programmable read-only memories

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192872A (en) * 1991-09-13 1993-03-09 Micron Technology, Inc. Cell structure for erasable programmable read-only memories

Also Published As

Publication number Publication date
JPS634954B2 (en) 1988-02-01

Similar Documents

Publication Publication Date Title
JPH0650363U (en) Electrically programmable and erasable memory cell
US5594688A (en) Nonvolatile semiconductor memory device and method of producing the same
US5545572A (en) Method for fabricating electrostatic discharge protecting transistor
JPH07114264B2 (en) Method for manufacturing semiconductor integrated circuit device
JPS58190065A (en) Floating gate type nonvolatile memory device
JP3462886B2 (en) Semiconductor device
JPS6057673A (en) Mos type semiconductor device
KR100559719B1 (en) High voltage transistor in semiconductor device
JP2784765B2 (en) Manufacturing method of semiconductor nonvolatile memory
JPH1022404A (en) Manufacture of split gate type semiconductor device
JPS6211516B2 (en)
JPH0424877B2 (en)
KR0168157B1 (en) Method for fabricating high voltage transistor
JPH0244734A (en) Manufacture of mis transistor
KR100475033B1 (en) Manufacturing method of nonvolatile memory device
JPH0888289A (en) Manufacture of semiconductor memory device
JPH05218440A (en) Manufacture of nonvolatile semiconductor storage device
JPH04146627A (en) Field-effect type semiconductor device and manufacture thereof
KR970013338A (en) Nonvolatile Memory Device and Manufacturing Method Thereof
KR19990061345A (en) Nonvolatile Semiconductor Memory Device and Manufacturing Method Thereof
JP3211635B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JP3421566B2 (en) Semiconductor device
JP3501405B2 (en) Manufacturing method of nonvolatile semiconductor device
JPH1154638A (en) Manufacture of semiconductor device
JPH06334196A (en) Mos type semiconductor memory device